Struct fj_kernel::objects::Curve

source ·
pub struct Curve { /* private fields */ }
Expand description

A curve, defined in local surface coordinates

Implementations§

Construct a new instance of Curve

Examples found in repository?
src/partial/objects/curve.rs (line 37)
32
33
34
35
36
37
38
    fn build(self, objects: &mut Service<Objects>) -> Self::Full {
        let path = self.path.expect("Need path to build curve");
        let surface = self.surface.build(objects);
        let global_form = self.global_form.build(objects);

        Curve::new(surface, path, global_form)
    }
More examples
Hide additional examples
src/algorithms/transform/curve.rs (line 30)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform path, as that's defined in surface
        // coordinates, and thus transforming `surface` takes care of it.
        let path = self.path();

        let surface = self
            .surface()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let global_form = self
            .global_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(surface, path, global_form)
    }
src/algorithms/intersect/surface_surface.rs (line 64)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    pub fn compute(
        surfaces: [Handle<Surface>; 2],
        objects: &mut Service<Objects>,
    ) -> Option<Self> {
        // Algorithm from Real-Time Collision Detection by Christer Ericson. See
        // section 5.4.4, Intersection of Two Planes.
        //
        // Adaptations were made to get the intersection curves in local
        // coordinates for each surface.

        let surfaces_and_planes = surfaces.map(|surface| {
            let plane = plane_from_surface(&surface);
            (surface, plane)
        });
        let [a, b] = surfaces_and_planes.clone().map(|(_, plane)| plane);

        let (a_distance, a_normal) = a.constant_normal_form();
        let (b_distance, b_normal) = b.constant_normal_form();

        let direction = a_normal.cross(&b_normal);

        let denom = direction.dot(&direction);
        if denom == Scalar::ZERO {
            // Comparing `denom` against zero looks fishy. It's probably better
            // to compare it against an epsilon value, but I don't know how
            // large that epsilon should be.
            //
            // I'll just leave it like that, until we had the opportunity to
            // collect some experience with this code.
            // - @hannobraun
            return None;
        }

        let origin = (b_normal * a_distance - a_normal * b_distance)
            .cross(&direction)
            / denom;
        let origin = Point { coords: origin };

        let line = Line::from_origin_and_direction(origin, direction);

        let curves = surfaces_and_planes.map(|(surface, plane)| {
            let path = SurfacePath::Line(plane.project_line(&line));
            let global_form = GlobalCurve.insert(objects);

            Curve::new(surface, path, global_form).insert(objects)
        });

        Some(Self {
            intersection_curves: curves,
        })
    }
src/algorithms/sweep/vertex.rs (line 92)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let (vertex, surface) = self;
        let path = path.into();

        // The result of sweeping a `Vertex` is an `Edge`. Seems
        // straight-forward at first, but there are some subtleties we need to
        // understand:
        //
        // 1. To create an `Edge`, we need the `Curve` that defines it. A
        //    `Curve` is defined in a `Surface`, and we're going to need that to
        //    create the `Curve`. Which is why this `Sweep` implementation is
        //    for `(Vertex, Surface)`, and not just for `Vertex`.
        // 2. Please note that, while the output `Edge` has two vertices, our
        //    input `Vertex` is not one of them! It can't be, unless the `Curve`
        //    of the output `Edge` happens to be the same `Curve` that the input
        //    `Vertex` is defined on. That would be an edge case that probably
        //    can't result in anything valid, and we're going to ignore it for
        //    now.
        // 3. This means, we have to compute everything that defines the
        //    output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
        //
        // Before we get to that though, let's make sure that whoever called
        // this didn't give us bad input.

