Struct fj_kernel::objects::Vertex

source ·
pub struct Vertex { /* private fields */ }
Expand description

A vertex

Vertex is defined in terms of a 1-dimensional position on a curve. If you need the 3D position of a vertex, you can use Vertex::global_form, to get access of the global form of a vertex (GlobalVertex).

Implementations§

Construct an instance of Vertex

Examples found in repository?
src/partial/objects/vertex.rs (line 51)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    fn build(mut self, objects: &mut Service<Objects>) -> Self::Full {
        let position = self
            .position
            .expect("Can't build `Vertex` without position");
        let curve = self.curve.build(objects);

        // Infer surface position, if not available.
        if self.surface_form.read().position.is_none() {
            self.surface_form.write().position =
                Some(curve.path().point_from_path_coords(position));
        }

        let surface_form = self.surface_form.build(objects);

        Vertex::new(position, curve, surface_form)
    }
More examples
Hide additional examples
src/algorithms/transform/vertex.rs (line 30)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform position, as that is defined in curve
        // coordinates and thus transforming the curve takes care of it.
        let position = self.position();

        let curve = self
            .curve()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let surface_form = self
            .surface_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(position, curve, surface_form)
    }
src/algorithms/sweep/vertex.rs (lines 109-113)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let (vertex, surface) = self;
        let path = path.into();

        // The result of sweeping a `Vertex` is an `Edge`. Seems
        // straight-forward at first, but there are some subtleties we need to
        // understand:
        //
        // 1. To create an `Edge`, we need the `Curve` that defines it. A
        //    `Curve` is defined in a `Surface`, and we're going to need that to
        //    create the `Curve`. Which is why this `Sweep` implementation is
        //    for `(Vertex, Surface)`, and not just for `Vertex`.
        // 2. Please note that, while the output `Edge` has two vertices, our
        //    input `Vertex` is not one of them! It can't be, unless the `Curve`
        //    of the output `Edge` happens to be the same `Curve` that the input
        //    `Vertex` is defined on. That would be an edge case that probably
        //    can't result in anything valid, and we're going to ignore it for
        //    now.
        // 3. This means, we have to compute everything that defines the
        //    output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
        //
        // Before we get to that though, let's make sure that whoever called
        // this didn't give us bad input.

        // So, we're supposed to create the `Edge` by sweeping a `Vertex` using
        // `path`. Unless `path` is identical to the path that created the
        // `Surface`, this doesn't make any sense. Let's make sure this
        // requirement is met.
        //
        // Further, the `Curve` that was swept to create the `Surface` needs to
        // be the same `Curve` that the input `Vertex` is defined on. If it's
        // not, we have no way of knowing the surface coordinates of the input
        // `Vertex` on the `Surface`, and we're going to need to do that further
        // down. There's no way to check for that, unfortunately.
        assert_eq!(path, surface.geometry().v);

        // With that out of the way, let's start by creating the `GlobalEdge`,
        // as that is the most straight-forward part of this operations, and
        // we're going to need it soon anyway.
        let (edge_global, vertices_global) = vertex
            .global_form()
            .clone()
            .sweep_with_cache(path, cache, objects);

        // Next, let's compute the surface coordinates of the two vertices of
        // the output `Edge`, as we're going to need these for the rest of this
        // operation.
        //
        // They both share a u-coordinate, which is the t-coordinate of our
        // input `Vertex`. Remember, we validated above, that the `Curve` of the
        // `Surface` and the curve of the input `Vertex` are the same, so we can
        // do that.
        //
        // Now remember what we also validated above: That `path`, which we're
        // using to create the output `Edge`, also created the `Surface`, and
        // thereby defined its coordinate system. That makes the v-coordinates
        // straight-forward: The start of the edge is at zero, the end is at
        // one.
        let points_surface = [
            Point::from([vertex.position().t, Scalar::ZERO]),
            Point::from([vertex.position().t, Scalar::ONE]),
        ];

        // Armed with those coordinates, creating the `Curve` of the output
        // `Edge` is straight-forward.
        let curve = {
            let (path, _) = SurfacePath::line_from_points(points_surface);

