Struct fj_kernel::objects::GlobalEdge
source · pub struct GlobalEdge { /* private fields */ }Expand description
Implementations§
source§impl GlobalEdge
impl GlobalEdge
sourcepub fn new(
curve: impl Into<HandleWrapper<GlobalCurve>>,
vertices: [Handle<GlobalVertex>; 2]
) -> Self
pub fn new(
curve: impl Into<HandleWrapper<GlobalCurve>>,
vertices: [Handle<GlobalVertex>; 2]
) -> Self
Create a new instance
The order of vertices is irrelevant. Two GlobalEdges with the same
curve and vertices will end up being equal, regardless of the order
of vertices here.
Examples found in repository?
More examples
src/algorithms/transform/edge.rs (line 45)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let vertices =
self.vertices().access_in_normalized_order().map(|vertex| {
vertex.transform_with_cache(transform, objects, cache)
});
Self::new(curve, vertices)
}src/algorithms/sweep/vertex.rs (line 145)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let curve = GlobalCurve.insert(objects);
let a = self.clone();
let b = cache
.global_vertex
.entry(self.id())
.or_insert_with(|| {
GlobalVertex::new(self.position() + path.into()).insert(objects)
})
.clone();
let vertices = [a, b];
let global_edge =
GlobalEdge::new(curve, vertices.clone()).insert(objects);
// The vertices of the returned `GlobalEdge` are in normalized order,
// which means the order can't be relied upon by the caller. Return the
// ordered vertices in addition.
(global_edge, vertices)
}src/algorithms/sweep/edge.rs (lines 126-131)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}sourcepub fn curve(&self) -> &Handle<GlobalCurve>
pub fn curve(&self) -> &Handle<GlobalCurve>
Access the curve that defines the edge’s geometry
Examples found in repository?
src/partial/objects/edge.rs (line 131)
126 127 128 129 130 131 132 133 134 135 136 137
fn from_full(
global_edge: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
curve: Partial::from_full(global_edge.curve().clone(), cache),
vertices: global_edge
.vertices()
.access_in_normalized_order()
.map(|vertex| Partial::from_full(vertex, cache)),
}
}More examples
src/algorithms/transform/edge.rs (line 37)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let vertices =
self.vertices().access_in_normalized_order().map(|vertex| {
vertex.transform_with_cache(transform, objects, cache)
});
Self::new(curve, vertices)
}src/validate/edge.rs (line 131)
129 130 131 132 133 134 135 136 137 138 139 140 141 142
fn check_global_curve_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_curve_from_curve = half_edge.curve().global_form();
let global_curve_from_global_form = half_edge.global_form().curve();
if global_curve_from_curve.id() != global_curve_from_global_form.id() {
return Err(Self::GlobalCurveMismatch {
global_curve_from_curve: global_curve_from_curve.clone(),
global_curve_from_global_form: global_curve_from_global_form
.clone(),
});
}
Ok(())
}src/algorithms/sweep/vertex.rs (line 92)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}sourcepub fn vertices(&self) -> &VerticesInNormalizedOrder
pub fn vertices(&self) -> &VerticesInNormalizedOrder
Access the vertices that bound the edge on the curve
As the name indicates, the order of the returned vertices is normalized
and might not match the order of the vertices that were passed to
GlobalEdge::new. You must not rely on the vertices being in any
specific order.
Examples found in repository?
src/partial/objects/edge.rs (line 133)
126 127 128 129 130 131 132 133 134 135 136 137
fn from_full(
global_edge: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
curve: Partial::from_full(global_edge.curve().clone(), cache),
vertices: global_edge
.vertices()
.access_in_normalized_order()
.map(|vertex| Partial::from_full(vertex, cache)),
}
}More examples
src/algorithms/transform/edge.rs (line 41)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
let curve = self
.curve()
.clone()
.transform_with_cache(transform, objects, cache);
let vertices =
self.vertices().access_in_normalized_order().map(|vertex| {
vertex.transform_with_cache(transform, objects, cache)
});
Self::new(curve, vertices)
}src/validate/edge.rs (line 158)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
fn check_global_vertex_identity(half_edge: &HalfEdge) -> Result<(), Self> {
let global_vertices_from_vertices = {
let (global_vertices_from_vertices, _) =
VerticesInNormalizedOrder::new(
half_edge
.vertices()
.each_ref_ext()
.map(|vertex| vertex.global_form().clone()),
);
global_vertices_from_vertices.access_in_normalized_order()
};
let global_vertices_from_global_form = half_edge
.global_form()
.vertices()
.access_in_normalized_order();
let ids_from_vertices = global_vertices_from_vertices
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
let ids_from_global_form = global_vertices_from_global_form
.each_ref_ext()
.map(|global_vertex| global_vertex.id());
if ids_from_vertices != ids_from_global_form {
return Err(Self::GlobalVertexMismatch {
global_vertices_from_vertices,
global_vertices_from_global_form,
});
}
Ok(())
}Trait Implementations§
source§impl Clone for GlobalEdge
impl Clone for GlobalEdge
source§fn clone(&self) -> GlobalEdge
fn clone(&self) -> GlobalEdge
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for GlobalEdge
impl Debug for GlobalEdge
source§impl From<GlobalEdge> for Object<Bare>
impl From<GlobalEdge> for Object<Bare>
source§fn from(object: GlobalEdge) -> Self
fn from(object: GlobalEdge) -> Self
Converts to this type from the input type.
source§impl HasPartial for GlobalEdge
impl HasPartial for GlobalEdge
§type Partial = PartialGlobalEdge
type Partial = PartialGlobalEdge
The type representing the partial variant of this object
source§impl Hash for GlobalEdge
impl Hash for GlobalEdge
source§impl Insert for GlobalEdge
impl Insert for GlobalEdge
source§impl Ord for GlobalEdge
impl Ord for GlobalEdge
source§fn cmp(&self, other: &GlobalEdge) -> Ordering
fn cmp(&self, other: &GlobalEdge) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
source§impl PartialEq<GlobalEdge> for GlobalEdge
impl PartialEq<GlobalEdge> for GlobalEdge
source§fn eq(&self, other: &GlobalEdge) -> bool
fn eq(&self, other: &GlobalEdge) -> bool
This method tests for
self and other values to be equal, and is used
by ==.source§impl PartialOrd<GlobalEdge> for GlobalEdge
impl PartialOrd<GlobalEdge> for GlobalEdge
source§fn partial_cmp(&self, other: &GlobalEdge) -> Option<Ordering>
fn partial_cmp(&self, other: &GlobalEdge) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moresource§impl TransformObject for GlobalEdge
impl TransformObject for GlobalEdge
source§fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
Transform the object using the provided cache
source§fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
Transform the object
source§impl Validate for GlobalEdge
impl Validate for GlobalEdge
impl Eq for GlobalEdge
impl StructuralEq for GlobalEdge
impl StructuralPartialEq for GlobalEdge
Auto Trait Implementations§
impl !RefUnwindSafe for GlobalEdge
impl Send for GlobalEdge
impl Sync for GlobalEdge
impl Unpin for GlobalEdge
impl !UnwindSafe for GlobalEdge
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.