        // So, we're supposed to create the `Edge` by sweeping a `Vertex` using
        // `path`. Unless `path` is identical to the path that created the
        // `Surface`, this doesn't make any sense. Let's make sure this
        // requirement is met.
        //
        // Further, the `Curve` that was swept to create the `Surface` needs to
        // be the same `Curve` that the input `Vertex` is defined on. If it's
        // not, we have no way of knowing the surface coordinates of the input
        // `Vertex` on the `Surface`, and we're going to need to do that further
        // down. There's no way to check for that, unfortunately.
        assert_eq!(path, surface.geometry().v);

        // With that out of the way, let's start by creating the `GlobalEdge`,
        // as that is the most straight-forward part of this operations, and
        // we're going to need it soon anyway.
        let (edge_global, vertices_global) = vertex
            .global_form()
            .clone()
            .sweep_with_cache(path, cache, objects);

        // Next, let's compute the surface coordinates of the two vertices of
        // the output `Edge`, as we're going to need these for the rest of this
        // operation.
        //
        // They both share a u-coordinate, which is the t-coordinate of our
        // input `Vertex`. Remember, we validated above, that the `Curve` of the
        // `Surface` and the curve of the input `Vertex` are the same, so we can
        // do that.
        //
        // Now remember what we also validated above: That `path`, which we're
        // using to create the output `Edge`, also created the `Surface`, and
        // thereby defined its coordinate system. That makes the v-coordinates
        // straight-forward: The start of the edge is at zero, the end is at
        // one.
        let points_surface = [
            Point::from([vertex.position().t, Scalar::ZERO]),
            Point::from([vertex.position().t, Scalar::ONE]),
        ];

        // Armed with those coordinates, creating the `Curve` of the output
        // `Edge` is straight-forward.
        let curve = {
            let (path, _) = SurfacePath::line_from_points(points_surface);

            Curve::new(surface.clone(), path, edge_global.curve().clone())
                .insert(objects)
        };

        let vertices_surface = {
            let [_, position] = points_surface;
            let [_, global_form] = vertices_global;

            [
                vertex.surface_form().clone(),
                SurfaceVertex::new(position, surface, global_form)
                    .insert(objects),
            ]
        };

        // And now the vertices. Again, nothing wild here.
        let vertices = vertices_surface.map(|surface_form| {
            Vertex::new(
                [surface_form.position().v],
                curve.clone(),
                surface_form,
            )
            .insert(objects)
        });

        // And finally, creating the output `Edge` is just a matter of
        // assembling the pieces we've already created.
        HalfEdge::new(vertices, edge_global).insert(objects)
    }
src/algorithms/sweep/edge.rs (lines 54-58)
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let (edge, color) = self;
        let path = path.into();

        let surface =
            edge.curve().clone().sweep_with_cache(path, cache, objects);

        // We can't use the edge we're sweeping from as the bottom edge, as that
        // is not defined in the right surface. Let's create a new bottom edge,
        // by swapping the surface of the original.
        let bottom_edge = {
            let vertices = edge.vertices();

            let points_curve_and_surface = vertices.clone().map(|vertex| {
                (vertex.position(), [vertex.position().t, Scalar::ZERO])
            });

            let curve = {
                // Please note that creating a line here is correct, even if the
                // global curve is a circle. Projected into the side surface, it
                // is going to be a line either way.
                let path =
                    SurfacePath::Line(Line::from_points_with_line_coords(
                        points_curve_and_surface,
                    ));

                Curve::new(
                    surface.clone(),
                    path,
                    edge.curve().global_form().clone(),
                )
                .insert(objects)
            };

            let vertices = {
                let points_surface = points_curve_and_surface
                    .map(|(_, point_surface)| point_surface);

                vertices
                    .each_ref_ext()
                    .into_iter_fixed()
                    .zip(points_surface)
                    .collect::<[_; 2]>()
                    .map(|(vertex, point_surface)| {
                        let surface_vertex = SurfaceVertex::new(
                            point_surface,
                            surface.clone(),
                            vertex.global_form().clone(),
                        )
                        .insert(objects);

                        Vertex::new(
                            vertex.position(),
                            curve.clone(),
                            surface_vertex,
                        )
                        .insert(objects)
                    })
            };

            HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
        };

        let side_edges = bottom_edge.vertices().clone().map(|vertex| {
            (vertex, surface.clone()).sweep_with_cache(path, cache, objects)
        });

        let top_edge = {
            let bottom_vertices = bottom_edge.vertices();

            let surface_vertices = side_edges.clone().map(|edge| {
                let [_, vertex] = edge.vertices();
                vertex.surface_form().clone()
            });

            let points_curve_and_surface =
                bottom_vertices.clone().map(|vertex| {
                    (vertex.position(), [vertex.position().t, Scalar::ONE])
                });

            let curve = {
                let global = bottom_edge
                    .curve()
                    .global_form()
                    .clone()
                    .translate(path, objects);

                // Please note that creating a line here is correct, even if the
                // global curve is a circle. Projected into the side surface, it
                // is going to be a line either way.
                let path =
                    SurfacePath::Line(Line::from_points_with_line_coords(
                        points_curve_and_surface,
                    ));

                Curve::new(surface, path, global).insert(objects)
            };

            let global = GlobalEdge::new(
                curve.global_form().clone(),
                surface_vertices
                    .clone()
                    .map(|surface_vertex| surface_vertex.global_form().clone()),
            )
            .insert(objects);

            let vertices = bottom_vertices
                .each_ref_ext()
                .into_iter_fixed()
                .zip(surface_vertices)
                .collect::<[_; 2]>()
                .map(|(vertex, surface_form)| {
                    Vertex::new(vertex.position(), curve.clone(), surface_form)
                        .insert(objects)
                });

            HalfEdge::new(vertices, global).insert(objects)
        };

        let cycle = {
            let a = bottom_edge;
            let [d, b] = side_edges;
            let c = top_edge;

            let mut edges = [a, b, c, d];

            // Make sure that edges are oriented correctly.
            let mut i = 0;
            while i < edges.len() {
                let j = (i + 1) % edges.len();

                let [_, prev_last] = edges[i].vertices();
                let [next_first, _] = edges[j].vertices();

                // Need to compare surface forms here, as the global forms might
                // be coincident when sweeping circles, despite the vertices
                // being different!
                if prev_last.surface_form().id()
                    != next_first.surface_form().id()
                {
                    edges[j] = edges[j].clone().reverse(objects);
                }

                i += 1;
            }

            Cycle::new(edges).insert(objects)
        };

        let face = PartialFace {
            exterior: Partial::from(cycle),
            color: Some(color),
            ..Default::default()
        };
        face.build(objects).insert(objects)
    }

Access the path that defines the curve

Examples found in repository?
src/partial/objects/curve.rs (line 26)
24
25
26
27
28
29
30
    fn from_full(curve: &Self::Full, cache: &mut FullToPartialCache) -> Self {
        Self {
            path: Some(curve.path()),
            surface: Partial::from_full(curve.surface().clone(), cache),
            global_form: Partial::from_full(curve.global_form().clone(), cache),
        }
    }
More examples
Hide additional examples
src/algorithms/intersect/ray_edge.rs (line 20)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    fn intersect(self) -> Option<Self::Intersection> {
        let (ray, edge) = self;

        let line = match edge.curve().path() {
            SurfacePath::Line(line) => line,
            SurfacePath::Circle(_) => {
                todo!("Casting rays against circles is not supported yet")
            }
        };

        let points = edge.vertices().clone().map(|vertex| {
            let point = vertex.position();
            line.point_from_line_coords(point)
        });
        let segment = Segment::from_points(points);

        (ray, &segment).intersect()
    }
src/partial/objects/vertex.rs (line 46)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    fn build(mut self, objects: &mut Service<Objects>) -> Self::Full {
        let position = self
            .position
            .expect("Can't build `Vertex` without position");
        let curve = self.curve.build(objects);

        // Infer surface position, if not available.
        if self.surface_form.read().position.is_none() {
            self.surface_form.write().position =
                Some(curve.path().point_from_path_coords(position));
        }

        let surface_form = self.surface_form.build(objects);

