pub struct Vertex { /* private fields */ }Expand description
A vertex
Vertex is defined in terms of a 1-dimensional position on a curve. If you
need the 3D position of a vertex, you can use Vertex::global_form, to
get access of the global form of a vertex (GlobalVertex).
Implementations§
source§impl Vertex
impl Vertex
sourcepub fn new(
position: impl Into<Point<1>>,
curve: Handle<Curve>,
surface_form: Handle<SurfaceVertex>
) -> Self
pub fn new(
position: impl Into<Point<1>>,
curve: Handle<Curve>,
surface_form: Handle<SurfaceVertex>
) -> Self
Construct an instance of Vertex
Examples found in repository?
src/partial/objects/vertex.rs (line 51)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
fn build(mut self, objects: &mut Service<Objects>) -> Self::Full {
let position = self
.position
.expect("Can't build `Vertex` without position");
let curve = self.curve.build(objects);
// Infer surface position, if not available.
if self.surface_form.read().position.is_none() {
self.surface_form.write().position =
Some(curve.path().point_from_path_coords(position));
}
let surface_form = self.surface_form.build(objects);
Vertex::new(position, curve, surface_form)
}More examples
src/algorithms/transform/vertex.rs (line 30)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in curve
// coordinates and thus transforming the curve takes care of it.
let position = self.position();
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let surface_form = self
.surface_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, curve, surface_form)
}src/algorithms/sweep/vertex.rs (lines 109-113)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}src/algorithms/sweep/edge.rs (lines 79-83)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}sourcepub fn position(&self) -> Point<1>
pub fn position(&self) -> Point<1>
Access the position of the vertex on the curve
Examples found in repository?
More examples
src/validate/edge.rs (line 182)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
fn check_vertex_positions(
half_edge: &HalfEdge,
config: &ValidationConfig,
) -> Result<(), Self> {
let back_position = half_edge.back().position();
let front_position = half_edge.front().position();
let distance = (back_position - front_position).magnitude();
if distance < config.distinct_min_distance {
return Err(Self::VerticesAreCoincident {
back_position,
front_position,
distance,
});
}
Ok(())
}src/algorithms/intersect/ray_edge.rs (line 28)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
fn intersect(self) -> Option<Self::Intersection> {
let (ray, edge) = self;
let line = match edge.curve().path() {
SurfacePath::Line(line) => line,
SurfacePath::Circle(_) => {
todo!("Casting rays against circles is not supported yet")
}
};
let points = edge.vertices().clone().map(|vertex| {
let point = vertex.position();
line.point_from_line_coords(point)
});
let segment = Segment::from_points(points);
(ray, &segment).intersect()
}src/algorithms/approx/edge.rs (line 26)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let [a, b] = self.vertices();
let boundary = [a, b].map(|vertex| vertex.position());
let range = RangeOnPath { boundary };
let first = ApproxPoint::new(
a.surface_form().position(),
a.global_form().position(),
);
let curve_approx =
(self.curve(), range).approx_with_cache(tolerance, cache);
HalfEdgeApprox {
first,
curve_approx,
}
}src/algorithms/transform/vertex.rs (line 19)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in curve
// coordinates and thus transforming the curve takes care of it.
let position = self.position();
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let surface_form = self
.surface_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, curve, surface_form)
}Additional examples can be found in:
sourcepub fn curve(&self) -> &Handle<Curve>
pub fn curve(&self) -> &Handle<Curve>
Access the curve that the vertex is defined in
Examples found in repository?
More examples
src/validate/edge.rs (line 116)
115 116 117 118 119 120 121 122 123 124 125 126 127
fn check_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let back_curve = half_edge.back().curve();
let front_curve = half_edge.front().curve();
if back_curve.id() != front_curve.id() {
return Err(Self::CurveMismatch {
back_curve: back_curve.clone(),
front_curve: front_curve.clone(),
});
}
Ok(())
}src/validate/vertex.rs (line 90)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
let curve_surface = vertex.curve().surface();
let surface_form_surface = vertex.surface_form().surface();
if curve_surface.id() != surface_form_surface.id() {
return Err(Self::SurfaceMismatch {
curve_surface: curve_surface.clone(),
surface_form_surface: surface_form_surface.clone(),
});
}
Ok(())
}
fn check_position(
vertex: &Vertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let curve_position_as_surface = vertex
.curve()
.path()
.point_from_path_coords(vertex.position());
let surface_position = vertex.surface_form().position();
let distance = curve_position_as_surface.distance_to(&surface_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
vertex: vertex.clone(),
surface_vertex: vertex.surface_form().clone_object(),
curve_position_as_surface,
distance,
});
}
Ok(())
}src/algorithms/transform/vertex.rs (line 22)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in curve
// coordinates and thus transforming the curve takes care of it.
let position = self.position();
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let surface_form = self
.surface_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, curve, surface_form)
}sourcepub fn surface_form(&self) -> &Handle<SurfaceVertex>
pub fn surface_form(&self) -> &Handle<SurfaceVertex>
Access the surface form of this vertex
Examples found in repository?
