Struct fj_kernel::geometry::surface::SurfaceGeometry
source · pub struct SurfaceGeometry {
pub u: GlobalPath,
pub v: Vector<3>,
}Expand description
The geometry that defines a surface
Fields§
§u: GlobalPathThe u-axis of the surface
v: Vector<3>The v-axis of the surface
Implementations§
source§impl SurfaceGeometry
impl SurfaceGeometry
sourcepub fn point_from_surface_coords(&self, point: impl Into<Point<2>>) -> Point<3>
pub fn point_from_surface_coords(&self, point: impl Into<Point<2>>) -> Point<3>
Convert a point in surface coordinates to model coordinates
Examples found in repository?
src/builder/vertex.rs (line 53)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
fn infer_global_position(&mut self) -> Point<3> {
let position_surface = self
.position
.expect("Can't infer global position without surface position");
let surface = self
.surface
.read()
.geometry
.expect("Can't infer global position without surface geometry");
let position_global =
surface.point_from_surface_coords(position_surface);
self.global_form.write().position = Some(position_global);
position_global
}More examples
src/validate/vertex.rs (line 162)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
fn check_position(
surface_vertex: &SurfaceVertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let surface_position_as_global = surface_vertex
.surface()
.geometry()
.point_from_surface_coords(surface_vertex.position());
let global_position = surface_vertex.global_form().position();
let distance = surface_position_as_global.distance_to(&global_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
surface_vertex: surface_vertex.clone(),
global_vertex: surface_vertex.global_form().clone_object(),
surface_position_as_global,
distance,
});
}
Ok(())
}src/algorithms/sweep/curve.rs (line 53)
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
_: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
match self.surface().geometry().u {
GlobalPath::Circle(_) => {
// Sweeping a `Curve` creates a `Surface`. The u-axis of that
// `Surface` is a `GlobalPath`, which we are computing below.
// That computation might or might not work with an arbitrary
// surface. Probably not, but I'm not sure.
//
// What definitely won't work, is computing the bottom edge of
// the sweep. The edge sweeping code currently assumes that the
// bottom edge is a line (which is true when sweeping from a
// flat surface). But is the surface we're sweeping from is
// curved, there's simply no way to represent the curve of the
// resulting bottom edge.
todo!(
"Sweeping a curve that is defined on a curved surface is \
not supported yet."
)
}
GlobalPath::Line(_) => {
// We're sweeping from a curve on a flat surface, which is
// supported. Carry on.
}
}
let u = match self.path() {
SurfacePath::Circle(circle) => {
let center = self
.surface()
.geometry()
.point_from_surface_coords(circle.center());
let a = self
.surface()
.geometry()
.vector_from_surface_coords(circle.a());
let b = self
.surface()
.geometry()
.vector_from_surface_coords(circle.b());
let circle = Circle::new(center, a, b);
GlobalPath::Circle(circle)
}
SurfacePath::Line(line) => {
let origin = self
.surface()
.geometry()
.point_from_surface_coords(line.origin());
let direction = self
.surface()
.geometry()
.vector_from_surface_coords(line.direction());
let line = Line::from_origin_and_direction(origin, direction);
GlobalPath::Line(line)
}
};
PartialSurface::from_axes(u, path)
.build(objects)
.insert(objects)
}src/algorithms/approx/curve.rs (line 94)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
fn approx_global_curve(
curve: &Curve,
range: RangeOnPath,
tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
// There are different cases of varying complexity. Circles are the hard
// part here, as they need to be approximated, while lines don't need to be.
//
// This will probably all be unified eventually, as `SurfacePath` and
// `GlobalPath` grow APIs that are better suited to implementing this code
// in a more abstract way.
let points = match (curve.path(), curve.surface().geometry().u) {
(SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
todo!(
"Approximating a circle on a curved surface not supported yet."
)
}
(SurfacePath::Circle(_), GlobalPath::Line(_)) => {
(curve.path(), range)
.approx_with_cache(tolerance, &mut ())
.into_iter()
.map(|(point_curve, point_surface)| {
// We're throwing away `point_surface` here, which is a bit
// weird, as we're recomputing it later (outside of this
// function).
//
// It should be fine though:
//
// 1. We're throwing this version away, so there's no danger
// of inconsistency between this and the later version.
// 2. This version should have been computed using the same
// path and parameters and the later version will be, so
// they should be the same anyway.
// 3. Not all other cases handled in this function have a
// surface point available, so it needs to be computed
// later anyway, in the general case.
