Struct fj_kernel::objects::Surface

source ·
pub struct Surface { /* private fields */ }
Expand description

A two-dimensional shape

Implementations§

Construct an instance of Surface

Examples found in repository?
src/partial/objects/surface.rs (line 29)
24
25
26
27
28
29
30
    fn build(self, _: &mut Service<Objects>) -> Self::Full {
        let geometry = self
            .geometry
            .expect("Can't build `Surface` without geometry");

        Surface::new(geometry)
    }
More examples
Hide additional examples
src/algorithms/transform/surface.rs (line 18)
11
12
13
14
15
16
17
18
19
    fn transform_with_cache(
        self,
        transform: &Transform,
        _: &mut Service<Objects>,
        _: &mut TransformCache,
    ) -> Self {
        let geometry = self.geometry().transform(transform);
        Self::new(geometry)
    }
src/objects/stores.rs (lines 114-117)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    fn default() -> Self {
        let mut store: Store<Surface> = Store::new();

        let xy_plane = store.reserve();
        store.insert(
            xy_plane.clone(),
            Surface::new(SurfaceGeometry {
                u: GlobalPath::x_axis(),
                v: Vector::unit_y(),
            }),
        );

        let xz_plane = store.reserve();
        store.insert(
            xz_plane.clone(),
            Surface::new(SurfaceGeometry {
                u: GlobalPath::x_axis(),
                v: Vector::unit_z(),
            }),
        );
        let yz_plane = store.reserve();
        store.insert(
            yz_plane.clone(),
            Surface::new(SurfaceGeometry {
                u: GlobalPath::y_axis(),
                v: Vector::unit_z(),
            }),
        );

        Self {
            store,
            xy_plane,
            xz_plane,
            yz_plane,
        }
    }

Access the surface’s geometry

Examples found in repository?
src/partial/objects/surface.rs (line 20)
18
19
20
21
22
    fn from_full(surface: &Self::Full, _: &mut FullToPartialCache) -> Self {
        Self {
            geometry: Some(surface.geometry()),
        }
    }
More examples
Hide additional examples
src/algorithms/transform/surface.rs (line 17)
11
12
13
14
15
16
17
18
19
    fn transform_with_cache(
        self,
        transform: &Transform,
        _: &mut Service<Objects>,
        _: &mut TransformCache,
    ) -> Self {
        let geometry = self.geometry().transform(transform);
        Self::new(geometry)
    }
src/algorithms/intersect/surface_surface.rs (line 75)
73
74
75
76
77
78
79
80
81
82
83
84
fn plane_from_surface(surface: &Surface) -> Plane {
    let (line, path) = {
        let line = match surface.geometry().u {
            GlobalPath::Line(line) => line,
            _ => todo!("Only plane-plane intersection is currently supported."),
        };

        (line, surface.geometry().v)
    };

    Plane::from_parametric(line.origin(), line.direction(), path)
}
src/validate/vertex.rs (line 161)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    fn check_position(
        surface_vertex: &SurfaceVertex,
        config: &ValidationConfig,
    ) -> Result<(), Self> {
        let surface_position_as_global = surface_vertex
            .surface()
            .geometry()
            .point_from_surface_coords(surface_vertex.position());
        let global_position = surface_vertex.global_form().position();

        let distance = surface_position_as_global.distance_to(&global_position);

        if distance > config.identical_max_distance {
            return Err(Self::PositionMismatch {
                surface_vertex: surface_vertex.clone(),
                global_vertex: surface_vertex.global_form().clone_object(),
                surface_position_as_global,
                distance,
            });
        }

        Ok(())
    }
src/algorithms/sweep/face.rs (line 29)
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let path = path.into();

        let mut faces = Vec::new();

        let is_negative_sweep = {
            let u = match self.surface().geometry().u {
                GlobalPath::Circle(_) => todo!(
                    "Sweeping from faces defined in round surfaces is not \
                    supported"
                ),
                GlobalPath::Line(line) => line.direction(),
            };
            let v = self.surface().geometry().v;

            let normal = u.cross(&v);

            normal.dot(&path) < Scalar::ZERO
        };

        let bottom_face = {
            if is_negative_sweep {
                self.clone()
            } else {
                self.clone().reverse(objects)
            }
        };
        faces.push(bottom_face);

        let top_face = {
            let mut face = self.clone().translate(path, objects);

            if is_negative_sweep {
                face = face.reverse(objects);
            };

            face
        };
        faces.push(top_face);

        // Generate side faces
        for cycle in self.all_cycles() {
            for half_edge in cycle.half_edges() {
                let half_edge = if is_negative_sweep {
                    half_edge.clone().reverse(objects)
                } else {
                    half_edge.clone()
                };

                let face = (half_edge, self.color())
                    .sweep_with_cache(path, cache, objects);

                faces.push(face);
            }
        }

        let faces = faces.into_iter().map(Partial::from).collect();
        PartialShell { faces }.build(objects).insert(objects)
    }
src/algorithms/sweep/curve.rs (line 24)
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        _: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        match self.surface().geometry().u {
            GlobalPath::Circle(_) => {
                // Sweeping a `Curve` creates a `Surface`. The u-axis of that
                // `Surface` is a `GlobalPath`, which we are computing below.
                // That computation might or might not work with an arbitrary
                // surface. Probably not, but I'm not sure.
                //
                // What definitely won't work, is computing the bottom edge of
                // the sweep. The edge sweeping code currently assumes that the
                // bottom edge is a line (which is true when sweeping from a
                // flat surface). But is the surface we're sweeping from is
                // curved, there's simply no way to represent the curve of the
                // resulting bottom edge.
                todo!(
                    "Sweeping a curve that is defined on a curved surface is \
                    not supported yet."
                )
            }
            GlobalPath::Line(_) => {
                // We're sweeping from a curve on a flat surface, which is
                // supported. Carry on.
            }
        }

        let u = match self.path() {
            SurfacePath::Circle(circle) => {
                let center = self
                    .surface()
                    .geometry()
                    .point_from_surface_coords(circle.center());
                let a = self
                    .surface()
                    .geometry()
                    .vector_from_surface_coords(circle.a());
                let b = self
                    .surface()
                    .geometry()
                    .vector_from_surface_coords(circle.b());

                let circle = Circle::new(center, a, b);

                GlobalPath::Circle(circle)
            }
            SurfacePath::Line(line) => {
                let origin = self
                    .surface()
                    .geometry()
                    .point_from_surface_coords(line.origin());
                let direction = self
                    .surface()
                    .geometry()
                    .vector_from_surface_coords(line.direction());

                let line = Line::from_origin_and_direction(origin, direction);

                GlobalPath::Line(line)
            }
        };

        PartialSurface::from_axes(u, path)
            .build(objects)
            .insert(objects)
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Converts to this type from the input type.
The type representing the partial variant of this object
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
Insert the object into its respective store
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Transform the object using the provided cache
Transform the object
Translate the object Read more
Rotate the object Read more
The error that validation of the implementing type can result in
Validate the object
Validate the object using default configuration

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Checks if self is actually part of its subset T (and can be converted to it).
Use with care! Same as self.to_subset but without any property checks. Always succeeds.
The inclusion map: converts self to the equivalent element of its superset.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.