pub struct Curve { /* private fields */ }Expand description
A curve, defined in local surface coordinates
Implementations§
source§impl Curve
impl Curve
sourcepub fn new(
surface: Handle<Surface>,
path: SurfacePath,
global_form: impl Into<HandleWrapper<GlobalCurve>>
) -> Self
pub fn new(
surface: Handle<Surface>,
path: SurfacePath,
global_form: impl Into<HandleWrapper<GlobalCurve>>
) -> Self
Construct a new instance of Curve
Examples found in repository?
More examples
src/algorithms/transform/curve.rs (line 30)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform path, as that's defined in surface
// coordinates, and thus transforming `surface` takes care of it.
let path = self.path();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(surface, path, global_form)
}src/algorithms/intersect/surface_surface.rs (line 64)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
pub fn compute(
surfaces: [Handle<Surface>; 2],
objects: &mut Service<Objects>,
) -> Option<Self> {
// Algorithm from Real-Time Collision Detection by Christer Ericson. See
// section 5.4.4, Intersection of Two Planes.
//
// Adaptations were made to get the intersection curves in local
// coordinates for each surface.
let surfaces_and_planes = surfaces.map(|surface| {
let plane = plane_from_surface(&surface);
(surface, plane)
});
let [a, b] = surfaces_and_planes.clone().map(|(_, plane)| plane);
let (a_distance, a_normal) = a.constant_normal_form();
let (b_distance, b_normal) = b.constant_normal_form();
let direction = a_normal.cross(&b_normal);
let denom = direction.dot(&direction);
if denom == Scalar::ZERO {
// Comparing `denom` against zero looks fishy. It's probably better
// to compare it against an epsilon value, but I don't know how
// large that epsilon should be.
//
// I'll just leave it like that, until we had the opportunity to
// collect some experience with this code.
// - @hannobraun
return None;
}
let origin = (b_normal * a_distance - a_normal * b_distance)
.cross(&direction)
/ denom;
let origin = Point { coords: origin };
let line = Line::from_origin_and_direction(origin, direction);
let curves = surfaces_and_planes.map(|(surface, plane)| {
let path = SurfacePath::Line(plane.project_line(&line));
let global_form = GlobalCurve.insert(objects);
Curve::new(surface, path, global_form).insert(objects)
});
Some(Self {
intersection_curves: curves,
})
}src/algorithms/sweep/vertex.rs (line 92)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}src/algorithms/sweep/edge.rs (lines 54-58)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}sourcepub fn path(&self) -> SurfacePath
pub fn path(&self) -> SurfacePath
Access the path that defines the curve
Examples found in repository?
More examples
src/algorithms/intersect/ray_edge.rs (line 20)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
fn intersect(self) -> Option<Self::Intersection> {
let (ray, edge) = self;
let line = match edge.curve().path() {
SurfacePath::Line(line) => line,
SurfacePath::Circle(_) => {
todo!("Casting rays against circles is not supported yet")
}
};
let points = edge.vertices().clone().map(|vertex| {
let point = vertex.position();
line.point_from_line_coords(point)
});
let segment = Segment::from_points(points);
(ray, &segment).intersect()
}src/partial/objects/vertex.rs (line 46)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
fn build(mut self, objects: &mut Service<Objects>) -> Self::Full {
let position = self
.position
.expect("Can't build `Vertex` without position");
let curve = self.curve.build(objects);
// Infer surface position, if not available.
if self.surface_form.read().position.is_none() {
self.surface_form.write().position =
Some(curve.path().point_from_path_coords(position));
}
let surface_form = self.surface_form.build(objects);
Vertex::new(position, curve, surface_form)
}src/algorithms/transform/curve.rs (line 19)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform path, as that's defined in surface
// coordinates, and thus transforming `surface` takes care of it.
let path = self.path();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(surface, path, global_form)
}src/validate/vertex.rs (line 109)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
fn check_position(
vertex: &Vertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let curve_position_as_surface = vertex
.curve()
.path()
.point_from_path_coords(vertex.position());
let surface_position = vertex.surface_form().position();
let distance = curve_position_as_surface.distance_to(&surface_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
vertex: vertex.clone(),
surface_vertex: vertex.surface_form().clone_object(),
curve_position_as_surface,
distance,
});
}
Ok(())
}src/algorithms/approx/curve.rs (line 45)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let (curve, range) = self;
let global_curve = curve.global_form().clone();
let global_curve_approx = match cache.get(global_curve.clone(), range) {
Some(approx) => approx,
None => {
let approx = approx_global_curve(curve, range, tolerance);
cache.insert(global_curve, range, approx)
}
};
CurveApprox::empty().with_points(
global_curve_approx.points.into_iter().map(|point| {
let point_surface =
curve.path().point_from_path_coords(point.local_form);
ApproxPoint::new(point_surface, point.global_form)
.with_source((curve.clone(), point.local_form))
}),
)
}
}
fn approx_global_curve(
curve: &Curve,
range: RangeOnPath,
tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
// There are different cases of varying complexity. Circles are the hard
// part here, as they need to be approximated, while lines don't need to be.