More examples
src/validate/vertex.rs (line 91)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
let curve_surface = vertex.curve().surface();
let surface_form_surface = vertex.surface_form().surface();
if curve_surface.id() != surface_form_surface.id() {
return Err(Self::SurfaceMismatch {
curve_surface: curve_surface.clone(),
surface_form_surface: surface_form_surface.clone(),
});
}
Ok(())
}
fn check_position(
vertex: &Vertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let curve_position_as_surface = vertex
.curve()
.path()
.point_from_path_coords(vertex.position());
let surface_position = vertex.surface_form().position();
let distance = curve_position_as_surface.distance_to(&surface_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
vertex: vertex.clone(),
surface_vertex: vertex.surface_form().clone_object(),
curve_position_as_surface,
distance,
});
}
Ok(())
}src/validate/cycle.rs (line 51)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
fn check_half_edge_connections(cycle: &Cycle) -> Result<(), Self> {
for (a, b) in cycle.half_edges().circular_tuple_windows() {
let [_, prev] = a.vertices();
let [next, _] = b.vertices();
let prev = prev.surface_form();
let next = next.surface_form();
if prev.id() != next.id() {
return Err(Self::HalfEdgeConnection {
prev: prev.clone(),
next: next.clone(),
});
}
}
Ok(())
}src/algorithms/approx/edge.rs (line 30)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let [a, b] = self.vertices();
let boundary = [a, b].map(|vertex| vertex.position());
let range = RangeOnPath { boundary };
let first = ApproxPoint::new(
a.surface_form().position(),
a.global_form().position(),
);
let curve_approx =
(self.curve(), range).approx_with_cache(tolerance, cache);
HalfEdgeApprox {
first,
curve_approx,
}
}src/algorithms/transform/vertex.rs (line 26)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in curve
// coordinates and thus transforming the curve takes care of it.
let position = self.position();
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let surface_form = self
.surface_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, curve, surface_form)
}src/objects/full/cycle.rs (line 97)
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
pub fn winding(&self) -> Winding {
// The cycle could be made up of one or two circles. If that is the
// case, the winding of the cycle is determined by the winding of the
// first circle.
if self.half_edges.len() < 3 {
let first = self
.half_edges()
.next()
.expect("Invalid cycle: expected at least one half-edge");
let [a, b] = first.vertices();
let edge_direction_positive = a.position() < b.position();
let circle = match first.curve().path() {
SurfacePath::Circle(circle) => circle,
SurfacePath::Line(_) => unreachable!(
"Invalid cycle: less than 3 edges, but not all are circles"
),
};
let cross_positive = circle.a().cross2d(&circle.b()) > Scalar::ZERO;
if edge_direction_positive == cross_positive {
return Winding::Ccw;
} else {
return Winding::Cw;
}
}
// Now that we got the special case out of the way, we can treat the
// cycle as a polygon:
// https://stackoverflow.com/a/1165943
let mut sum = Scalar::ZERO;
for [a, b] in self.half_edges.as_slice().array_windows_ext() {
let [a, b] = [a, b].map(|half_edge| {
let [vertex, _] = half_edge.vertices();
vertex.surface_form().position()
});
sum += (b.u - a.u) * (b.v + a.v);
}
if sum > Scalar::ZERO {
return Winding::Cw;
}
if sum < Scalar::ZERO {
return Winding::Ccw;
}
unreachable!("Encountered invalid cycle: {self:#?}");
}Additional examples can be found in:
sourcepub fn global_form(&self) -> &Handle<GlobalVertex>
pub fn global_form(&self) -> &Handle<GlobalVertex>
Access the global form of this vertex
Examples found in repository?
More examples
src/algorithms/approx/edge.rs (line 31)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let [a, b] = self.vertices();
let boundary = [a, b].map(|vertex| vertex.position());
let range = RangeOnPath { boundary };
let first = ApproxPoint::new(
a.surface_form().position(),
a.global_form().position(),
);
let curve_approx =
(self.curve(), range).approx_with_cache(tolerance, cache);
HalfEdgeApprox {
first,
curve_approx,
}
}src/validate/edge.rs (line 151)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
fn check_global_vertex_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_vertices_from_vertices = {
let (global_vertices_from_vertices, _) =
VerticesInNormalizedOrder::new(
half_edge
.vertices()
.each_ref_ext()
.map(|vertex| vertex.global_form().clone()),
);
global_vertices_from_vertices.access_in_normalized_order()
};
let global_vertices_from_global_form = half_edge
.global_form()
.vertices()
.access_in_normalized_order();
let ids_from_vertices = global_vertices_from_vertices
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
let ids_from_global_form = global_vertices_from_global_form
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
if ids_from_vertices != ids_from_global_form {
return Err(Self::GlobalVertexMismatch {
global_vertices_from_vertices,
global_vertices_from_global_form,
});
}
Ok(())
}src/algorithms/sweep/vertex.rs (line 64)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}src/algorithms/sweep/edge.rs (line 75)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}Trait Implementations§
source§impl HasPartial for Vertex
impl HasPartial for Vertex
§type Partial = PartialVertex
type Partial = PartialVertex
The type representing the partial variant of this object
source§impl Ord for Vertex
impl Ord for Vertex
source§impl PartialEq<Vertex> for Vertex
impl PartialEq<Vertex> for Vertex
source§impl PartialOrd<Vertex> for Vertex
impl PartialOrd<Vertex> for Vertex
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moresource§impl TransformObject for Vertex
impl TransformObject for Vertex
source§fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
Transform the object using the provided cache
source§fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
Transform the object
source§impl Validate for Vertex
impl Validate for Vertex
§type Error = VertexValidationError
type Error = VertexValidationError
The error that validation of the implementing type can result in
source§fn validate_with_config(
&self,
config: &ValidationConfig
) -> Result<(), Self::Error>
fn validate_with_config(
&self,
config: &ValidationConfig
) -> Result<(), Self::Error>
Validate the object
impl Eq for Vertex
impl StructuralEq for Vertex
impl StructuralPartialEq for Vertex
Auto Trait Implementations§
impl !RefUnwindSafe for Vertex
impl Send for Vertex
impl Sync for Vertex
impl Unpin for Vertex
impl !UnwindSafe for Vertex
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.