        Vertex::new(position, curve, surface_form)
    }
src/algorithms/transform/curve.rs (line 19)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform path, as that's defined in surface
        // coordinates, and thus transforming `surface` takes care of it.
        let path = self.path();

        let surface = self
            .surface()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let global_form = self
            .global_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(surface, path, global_form)
    }
src/validate/vertex.rs (line 109)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    fn check_position(
        vertex: &Vertex,
        config: &ValidationConfig,
    ) -> Result<(), Self> {
        let curve_position_as_surface = vertex
            .curve()
            .path()
            .point_from_path_coords(vertex.position());
        let surface_position = vertex.surface_form().position();

        let distance = curve_position_as_surface.distance_to(&surface_position);

        if distance > config.identical_max_distance {
            return Err(Self::PositionMismatch {
                vertex: vertex.clone(),
                surface_vertex: vertex.surface_form().clone_object(),
                curve_position_as_surface,
                distance,
            });
        }

        Ok(())
    }
src/algorithms/approx/curve.rs (line 45)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let (curve, range) = self;

        let global_curve = curve.global_form().clone();
        let global_curve_approx = match cache.get(global_curve.clone(), range) {
            Some(approx) => approx,
            None => {
                let approx = approx_global_curve(curve, range, tolerance);
                cache.insert(global_curve, range, approx)
            }
        };

        CurveApprox::empty().with_points(
            global_curve_approx.points.into_iter().map(|point| {
                let point_surface =
                    curve.path().point_from_path_coords(point.local_form);

                ApproxPoint::new(point_surface, point.global_form)
                    .with_source((curve.clone(), point.local_form))
            }),
        )
    }
}

fn approx_global_curve(
    curve: &Curve,
    range: RangeOnPath,
    tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
    // There are different cases of varying complexity. Circles are the hard
    // part here, as they need to be approximated, while lines don't need to be.
    //
    // This will probably all be unified eventually, as `SurfacePath` and
    // `GlobalPath` grow APIs that are better suited to implementing this code
    // in a more abstract way.
    let points = match (curve.path(), curve.surface().geometry().u) {
        (SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
            todo!(
                "Approximating a circle on a curved surface not supported yet."
            )
        }
        (SurfacePath::Circle(_), GlobalPath::Line(_)) => {
            (curve.path(), range)
                .approx_with_cache(tolerance, &mut ())
                .into_iter()
                .map(|(point_curve, point_surface)| {
                    // We're throwing away `point_surface` here, which is a bit
                    // weird, as we're recomputing it later (outside of this
                    // function).
                    //
                    // It should be fine though:
                    //
                    // 1. We're throwing this version away, so there's no danger
                    //    of inconsistency between this and the later version.
                    // 2. This version should have been computed using the same
                    //    path and parameters and the later version will be, so
                    //    they should be the same anyway.
                    // 3. Not all other cases handled in this function have a
                    //    surface point available, so it needs to be computed
                    //    later anyway, in the general case.

                    let point_global = curve
                        .surface()
                        .geometry()
                        .point_from_surface_coords(point_surface);
                    (point_curve, point_global)
                })
                .collect()
        }
        (SurfacePath::Line(line), _) => {
            let range_u =
                RangeOnPath::from(range.boundary.map(|point_curve| {
                    [curve.path().point_from_path_coords(point_curve).u]
                }));

            let approx_u = (curve.surface().geometry().u, range_u)
                .approx_with_cache(tolerance, &mut ());

            let mut points = Vec::new();
            for (u, _) in approx_u {
                let t = (u.t - line.origin().u) / line.direction().u;
                let point_surface = curve.path().point_from_path_coords([t]);
                let point_global = curve
                    .surface()
                    .geometry()
                    .point_from_surface_coords(point_surface);
                points.push((u, point_global));
            }

            points
        }
    };

    let points = points
        .into_iter()
        .map(|(point_curve, point_global)| {
            ApproxPoint::new(point_curve, point_global)
        })
        .collect();
    GlobalCurveApprox { points }
}