            Curve::new(surface.clone(), path, edge_global.curve().clone())
                .insert(objects)
        };

        let vertices_surface = {
            let [_, position] = points_surface;
            let [_, global_form] = vertices_global;

            [
                vertex.surface_form().clone(),
                SurfaceVertex::new(position, surface, global_form)
                    .insert(objects),
            ]
        };

        // And now the vertices. Again, nothing wild here.
        let vertices = vertices_surface.map(|surface_form| {
            Vertex::new(
                [surface_form.position().v],
                curve.clone(),
                surface_form,
            )
            .insert(objects)
        });

        // And finally, creating the output `Edge` is just a matter of
        // assembling the pieces we've already created.
        HalfEdge::new(vertices, edge_global).insert(objects)
    }
src/algorithms/sweep/edge.rs (lines 79-83)
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let (edge, color) = self;
        let path = path.into();

        let surface =
            edge.curve().clone().sweep_with_cache(path, cache, objects);

        // We can't use the edge we're sweeping from as the bottom edge, as that
        // is not defined in the right surface. Let's create a new bottom edge,
        // by swapping the surface of the original.
        let bottom_edge = {
            let vertices = edge.vertices();

            let points_curve_and_surface = vertices.clone().map(|vertex| {
                (vertex.position(), [vertex.position().t, Scalar::ZERO])
            });

            let curve = {
                // Please note that creating a line here is correct, even if the
                // global curve is a circle. Projected into the side surface, it
                // is going to be a line either way.
                let path =
                    SurfacePath::Line(Line::from_points_with_line_coords(
                        points_curve_and_surface,
                    ));

                Curve::new(
                    surface.clone(),
                    path,
                    edge.curve().global_form().clone(),
                )
                .insert(objects)
            };

            let vertices = {
                let points_surface = points_curve_and_surface
                    .map(|(_, point_surface)| point_surface);

                vertices
                    .each_ref_ext()
                    .into_iter_fixed()
                    .zip(points_surface)
                    .collect::<[_; 2]>()
                    .map(|(vertex, point_surface)| {
                        let surface_vertex = SurfaceVertex::new(
                            point_surface,
                            surface.clone(),
                            vertex.global_form().clone(),
                        )
                        .insert(objects);

                        Vertex::new(
                            vertex.position(),
                            curve.clone(),
                            surface_vertex,
                        )
                        .insert(objects)
                    })
            };

            HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
        };

        let side_edges = bottom_edge.vertices().clone().map(|vertex| {
            (vertex, surface.clone()).sweep_with_cache(path, cache, objects)
        });

        let top_edge = {
            let bottom_vertices = bottom_edge.vertices();

            let surface_vertices = side_edges.clone().map(|edge| {
                let [_, vertex] = edge.vertices();
                vertex.surface_form().clone()
            });

            let points_curve_and_surface =
                bottom_vertices.clone().map(|vertex| {
                    (vertex.position(), [vertex.position().t, Scalar::ONE])
                });

            let curve = {
                let global = bottom_edge
                    .curve()
                    .global_form()
                    .clone()
                    .translate(path, objects);

                // Please note that creating a line here is correct, even if the
                // global curve is a circle. Projected into the side surface, it
                // is going to be a line either way.
                let path =
                    SurfacePath::Line(Line::from_points_with_line_coords(
                        points_curve_and_surface,
                    ));

                Curve::new(surface, path, global).insert(objects)
            };

            let global = GlobalEdge::new(
                curve.global_form().clone(),
                surface_vertices
                    .clone()
                    .map(|surface_vertex| surface_vertex.global_form().clone()),
            )
            .insert(objects);

            let vertices = bottom_vertices
                .each_ref_ext()
                .into_iter_fixed()
                .zip(surface_vertices)
                .collect::<[_; 2]>()
                .map(|(vertex, surface_form)| {
                    Vertex::new(vertex.position(), curve.clone(), surface_form)
                        .insert(objects)
                });

            HalfEdge::new(vertices, global).insert(objects)
        };

        let cycle = {
            let a = bottom_edge;
            let [d, b] = side_edges;
            let c = top_edge;

            let mut edges = [a, b, c, d];

            // Make sure that edges are oriented correctly.
            let mut i = 0;
            while i < edges.len() {
                let j = (i + 1) % edges.len();

                let [_, prev_last] = edges[i].vertices();
                let [next_first, _] = edges[j].vertices();