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
(point_curve, point_global)
})
.collect()
}
(SurfacePath::Line(line), _) => {
let range_u =
RangeOnPath::from(range.boundary.map(|point_curve| {
[curve.path().point_from_path_coords(point_curve).u]
}));
let approx_u = (curve.surface().geometry().u, range_u)
.approx_with_cache(tolerance, &mut ());
let mut points = Vec::new();
for (u, _) in approx_u {
let t = (u.t - line.origin().u) / line.direction().u;
let point_surface = curve.path().point_from_path_coords([t]);
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
points.push((u, point_global));
}
points
}
};
let points = points
.into_iter()
.map(|(point_curve, point_global)| {
ApproxPoint::new(point_curve, point_global)
})
.collect();
GlobalCurveApprox { points }
}sourcepub fn vector_from_surface_coords(
&self,
vector: impl Into<Vector<2>>
) -> Vector<3>
pub fn vector_from_surface_coords(
&self,
vector: impl Into<Vector<2>>
) -> Vector<3>
Convert a vector in surface coordinates to model coordinates
Examples found in repository?
src/algorithms/sweep/curve.rs (line 57)
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
_: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
match self.surface().geometry().u {
GlobalPath::Circle(_) => {
// Sweeping a `Curve` creates a `Surface`. The u-axis of that
// `Surface` is a `GlobalPath`, which we are computing below.
// That computation might or might not work with an arbitrary
// surface. Probably not, but I'm not sure.
//
// What definitely won't work, is computing the bottom edge of
// the sweep. The edge sweeping code currently assumes that the
// bottom edge is a line (which is true when sweeping from a
// flat surface). But is the surface we're sweeping from is
// curved, there's simply no way to represent the curve of the
// resulting bottom edge.
todo!(
"Sweeping a curve that is defined on a curved surface is \
not supported yet."
)
}
GlobalPath::Line(_) => {
// We're sweeping from a curve on a flat surface, which is
// supported. Carry on.
}
}
let u = match self.path() {
SurfacePath::Circle(circle) => {
let center = self
.surface()
.geometry()
.point_from_surface_coords(circle.center());
let a = self
.surface()
.geometry()
.vector_from_surface_coords(circle.a());
let b = self
.surface()
.geometry()
.vector_from_surface_coords(circle.b());
let circle = Circle::new(center, a, b);
GlobalPath::Circle(circle)
}
SurfacePath::Line(line) => {
let origin = self
.surface()
.geometry()
.point_from_surface_coords(line.origin());
let direction = self
.surface()
.geometry()
.vector_from_surface_coords(line.direction());
let line = Line::from_origin_and_direction(origin, direction);
GlobalPath::Line(line)
}
};
PartialSurface::from_axes(u, path)
.build(objects)
.insert(objects)
}Trait Implementations§
source§impl Clone for SurfaceGeometry
impl Clone for SurfaceGeometry
source§fn clone(&self) -> SurfaceGeometry
fn clone(&self) -> SurfaceGeometry
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for SurfaceGeometry
impl Debug for SurfaceGeometry
source§impl Hash for SurfaceGeometry
impl Hash for SurfaceGeometry
source§impl Ord for SurfaceGeometry
impl Ord for SurfaceGeometry
source§fn cmp(&self, other: &SurfaceGeometry) -> Ordering
fn cmp(&self, other: &SurfaceGeometry) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
source§impl PartialEq<SurfaceGeometry> for SurfaceGeometry
impl PartialEq<SurfaceGeometry> for SurfaceGeometry
source§fn eq(&self, other: &SurfaceGeometry) -> bool
fn eq(&self, other: &SurfaceGeometry) -> bool
This method tests for
self and other values to be equal, and is used
by ==.source§impl PartialOrd<SurfaceGeometry> for SurfaceGeometry
impl PartialOrd<SurfaceGeometry> for SurfaceGeometry
source§fn partial_cmp(&self, other: &SurfaceGeometry) -> Option<Ordering>
fn partial_cmp(&self, other: &SurfaceGeometry) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moreimpl Copy for SurfaceGeometry
impl Eq for SurfaceGeometry
impl StructuralEq for SurfaceGeometry
impl StructuralPartialEq for SurfaceGeometry
Auto Trait Implementations§
impl RefUnwindSafe for SurfaceGeometry
impl Send for SurfaceGeometry
impl Sync for SurfaceGeometry
impl Unpin for SurfaceGeometry
impl UnwindSafe for SurfaceGeometry
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.