Access the surface that the curve is defined in

Examples found in repository?
src/objects/full/edge.rs (line 52)
51
52
53
    pub fn surface(&self) -> &Handle<Surface> {
        self.curve().surface()
    }
More examples
Hide additional examples
src/partial/objects/curve.rs (line 27)
24
25
26
27
28
29
30
    fn from_full(curve: &Self::Full, cache: &mut FullToPartialCache) -> Self {
        Self {
            path: Some(curve.path()),
            surface: Partial::from_full(curve.surface().clone(), cache),
            global_form: Partial::from_full(curve.global_form().clone(), cache),
        }
    }
src/validate/vertex.rs (line 90)
89
90
91
92
93
94
95
96
97
98
99
100
101
    fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
        let curve_surface = vertex.curve().surface();
        let surface_form_surface = vertex.surface_form().surface();

        if curve_surface.id() != surface_form_surface.id() {
            return Err(Self::SurfaceMismatch {
                curve_surface: curve_surface.clone(),
                surface_form_surface: surface_form_surface.clone(),
            });
        }

        Ok(())
    }
src/algorithms/transform/curve.rs (line 22)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform path, as that's defined in surface
        // coordinates, and thus transforming `surface` takes care of it.
        let path = self.path();

        let surface = self
            .surface()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let global_form = self
            .global_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(surface, path, global_form)
    }
src/algorithms/sweep/curve.rs (line 24)
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        _: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        match self.surface().geometry().u {
            GlobalPath::Circle(_) => {
                // Sweeping a `Curve` creates a `Surface`. The u-axis of that
                // `Surface` is a `GlobalPath`, which we are computing below.
                // That computation might or might not work with an arbitrary
                // surface. Probably not, but I'm not sure.
                //
                // What definitely won't work, is computing the bottom edge of
                // the sweep. The edge sweeping code currently assumes that the
                // bottom edge is a line (which is true when sweeping from a
                // flat surface). But is the surface we're sweeping from is
                // curved, there's simply no way to represent the curve of the
                // resulting bottom edge.
                todo!(
                    "Sweeping a curve that is defined on a curved surface is \
                    not supported yet."
                )
            }
            GlobalPath::Line(_) => {
                // We're sweeping from a curve on a flat surface, which is
                // supported. Carry on.
            }
        }

        let u = match self.path() {
            SurfacePath::Circle(circle) => {
                let center = self
                    .surface()
                    .geometry()
                    .point_from_surface_coords(circle.center());
                let a = self
                    .surface()
                    .geometry()
                    .vector_from_surface_coords(circle.a());
                let b = self
                    .surface()
                    .geometry()
                    .vector_from_surface_coords(circle.b());

                let circle = Circle::new(center, a, b);

                GlobalPath::Circle(circle)
            }
            SurfacePath::Line(line) => {
                let origin = self
                    .surface()
                    .geometry()
                    .point_from_surface_coords(line.origin());
                let direction = self
                    .surface()
                    .geometry()
                    .vector_from_surface_coords(line.direction());

                let line = Line::from_origin_and_direction(origin, direction);

                GlobalPath::Line(line)
            }
        };

        PartialSurface::from_axes(u, path)
            .build(objects)
            .insert(objects)
    }
src/algorithms/approx/curve.rs (line 65)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
fn approx_global_curve(
    curve: &Curve,
    range: RangeOnPath,
    tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
    // There are different cases of varying complexity. Circles are the hard
    // part here, as they need to be approximated, while lines don't need to be.
    //
    // This will probably all be unified eventually, as `SurfacePath` and
    // `GlobalPath` grow APIs that are better suited to implementing this code
    // in a more abstract way.
    let points = match (curve.path(), curve.surface().geometry().u) {
        (SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
            todo!(
                "Approximating a circle on a curved surface not supported yet."
            )
        }
        (SurfacePath::Circle(_), GlobalPath::Line(_)) => {
            (curve.path(), range)
                .approx_with_cache(tolerance, &mut ())
                .into_iter()
                .map(|(point_curve, point_surface)| {
                    // We're throwing away `point_surface` here, which is a bit
                    // weird, as we're recomputing it later (outside of this
                    // function).
                    //
                    // It should be fine though:
                    //
                    // 1. We're throwing this version away, so there's no danger
                    //    of inconsistency between this and the later version.
                    // 2. This version should have been computed using the same
                    //    path and parameters and the later version will be, so
                    //    they should be the same anyway.
                    // 3. Not all other cases handled in this function have a
                    //    surface point available, so it needs to be computed
                    //    later anyway, in the general case.