                // Need to compare surface forms here, as the global forms might
                // be coincident when sweeping circles, despite the vertices
                // being different!
                if prev_last.surface_form().id()
                    != next_first.surface_form().id()
                {
                    edges[j] = edges[j].clone().reverse(objects);
                }

                i += 1;
            }

            Cycle::new(edges).insert(objects)
        };

        let face = PartialFace {
            exterior: Partial::from(cycle),
            color: Some(color),
            ..Default::default()
        };
        face.build(objects).insert(objects)
    }

Access the position of the vertex on the curve

Examples found in repository?
src/objects/full/edge.rs (line 63)
62
63
64
65
66
67
68
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let [a, b] = self.vertices().clone().map(|vertex| vertex.position());
        write!(f, "edge from {a:?} to {b:?}")?;
        write!(f, " on {:?}", self.curve().global_form())?;

        Ok(())
    }
More examples
Hide additional examples
src/partial/objects/vertex.rs (line 28)
26
27
28
29
30
31
32
33
34
35
    fn from_full(vertex: &Self::Full, cache: &mut FullToPartialCache) -> Self {
        Self {
            position: Some(vertex.position()),
            curve: Partial::from_full(vertex.curve().clone(), cache),
            surface_form: Partial::from_full(
                vertex.surface_form().clone(),
                cache,
            ),
        }
    }
src/validate/edge.rs (line 182)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    fn check_vertex_positions(
        half_edge: &HalfEdge,
        config: &ValidationConfig,
    ) -> Result<(), Self> {
        let back_position = half_edge.back().position();
        let front_position = half_edge.front().position();

        let distance = (back_position - front_position).magnitude();

        if distance < config.distinct_min_distance {
            return Err(Self::VerticesAreCoincident {
                back_position,
                front_position,
                distance,
            });
        }

        Ok(())
    }
src/algorithms/intersect/ray_edge.rs (line 28)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    fn intersect(self) -> Option<Self::Intersection> {
        let (ray, edge) = self;

        let line = match edge.curve().path() {
            SurfacePath::Line(line) => line,
            SurfacePath::Circle(_) => {
                todo!("Casting rays against circles is not supported yet")
            }
        };

        let points = edge.vertices().clone().map(|vertex| {
            let point = vertex.position();
            line.point_from_line_coords(point)
        });
        let segment = Segment::from_points(points);

        (ray, &segment).intersect()
    }
src/algorithms/approx/edge.rs (line 26)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let [a, b] = self.vertices();
        let boundary = [a, b].map(|vertex| vertex.position());
        let range = RangeOnPath { boundary };

        let first = ApproxPoint::new(
            a.surface_form().position(),
            a.global_form().position(),
        );
        let curve_approx =
            (self.curve(), range).approx_with_cache(tolerance, cache);

        HalfEdgeApprox {
            first,
            curve_approx,
        }
    }
src/algorithms/transform/vertex.rs (line 19)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform position, as that is defined in curve
        // coordinates and thus transforming the curve takes care of it.
        let position = self.position();

        let curve = self
            .curve()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let surface_form = self
            .surface_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(position, curve, surface_form)
    }

Access the curve that the vertex is defined in

Examples found in repository?
src/objects/full/edge.rs (line 30)
28
29
30
31
    pub fn curve(&self) -> &Handle<Curve> {
        let [vertex, _] = self.vertices();
        vertex.curve()
    }
More examples
Hide additional examples
src/iter.rs (line 282)
280
281
282
283
284
285
    fn referenced_objects(&'r self) -> Vec<&'r dyn ObjectIters> {
        vec![
            self.curve() as &dyn ObjectIters,
            self.global_form() as &dyn ObjectIters,
        ]
    }
src/partial/objects/vertex.rs (line 29)
26
27
28
29
30
31
32
33
34
35
    fn from_full(vertex: &Self::Full, cache: &mut FullToPartialCache) -> Self {
        Self {
            position: Some(vertex.position()),
            curve: Partial::from_full(vertex.curve().clone(), cache),
            surface_form: Partial::from_full(
                vertex.surface_form().clone(),
                cache,
            ),
        }
    }
src/validate/edge.rs (line 116)
115
116
117
118
119
120
121
122
123
124
125
126
127
    fn check_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
        let back_curve = half_edge.back().curve();
        let front_curve = half_edge.front().curve();

        if back_curve.id() != front_curve.id() {
            return Err(Self::CurveMismatch {
                back_curve: back_curve.clone(),
                front_curve: front_curve.clone(),
            });
        }