//
// This will probably all be unified eventually, as `SurfacePath` and
// `GlobalPath` grow APIs that are better suited to implementing this code
// in a more abstract way.
let points = match (curve.path(), curve.surface().geometry().u) {
(SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
todo!(
"Approximating a circle on a curved surface not supported yet."
)
}
(SurfacePath::Circle(_), GlobalPath::Line(_)) => {
(curve.path(), range)
.approx_with_cache(tolerance, &mut ())
.into_iter()
.map(|(point_curve, point_surface)| {
// We're throwing away `point_surface` here, which is a bit
// weird, as we're recomputing it later (outside of this
// function).
//
// It should be fine though:
//
// 1. We're throwing this version away, so there's no danger
// of inconsistency between this and the later version.
// 2. This version should have been computed using the same
// path and parameters and the later version will be, so
// they should be the same anyway.
// 3. Not all other cases handled in this function have a
// surface point available, so it needs to be computed
// later anyway, in the general case.
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
(point_curve, point_global)
})
.collect()
}
(SurfacePath::Line(line), _) => {
let range_u =
RangeOnPath::from(range.boundary.map(|point_curve| {
[curve.path().point_from_path_coords(point_curve).u]
}));
let approx_u = (curve.surface().geometry().u, range_u)
.approx_with_cache(tolerance, &mut ());
let mut points = Vec::new();
for (u, _) in approx_u {
let t = (u.t - line.origin().u) / line.direction().u;
let point_surface = curve.path().point_from_path_coords([t]);
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
points.push((u, point_global));
}
points
}
};
let points = points
.into_iter()
.map(|(point_curve, point_global)| {
ApproxPoint::new(point_curve, point_global)
})
.collect();
GlobalCurveApprox { points }
}Additional examples can be found in:
sourcepub fn surface(&self) -> &Handle<Surface>
pub fn surface(&self) -> &Handle<Surface>
Access the surface that the curve is defined in
Examples found in repository?
More examples
src/validate/vertex.rs (line 90)
89 90 91 92 93 94 95 96 97 98 99 100 101
fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
let curve_surface = vertex.curve().surface();
let surface_form_surface = vertex.surface_form().surface();
if curve_surface.id() != surface_form_surface.id() {
return Err(Self::SurfaceMismatch {
curve_surface: curve_surface.clone(),
surface_form_surface: surface_form_surface.clone(),
});
}
Ok(())
}src/algorithms/transform/curve.rs (line 22)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform path, as that's defined in surface
// coordinates, and thus transforming `surface` takes care of it.
let path = self.path();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(surface, path, global_form)
}src/algorithms/sweep/curve.rs (line 24)
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
_: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
match self.surface().geometry().u {
GlobalPath::Circle(_) => {
// Sweeping a `Curve` creates a `Surface`. The u-axis of that
// `Surface` is a `GlobalPath`, which we are computing below.
// That computation might or might not work with an arbitrary
// surface. Probably not, but I'm not sure.
//
// What definitely won't work, is computing the bottom edge of
// the sweep. The edge sweeping code currently assumes that the
// bottom edge is a line (which is true when sweeping from a
// flat surface). But is the surface we're sweeping from is
// curved, there's simply no way to represent the curve of the
// resulting bottom edge.
todo!(
"Sweeping a curve that is defined on a curved surface is \
not supported yet."
)
}
GlobalPath::Line(_) => {
// We're sweeping from a curve on a flat surface, which is
// supported. Carry on.
}
}
let u = match self.path() {
SurfacePath::Circle(circle) => {
let center = self
.surface()
.geometry()
.point_from_surface_coords(circle.center());
let a = self
.surface()
.geometry()
.vector_from_surface_coords(circle.a());
let b = self
.surface()
.geometry()
.vector_from_surface_coords(circle.b());
let circle = Circle::new(center, a, b);
GlobalPath::Circle(circle)
}
SurfacePath::Line(line) => {
let origin = self
.surface()
.geometry()
.point_from_surface_coords(line.origin());
let direction = self
.surface()
.geometry()
.vector_from_surface_coords(line.direction());
let line = Line::from_origin_and_direction(origin, direction);
GlobalPath::Line(line)
}
};
PartialSurface::from_axes(u, path)
.build(objects)
.insert(objects)
}src/algorithms/approx/curve.rs (line 65)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
fn approx_global_curve(
curve: &Curve,
range: RangeOnPath,
tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
// There are different cases of varying complexity. Circles are the hard
// part here, as they need to be approximated, while lines don't need to be.