                    let point_global = curve
                        .surface()
                        .geometry()
                        .point_from_surface_coords(point_surface);
                    (point_curve, point_global)
                })
                .collect()
        }
        (SurfacePath::Line(line), _) => {
            let range_u =
                RangeOnPath::from(range.boundary.map(|point_curve| {
                    [curve.path().point_from_path_coords(point_curve).u]
                }));

            let approx_u = (curve.surface().geometry().u, range_u)
                .approx_with_cache(tolerance, &mut ());

            let mut points = Vec::new();
            for (u, _) in approx_u {
                let t = (u.t - line.origin().u) / line.direction().u;
                let point_surface = curve.path().point_from_path_coords([t]);
                let point_global = curve
                    .surface()
                    .geometry()
                    .point_from_surface_coords(point_surface);
                points.push((u, point_global));
            }

            points
        }
    };

    let points = points
        .into_iter()
        .map(|(point_curve, point_global)| {
            ApproxPoint::new(point_curve, point_global)
        })
        .collect();
    GlobalCurveApprox { points }
}

Access the global form of the curve

Examples found in repository?
src/iter.rs (line 145)
144
145
146
    fn referenced_objects(&'r self) -> Vec<&'r dyn ObjectIters> {
        vec![self.global_form() as &dyn ObjectIters]
    }
More examples
Hide additional examples
src/objects/full/edge.rs (line 65)
62
63
64
65
66
67
68
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let [a, b] = self.vertices().clone().map(|vertex| vertex.position());
        write!(f, "edge from {a:?} to {b:?}")?;
        write!(f, " on {:?}", self.curve().global_form())?;

        Ok(())
    }
src/partial/objects/curve.rs (line 28)
24
25
26
27
28
29
30
    fn from_full(curve: &Self::Full, cache: &mut FullToPartialCache) -> Self {
        Self {
            path: Some(curve.path()),
            surface: Partial::from_full(curve.surface().clone(), cache),
            global_form: Partial::from_full(curve.global_form().clone(), cache),
        }
    }
src/validate/edge.rs (line 130)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
        let global_curve_from_curve = half_edge.curve().global_form();
        let global_curve_from_global_form = half_edge.global_form().curve();

        if global_curve_from_curve.id() != global_curve_from_global_form.id() {
            return Err(Self::GlobalCurveMismatch {
                global_curve_from_curve: global_curve_from_curve.clone(),
                global_curve_from_global_form: global_curve_from_global_form
                    .clone(),
            });
        }

        Ok(())
    }
src/algorithms/transform/curve.rs (line 26)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform path, as that's defined in surface
        // coordinates, and thus transforming `surface` takes care of it.
        let path = self.path();

        let surface = self
            .surface()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let global_form = self
            .global_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(surface, path, global_form)
    }
src/algorithms/approx/curve.rs (line 33)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let (curve, range) = self;

        let global_curve = curve.global_form().clone();
        let global_curve_approx = match cache.get(global_curve.clone(), range) {
            Some(approx) => approx,
            None => {
                let approx = approx_global_curve(curve, range, tolerance);
                cache.insert(global_curve, range, approx)
            }
        };

        CurveApprox::empty().with_points(
            global_curve_approx.points.into_iter().map(|point| {
                let point_surface =
                    curve.path().point_from_path_coords(point.local_form);

                ApproxPoint::new(point_surface, point.global_form)
                    .with_source((curve.clone(), point.local_form))
            }),
        )
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Converts to this type from the input type.
The type representing the partial variant of this object
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
Insert the object into its respective store
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Transform the object using the provided cache
Transform the object
Translate the object Read more
Rotate the object Read more
The error that validation of the implementing type can result in
Validate the object
Validate the object using default configuration

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Checks if self is actually part of its subset T (and can be converted to it).
Use with care! Same as self.to_subset but without any property checks. Always succeeds.
The inclusion map: converts self to the equivalent element of its superset.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.