        Ok(())
    }
src/validate/vertex.rs (line 90)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
        let curve_surface = vertex.curve().surface();
        let surface_form_surface = vertex.surface_form().surface();

        if curve_surface.id() != surface_form_surface.id() {
            return Err(Self::SurfaceMismatch {
                curve_surface: curve_surface.clone(),
                surface_form_surface: surface_form_surface.clone(),
            });
        }

        Ok(())
    }

    fn check_position(
        vertex: &Vertex,
        config: &ValidationConfig,
    ) -> Result<(), Self> {
        let curve_position_as_surface = vertex
            .curve()
            .path()
            .point_from_path_coords(vertex.position());
        let surface_position = vertex.surface_form().position();

        let distance = curve_position_as_surface.distance_to(&surface_position);

        if distance > config.identical_max_distance {
            return Err(Self::PositionMismatch {
                vertex: vertex.clone(),
                surface_vertex: vertex.surface_form().clone_object(),
                curve_position_as_surface,
                distance,
            });
        }

        Ok(())
    }
src/algorithms/transform/vertex.rs (line 22)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform position, as that is defined in curve
        // coordinates and thus transforming the curve takes care of it.
        let position = self.position();

        let curve = self
            .curve()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let surface_form = self
            .surface_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(position, curve, surface_form)
    }

Access the surface form of this vertex

Examples found in repository?
src/partial/objects/vertex.rs (line 31)
26
27
28
29
30
31
32
33
34
35
    fn from_full(vertex: &Self::Full, cache: &mut FullToPartialCache) -> Self {
        Self {
            position: Some(vertex.position()),
            curve: Partial::from_full(vertex.curve().clone(), cache),
            surface_form: Partial::from_full(
                vertex.surface_form().clone(),
                cache,
            ),
        }
    }
More examples
Hide additional examples
src/validate/vertex.rs (line 91)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
        let curve_surface = vertex.curve().surface();
        let surface_form_surface = vertex.surface_form().surface();

        if curve_surface.id() != surface_form_surface.id() {
            return Err(Self::SurfaceMismatch {
                curve_surface: curve_surface.clone(),
                surface_form_surface: surface_form_surface.clone(),
            });
        }

        Ok(())
    }

    fn check_position(
        vertex: &Vertex,
        config: &ValidationConfig,
    ) -> Result<(), Self> {
        let curve_position_as_surface = vertex
            .curve()
            .path()
            .point_from_path_coords(vertex.position());
        let surface_position = vertex.surface_form().position();

        let distance = curve_position_as_surface.distance_to(&surface_position);

        if distance > config.identical_max_distance {
            return Err(Self::PositionMismatch {
                vertex: vertex.clone(),
                surface_vertex: vertex.surface_form().clone_object(),
                curve_position_as_surface,
                distance,
            });
        }

        Ok(())
    }
src/validate/cycle.rs (line 51)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    fn check_half_edge_connections(cycle: &Cycle) -> Result<(), Self> {
        for (a, b) in cycle.half_edges().circular_tuple_windows() {
            let [_, prev] = a.vertices();
            let [next, _] = b.vertices();

            let prev = prev.surface_form();
            let next = next.surface_form();

            if prev.id() != next.id() {
                return Err(Self::HalfEdgeConnection {
                    prev: prev.clone(),
                    next: next.clone(),
                });
            }
        }

        Ok(())
    }
src/algorithms/approx/edge.rs (line 30)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let [a, b] = self.vertices();
        let boundary = [a, b].map(|vertex| vertex.position());
        let range = RangeOnPath { boundary };

        let first = ApproxPoint::new(
            a.surface_form().position(),
            a.global_form().position(),
        );
        let curve_approx =
            (self.curve(), range).approx_with_cache(tolerance, cache);