//
// This will probably all be unified eventually, as `SurfacePath` and
// `GlobalPath` grow APIs that are better suited to implementing this code
// in a more abstract way.
let points = match (curve.path(), curve.surface().geometry().u) {
(SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
todo!(
"Approximating a circle on a curved surface not supported yet."
)
}
(SurfacePath::Circle(_), GlobalPath::Line(_)) => {
(curve.path(), range)
.approx_with_cache(tolerance, &mut ())
.into_iter()
.map(|(point_curve, point_surface)| {
// We're throwing away `point_surface` here, which is a bit
// weird, as we're recomputing it later (outside of this
// function).
//
// It should be fine though:
//
// 1. We're throwing this version away, so there's no danger
// of inconsistency between this and the later version.
// 2. This version should have been computed using the same
// path and parameters and the later version will be, so
// they should be the same anyway.
// 3. Not all other cases handled in this function have a
// surface point available, so it needs to be computed
// later anyway, in the general case.
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
(point_curve, point_global)
})
.collect()
}
(SurfacePath::Line(line), _) => {
let range_u =
RangeOnPath::from(range.boundary.map(|point_curve| {
[curve.path().point_from_path_coords(point_curve).u]
}));
let approx_u = (curve.surface().geometry().u, range_u)
.approx_with_cache(tolerance, &mut ());
let mut points = Vec::new();
for (u, _) in approx_u {
let t = (u.t - line.origin().u) / line.direction().u;
let point_surface = curve.path().point_from_path_coords([t]);
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
points.push((u, point_global));
}
points
}
};
let points = points
.into_iter()
.map(|(point_curve, point_global)| {
ApproxPoint::new(point_curve, point_global)
})
.collect();
GlobalCurveApprox { points }
}sourcepub fn global_form(&self) -> &Handle<GlobalCurve>
pub fn global_form(&self) -> &Handle<GlobalCurve>
Access the global form of the curve
Examples found in repository?
More examples
src/validate/edge.rs (line 130)
129 130 131 132 133 134 135 136 137 138 139 140 141 142
fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_curve_from_curve = half_edge.curve().global_form();
let global_curve_from_global_form = half_edge.global_form().curve();
if global_curve_from_curve.id() != global_curve_from_global_form.id() {
return Err(Self::GlobalCurveMismatch {
global_curve_from_curve: global_curve_from_curve.clone(),
global_curve_from_global_form: global_curve_from_global_form
.clone(),
});
}
Ok(())
}src/algorithms/transform/curve.rs (line 26)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform path, as that's defined in surface
// coordinates, and thus transforming `surface` takes care of it.
let path = self.path();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(surface, path, global_form)
}src/algorithms/approx/curve.rs (line 33)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let (curve, range) = self;
let global_curve = curve.global_form().clone();
let global_curve_approx = match cache.get(global_curve.clone(), range) {
Some(approx) => approx,
None => {
let approx = approx_global_curve(curve, range, tolerance);
cache.insert(global_curve, range, approx)
}
};
CurveApprox::empty().with_points(
global_curve_approx.points.into_iter().map(|point| {
let point_surface =
curve.path().point_from_path_coords(point.local_form);
ApproxPoint::new(point_surface, point.global_form)
.with_source((curve.clone(), point.local_form))
}),
)
}Additional examples can be found in:
Trait Implementations§
source§impl HasPartial for Curve
impl HasPartial for Curve
§type Partial = PartialCurve
type Partial = PartialCurve
The type representing the partial variant of this object
source§impl Ord for Curve
impl Ord for Curve
source§impl PartialEq<Curve> for Curve
impl PartialEq<Curve> for Curve
source§impl PartialOrd<Curve> for Curve
impl PartialOrd<Curve> for Curve
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moresource§impl TransformObject for Curve
impl TransformObject for Curve
source§fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
Transform the object using the provided cache
source§fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
Transform the object
impl Eq for Curve
impl StructuralEq for Curve
impl StructuralPartialEq for Curve
Auto Trait Implementations§
impl !RefUnwindSafe for Curve
impl Send for Curve
impl Sync for Curve
impl Unpin for Curve
impl !UnwindSafe for Curve
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.