opencv 0.82.1

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
pub mod text {
	//! # Scene Text Detection and Recognition
	//! 
	//! The opencv_text module provides different algorithms for text detection and recognition in natural
	//! scene images.
	//!    # Scene Text Detection
	//! 
	//! Class-specific Extremal Regions for Scene Text Detection
	//! --------------------------------------------------------
	//! 
	//! The scene text detection algorithm described below has been initially proposed by Lukás Neumann &
	//! Jiri Matas [Neumann11](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann11). The main idea behind Class-specific Extremal Regions is similar to the MSER
	//! in that suitable Extremal Regions (ERs) are selected from the whole component tree of the image.
	//! However, this technique differs from MSER in that selection of suitable ERs is done by a sequential
	//! classifier trained for character detection, i.e. dropping the stability requirement of MSERs and
	//! selecting class-specific (not necessarily stable) regions.
	//! 
	//! The component tree of an image is constructed by thresholding by an increasing value step-by-step
	//! from 0 to 255 and then linking the obtained connected components from successive levels in a
	//! hierarchy by their inclusion relation:
	//! 
	//! ![image](https://docs.opencv.org/4.7.0/component_tree.png)
	//! 
	//! The component tree may contain a huge number of regions even for a very simple image as shown in
	//! the previous image. This number can easily reach the order of 1 x 10\^6 regions for an average 1
	//! Megapixel image. In order to efficiently select suitable regions among all the ERs the algorithm
	//! make use of a sequential classifier with two differentiated stages.
	//! 
	//! In the first stage incrementally computable descriptors (area, perimeter, bounding box, and Euler's
	//! number) are computed (in O(1)) for each region r and used as features for a classifier which
	//! estimates the class-conditional probability p(r|character). Only the ERs which correspond to local
	//! maximum of the probability p(r|character) are selected (if their probability is above a global limit
	//! p_min and the difference between local maximum and local minimum is greater than a delta_min
	//! value).
	//! 
	//! In the second stage, the ERs that passed the first stage are classified into character and
	//! non-character classes using more informative but also more computationally expensive features. (Hole
	//! area ratio, convex hull ratio, and the number of outer boundary inflexion points).
	//! 
	//! This ER filtering process is done in different single-channel projections of the input image in
	//! order to increase the character localization recall.
	//! 
	//! After the ER filtering is done on each input channel, character candidates must be grouped in
	//! high-level text blocks (i.e. words, text lines, paragraphs, ...). The opencv_text module implements
	//! two different grouping algorithms: the Exhaustive Search algorithm proposed in [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12) for
	//! grouping horizontally aligned text, and the method proposed by Lluis Gomez and Dimosthenis Karatzas
	//! in [Gomez13](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Gomez13) [Gomez14](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Gomez14) for grouping arbitrary oriented text (see erGrouping).
	//! 
	//! To see the text detector at work, have a look at the textdetection demo:
	//! <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/textdetection.cpp>
	//! 
	//!    # Scene Text Recognition
	use crate::{mod_prelude::*, core, sys, types};
	pub mod prelude {
		pub use { super::ERStatTraitConst, super::ERStatTrait, super::ERFilter_CallbackTraitConst, super::ERFilter_CallbackTrait, super::ERFilterTraitConst, super::ERFilterTrait, super::BaseOCRTraitConst, super::BaseOCRTrait, super::OCRTesseractTraitConst, super::OCRTesseractTrait, super::OCRHMMDecoder_ClassifierCallbackTraitConst, super::OCRHMMDecoder_ClassifierCallbackTrait, super::OCRHMMDecoderTraitConst, super::OCRHMMDecoderTrait, super::OCRBeamSearchDecoder_ClassifierCallbackTraitConst, super::OCRBeamSearchDecoder_ClassifierCallbackTrait, super::OCRBeamSearchDecoderTraitConst, super::OCRBeamSearchDecoderTrait, super::OCRHolisticWordRecognizerTraitConst, super::OCRHolisticWordRecognizerTrait, super::TextDetectorTraitConst, super::TextDetectorTrait, super::TextDetectorCNNTraitConst, super::TextDetectorCNNTrait };
	}
	