        HalfEdgeApprox {
            first,
            curve_approx,
        }
    }
src/algorithms/transform/vertex.rs (line 26)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    fn transform_with_cache(
        self,
        transform: &Transform,
        objects: &mut Service<Objects>,
        cache: &mut TransformCache,
    ) -> Self {
        // Don't need to transform position, as that is defined in curve
        // coordinates and thus transforming the curve takes care of it.
        let position = self.position();

        let curve = self
            .curve()
            .clone()
            .transform_with_cache(transform, objects, cache);
        let surface_form = self
            .surface_form()
            .clone()
            .transform_with_cache(transform, objects, cache);

        Self::new(position, curve, surface_form)
    }
src/objects/full/cycle.rs (line 97)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    pub fn winding(&self) -> Winding {
        // The cycle could be made up of one or two circles. If that is the
        // case, the winding of the cycle is determined by the winding of the
        // first circle.
        if self.half_edges.len() < 3 {
            let first = self
                .half_edges()
                .next()
                .expect("Invalid cycle: expected at least one half-edge");

            let [a, b] = first.vertices();
            let edge_direction_positive = a.position() < b.position();

            let circle = match first.curve().path() {
                SurfacePath::Circle(circle) => circle,
                SurfacePath::Line(_) => unreachable!(
                    "Invalid cycle: less than 3 edges, but not all are circles"
                ),
            };
            let cross_positive = circle.a().cross2d(&circle.b()) > Scalar::ZERO;

            if edge_direction_positive == cross_positive {
                return Winding::Ccw;
            } else {
                return Winding::Cw;
            }
        }

        // Now that we got the special case out of the way, we can treat the
        // cycle as a polygon:
        // https://stackoverflow.com/a/1165943

        let mut sum = Scalar::ZERO;

        for [a, b] in self.half_edges.as_slice().array_windows_ext() {
            let [a, b] = [a, b].map(|half_edge| {
                let [vertex, _] = half_edge.vertices();
                vertex.surface_form().position()
            });

            sum += (b.u - a.u) * (b.v + a.v);
        }

        if sum > Scalar::ZERO {
            return Winding::Cw;
        }
        if sum < Scalar::ZERO {
            return Winding::Ccw;
        }

        unreachable!("Encountered invalid cycle: {self:#?}");
    }

Access the global form of this vertex

Examples found in repository?
src/iter.rs (line 283)
280
281
282
283
284
285
    fn referenced_objects(&'r self) -> Vec<&'r dyn ObjectIters> {
        vec![
            self.curve() as &dyn ObjectIters,
            self.global_form() as &dyn ObjectIters,
        ]
    }
More examples
Hide additional examples
src/algorithms/approx/edge.rs (line 31)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let [a, b] = self.vertices();
        let boundary = [a, b].map(|vertex| vertex.position());
        let range = RangeOnPath { boundary };

        let first = ApproxPoint::new(
            a.surface_form().position(),
            a.global_form().position(),
        );
        let curve_approx =
            (self.curve(), range).approx_with_cache(tolerance, cache);

        HalfEdgeApprox {
            first,
            curve_approx,
        }
    }
src/validate/edge.rs (line 151)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    fn check_global_vertex_identity(half_edge: &HalfEdge) -> Result<(), Self> {
        let global_vertices_from_vertices = {
            let (global_vertices_from_vertices, _) =
                VerticesInNormalizedOrder::new(
                    half_edge
                        .vertices()
                        .each_ref_ext()
                        .map(|vertex| vertex.global_form().clone()),
                );

            global_vertices_from_vertices.access_in_normalized_order()
        };
        let global_vertices_from_global_form = half_edge
            .global_form()
            .vertices()
            .access_in_normalized_order();

        let ids_from_vertices = global_vertices_from_vertices
            .each_ref_ext()
            .map(|global_vertex| global_vertex.id());
        let ids_from_global_form = global_vertices_from_global_form
            .each_ref_ext()
            .map(|global_vertex| global_vertex.id());

        if ids_from_vertices != ids_from_global_form {
            return Err(Self::GlobalVertexMismatch {
                global_vertices_from_vertices,
                global_vertices_from_global_form,
            });
        }

        Ok(())
    }
src/algorithms/sweep/vertex.rs (line 64)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let (vertex, surface) = self;
        let path = path.into();

