Enum fj_kernel::geometry::path::SurfacePath
source · Expand description
A path through surface (2D) space
Variants§
Implementations§
source§impl SurfacePath
impl SurfacePath
sourcepub fn circle_from_radius(radius: impl Into<Scalar>) -> Self
pub fn circle_from_radius(radius: impl Into<Scalar>) -> Self
Build a circle from the given radius
sourcepub fn line_from_points(
points: [impl Into<Point<2>>; 2]
) -> (Self, [Point<1>; 2])
pub fn line_from_points(
points: [impl Into<Point<2>>; 2]
) -> (Self, [Point<1>; 2])
Construct a line from two points
Also returns the coordinates of the points on the path.
Examples found in repository?
More examples
src/algorithms/sweep/vertex.rs (line 90)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}sourcepub fn point_from_path_coords(&self, point: impl Into<Point<1>>) -> Point<2>
pub fn point_from_path_coords(&self, point: impl Into<Point<1>>) -> Point<2>
Convert a point on the path into surface coordinates
Examples found in repository?
src/partial/objects/vertex.rs (line 46)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
fn build(mut self, objects: &mut Service<Objects>) -> Self::Full {
let position = self
.position
.expect("Can't build `Vertex` without position");
let curve = self.curve.build(objects);
// Infer surface position, if not available.
if self.surface_form.read().position.is_none() {
self.surface_form.write().position =
Some(curve.path().point_from_path_coords(position));
}
let surface_form = self.surface_form.build(objects);
Vertex::new(position, curve, surface_form)
}More examples
src/validate/vertex.rs (line 110)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
fn check_position(
vertex: &Vertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let curve_position_as_surface = vertex
.curve()
.path()
.point_from_path_coords(vertex.position());
let surface_position = vertex.surface_form().position();
let distance = curve_position_as_surface.distance_to(&surface_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
vertex: vertex.clone(),
surface_vertex: vertex.surface_form().clone_object(),
curve_position_as_surface,
distance,
});
}
Ok(())
}src/algorithms/approx/curve.rs (line 45)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let (curve, range) = self;
let global_curve = curve.global_form().clone();
let global_curve_approx = match cache.get(global_curve.clone(), range) {
Some(approx) => approx,
None => {
let approx = approx_global_curve(curve, range, tolerance);
cache.insert(global_curve, range, approx)
}
};
CurveApprox::empty().with_points(
global_curve_approx.points.into_iter().map(|point| {
let point_surface =
curve.path().point_from_path_coords(point.local_form);
ApproxPoint::new(point_surface, point.global_form)
.with_source((curve.clone(), point.local_form))
}),
)
}
}
fn approx_global_curve(
curve: &Curve,
range: RangeOnPath,
tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
// There are different cases of varying complexity. Circles are the hard
// part here, as they need to be approximated, while lines don't need to be.
//
// This will probably all be unified eventually, as `SurfacePath` and
// `GlobalPath` grow APIs that are better suited to implementing this code
// in a more abstract way.
let points = match (curve.path(), curve.surface().geometry().u) {
(SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
todo!(
"Approximating a circle on a curved surface not supported yet."
)
}
(SurfacePath::Circle(_), GlobalPath::Line(_)) => {
(curve.path(), range)
.approx_with_cache(tolerance, &mut ())
.into_iter()
.map(|(point_curve, point_surface)| {
// We're throwing away `point_surface` here, which is a bit
// weird, as we're recomputing it later (outside of this
// function).
//
// It should be fine though:
//
// 1. We're throwing this version away, so there's no danger
// of inconsistency between this and the later version.
// 2. This version should have been computed using the same
// path and parameters and the later version will be, so
// they should be the same anyway.
// 3. Not all other cases handled in this function have a
// surface point available, so it needs to be computed
// later anyway, in the general case.
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
(point_curve, point_global)
})
.collect()
}
(SurfacePath::Line(line), _) => {
let range_u =
RangeOnPath::from(range.boundary.map(|point_curve| {
[curve.path().point_from_path_coords(point_curve).u]
}));
let approx_u = (curve.surface().geometry().u, range_u)
.approx_with_cache(tolerance, &mut ());
let mut points = Vec::new();
for (u, _) in approx_u {
let t = (u.t - line.origin().u) / line.direction().u;
let point_surface = curve.path().point_from_path_coords([t]);
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
points.push((u, point_global));
}
points
}
};
let points = points
.into_iter()
.map(|(point_curve, point_global)| {
ApproxPoint::new(point_curve, point_global)
})
.collect();
GlobalCurveApprox { points }
}src/builder/edge.rs (line 69)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
fn update_as_circle_from_radius(&mut self, radius: impl Into<Scalar>) {
let mut curve = self.curve();
curve.write().update_as_circle_from_radius(radius);
let path = curve
.read()
.path
.expect("Expected path that was just created");
let [a_curve, b_curve] =
[Scalar::ZERO, Scalar::TAU].map(|coord| Point::from([coord]));
let mut surface_vertex = {
let [vertex, _] = &mut self.vertices;
vertex.write().surface_form.clone()
};
surface_vertex.write().position =
Some(path.point_from_path_coords(a_curve));
for (vertex, point_curve) in
self.vertices.each_mut_ext().zip_ext([a_curve, b_curve])
{
let mut vertex = vertex.write();
vertex.position = Some(point_curve);
vertex.surface_form = surface_vertex.clone();
}
self.infer_global_form();
}Trait Implementations§
source§impl Clone for SurfacePath
impl Clone for SurfacePath
source§fn clone(&self) -> SurfacePath
fn clone(&self) -> SurfacePath
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for SurfacePath
impl Debug for SurfacePath
source§impl Hash for SurfacePath
impl Hash for SurfacePath
source§impl Ord for SurfacePath
impl Ord for SurfacePath
source§fn cmp(&self, other: &SurfacePath) -> Ordering
fn cmp(&self, other: &SurfacePath) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
source§impl PartialEq<SurfacePath> for SurfacePath
impl PartialEq<SurfacePath> for SurfacePath
source§fn eq(&self, other: &SurfacePath) -> bool
fn eq(&self, other: &SurfacePath) -> bool
This method tests for
self and other values to be equal, and is used
by ==.source§impl PartialOrd<SurfacePath> for SurfacePath
impl PartialOrd<SurfacePath> for SurfacePath
source§fn partial_cmp(&self, other: &SurfacePath) -> Option<Ordering>
fn partial_cmp(&self, other: &SurfacePath) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moreimpl Copy for SurfacePath
impl Eq for SurfacePath
impl StructuralEq for SurfacePath
impl StructuralPartialEq for SurfacePath
Auto Trait Implementations§
impl RefUnwindSafe for SurfacePath
impl Send for SurfacePath
impl Sync for SurfacePath
impl Unpin for SurfacePath
impl UnwindSafe for SurfacePath
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.