        // The result of sweeping a `Vertex` is an `Edge`. Seems
        // straight-forward at first, but there are some subtleties we need to
        // understand:
        //
        // 1. To create an `Edge`, we need the `Curve` that defines it. A
        //    `Curve` is defined in a `Surface`, and we're going to need that to
        //    create the `Curve`. Which is why this `Sweep` implementation is
        //    for `(Vertex, Surface)`, and not just for `Vertex`.
        // 2. Please note that, while the output `Edge` has two vertices, our
        //    input `Vertex` is not one of them! It can't be, unless the `Curve`
        //    of the output `Edge` happens to be the same `Curve` that the input
        //    `Vertex` is defined on. That would be an edge case that probably
        //    can't result in anything valid, and we're going to ignore it for
        //    now.
        // 3. This means, we have to compute everything that defines the
        //    output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
        //
        // Before we get to that though, let's make sure that whoever called
        // this didn't give us bad input.

        // So, we're supposed to create the `Edge` by sweeping a `Vertex` using
        // `path`. Unless `path` is identical to the path that created the
        // `Surface`, this doesn't make any sense. Let's make sure this
        // requirement is met.
        //
        // Further, the `Curve` that was swept to create the `Surface` needs to
        // be the same `Curve` that the input `Vertex` is defined on. If it's
        // not, we have no way of knowing the surface coordinates of the input
        // `Vertex` on the `Surface`, and we're going to need to do that further
        // down. There's no way to check for that, unfortunately.
        assert_eq!(path, surface.geometry().v);

        // With that out of the way, let's start by creating the `GlobalEdge`,
        // as that is the most straight-forward part of this operations, and
        // we're going to need it soon anyway.
        let (edge_global, vertices_global) = vertex
            .global_form()
            .clone()
            .sweep_with_cache(path, cache, objects);

        // Next, let's compute the surface coordinates of the two vertices of
        // the output `Edge`, as we're going to need these for the rest of this
        // operation.
        //
        // They both share a u-coordinate, which is the t-coordinate of our
        // input `Vertex`. Remember, we validated above, that the `Curve` of the
        // `Surface` and the curve of the input `Vertex` are the same, so we can
        // do that.
        //
        // Now remember what we also validated above: That `path`, which we're
        // using to create the output `Edge`, also created the `Surface`, and
        // thereby defined its coordinate system. That makes the v-coordinates
        // straight-forward: The start of the edge is at zero, the end is at
        // one.
        let points_surface = [
            Point::from([vertex.position().t, Scalar::ZERO]),
            Point::from([vertex.position().t, Scalar::ONE]),
        ];

        // Armed with those coordinates, creating the `Curve` of the output
        // `Edge` is straight-forward.
        let curve = {
            let (path, _) = SurfacePath::line_from_points(points_surface);

            Curve::new(surface.clone(), path, edge_global.curve().clone())
                .insert(objects)
        };

        let vertices_surface = {
            let [_, position] = points_surface;
            let [_, global_form] = vertices_global;

            [
                vertex.surface_form().clone(),
                SurfaceVertex::new(position, surface, global_form)
                    .insert(objects),
            ]
        };

        // And now the vertices. Again, nothing wild here.
        let vertices = vertices_surface.map(|surface_form| {
            Vertex::new(
                [surface_form.position().v],
                curve.clone(),
                surface_form,
            )
            .insert(objects)
        });

        // And finally, creating the output `Edge` is just a matter of
        // assembling the pieces we've already created.
        HalfEdge::new(vertices, edge_global).insert(objects)
    }
src/algorithms/sweep/edge.rs (line 75)
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    fn sweep_with_cache(
        self,
        path: impl Into<Vector<3>>,
        cache: &mut SweepCache,
        objects: &mut Service<Objects>,
    ) -> Self::Swept {
        let (edge, color) = self;
        let path = path.into();

        let surface =
            edge.curve().clone().sweep_with_cache(path, cache, objects);

        // We can't use the edge we're sweeping from as the bottom edge, as that
        // is not defined in the right surface. Let's create a new bottom edge,
        // by swapping the surface of the original.
        let bottom_edge = {
            let vertices = edge.vertices();

            let points_curve_and_surface = vertices.clone().map(|vertex| {
                (vertex.position(), [vertex.position().t, Scalar::ZERO])
            });

            let curve = {
                // Please note that creating a line here is correct, even if the
                // global curve is a circle. Projected into the side surface, it
                // is going to be a line either way.
                let path =
                    SurfacePath::Line(Line::from_points_with_line_coords(
                        points_curve_and_surface,
                    ));

                Curve::new(
                    surface.clone(),
                    path,
                    edge.curve().global_form().clone(),
                )
                .insert(objects)
            };

            let vertices = {
                let points_surface = points_curve_and_surface
                    .map(|(_, point_surface)| point_surface);

                vertices
                    .each_ref_ext()
                    .into_iter_fixed()
                    .zip(points_surface)
                    .collect::<[_; 2]>()
                    .map(|(vertex, point_surface)| {
                        let surface_vertex = SurfaceVertex::new(
                            point_surface,
                            surface.clone(),
                            vertex.global_form().clone(),
                        )
                        .insert(objects);

                        Vertex::new(
                            vertex.position(),
                            curve.clone(),
                            surface_vertex,
                        )
                        .insert(objects)
                    })
            };

            HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
        };

        let side_edges = bottom_edge.vertices().clone().map(|vertex| {
            (vertex, surface.clone()).sweep_with_cache(path, cache, objects)
        });

        let top_edge = {
            let bottom_vertices = bottom_edge.vertices();

            let surface_vertices = side_edges.clone().map(|edge| {
                let [_, vertex] = edge.vertices();
                vertex.surface_form().clone()
            });

            let points_curve_and_surface =
                bottom_vertices.clone().map(|vertex| {
                    (vertex.position(), [vertex.position().t, Scalar::ONE])
                });

            let curve = {
                let global = bottom_edge
                    .curve()
                    .global_form()
                    .clone()
                    .translate(path, objects);

                // Please note that creating a line here is correct, even if the
                // global curve is a circle. Projected into the side surface, it
                // is going to be a line either way.
                let path =
                    SurfacePath::Line(Line::from_points_with_line_coords(
                        points_curve_and_surface,
                    ));

                Curve::new(surface, path, global).insert(objects)
            };

            let global = GlobalEdge::new(
                curve.global_form().clone(),
                surface_vertices
                    .clone()
                    .map(|surface_vertex| surface_vertex.global_form().clone()),
            )
            .insert(objects);

            let vertices = bottom_vertices
                .each_ref_ext()
                .into_iter_fixed()
                .zip(surface_vertices)
                .collect::<[_; 2]>()
                .map(|(vertex, surface_form)| {
                    Vertex::new(vertex.position(), curve.clone(), surface_form)
                        .insert(objects)
                });

            HalfEdge::new(vertices, global).insert(objects)
        };

        let cycle = {
            let a = bottom_edge;
            let [d, b] = side_edges;
            let c = top_edge;

            let mut edges = [a, b, c, d];

            // Make sure that edges are oriented correctly.
            let mut i = 0;
            while i < edges.len() {
                let j = (i + 1) % edges.len();

                let [_, prev_last] = edges[i].vertices();
                let [next_first, _] = edges[j].vertices();

                // Need to compare surface forms here, as the global forms might
                // be coincident when sweeping circles, despite the vertices
                // being different!
                if prev_last.surface_form().id()
                    != next_first.surface_form().id()
                {
                    edges[j] = edges[j].clone().reverse(objects);
                }

                i += 1;
            }

            Cycle::new(edges).insert(objects)
        };

        let face = PartialFace {
            exterior: Partial::from(cycle),
            color: Some(color),
            ..Default::default()
        };
        face.build(objects).insert(objects)
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Converts to this type from the input type.
The type representing the partial variant of this object
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
Insert the object into its respective store
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Transform the object using the provided cache
Transform the object
Translate the object Read more
Rotate the object Read more
The error that validation of the implementing type can result in
Validate the object
Validate the object using default configuration

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Checks if self is actually part of its subset T (and can be converted to it).
Use with care! Same as self.to_subset but without any property checks. Always succeeds.
The inclusion map: converts self to the equivalent element of its superset.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.