	pub const ERFILTER_NM_IHSGrad: i32 = 1;
	pub const ERFILTER_NM_RGBLGrad: i32 = 0;
	/// Text grouping method proposed in [Gomez13](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Gomez13) [Gomez14](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Gomez14) for grouping arbitrary oriented text. Regions
	/// are agglomerated by Single Linkage Clustering in a weighted feature space that combines proximity
	/// (x,y coordinates) and similarity measures (color, size, gradient magnitude, stroke width, etc.).
	/// SLC provides a dendrogram where each node represents a text group hypothesis. Then the algorithm
	/// finds the branches corresponding to text groups by traversing this dendrogram with a stopping rule
	/// that combines the output of a rotation invariant text group classifier and a probabilistic measure
	/// for hierarchical clustering validity assessment.
	/// 
	/// 
	/// Note: This mode is not supported due NFA code removal ( <https://github.com/opencv/opencv_contrib/issues/2235> )
	pub const ERGROUPING_ORIENTATION_ANY: i32 = 1;
	/// Exhaustive Search algorithm proposed in [Neumann11](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann11) for grouping horizontally aligned text.
	/// The algorithm models a verification function for all the possible ER sequences. The
	/// verification fuction for ER pairs consists in a set of threshold-based pairwise rules which
	/// compare measurements of two regions (height ratio, centroid angle, and region distance). The
	/// verification function for ER triplets creates a word text line estimate using Least
	/// Median-Squares fitting for a given triplet and then verifies that the estimate is valid (based
	/// on thresholds created during training). Verification functions for sequences larger than 3 are
	/// approximated by verifying that the text line parameters of all (sub)sequences of length 3 are
	/// consistent.
	pub const ERGROUPING_ORIENTATION_HORIZ: i32 = 0;
	pub const OCR_CNN_CLASSIFIER: i32 = 1;
	pub const OCR_DECODER_VITERBI: i32 = 0;
	pub const OCR_KNN_CLASSIFIER: i32 = 0;
	pub const OCR_LEVEL_TEXTLINE: i32 = 1;
	pub const OCR_LEVEL_WORD: i32 = 0;
	pub const OEM_CUBE_ONLY: i32 = 1;
	pub const OEM_DEFAULT: i32 = 3;
	pub const OEM_TESSERACT_CUBE_COMBINED: i32 = 2;
	pub const OEM_TESSERACT_ONLY: i32 = 0;
	pub const PSM_AUTO: i32 = 3;
	pub const PSM_AUTO_ONLY: i32 = 2;
	pub const PSM_AUTO_OSD: i32 = 1;
	pub const PSM_CIRCLE_WORD: i32 = 9;
	pub const PSM_OSD_ONLY: i32 = 0;
	pub const PSM_SINGLE_BLOCK: i32 = 6;
	pub const PSM_SINGLE_BLOCK_VERT_TEXT: i32 = 5;
	pub const PSM_SINGLE_CHAR: i32 = 10;
	pub const PSM_SINGLE_COLUMN: i32 = 4;
	pub const PSM_SINGLE_LINE: i32 = 7;
	pub const PSM_SINGLE_WORD: i32 = 8;
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum classifier_type {
		OCR_KNN_CLASSIFIER = 0,
		OCR_CNN_CLASSIFIER = 1,
	}
	
	opencv_type_enum! { crate::text::classifier_type }
	
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum decoder_mode {
		OCR_DECODER_VITERBI = 0,
	}
	
	opencv_type_enum! { crate::text::decoder_mode }
	
	/// text::erGrouping operation modes
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum erGrouping_Modes {
		/// Exhaustive Search algorithm proposed in [Neumann11](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann11) for grouping horizontally aligned text.
		/// The algorithm models a verification function for all the possible ER sequences. The
		/// verification fuction for ER pairs consists in a set of threshold-based pairwise rules which
		/// compare measurements of two regions (height ratio, centroid angle, and region distance). The
		/// verification function for ER triplets creates a word text line estimate using Least
		/// Median-Squares fitting for a given triplet and then verifies that the estimate is valid (based
		/// on thresholds created during training). Verification functions for sequences larger than 3 are
		/// approximated by verifying that the text line parameters of all (sub)sequences of length 3 are
		/// consistent.
		ERGROUPING_ORIENTATION_HORIZ = 0,
		/// Text grouping method proposed in [Gomez13](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Gomez13) [Gomez14](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Gomez14) for grouping arbitrary oriented text. Regions
		/// are agglomerated by Single Linkage Clustering in a weighted feature space that combines proximity
		/// (x,y coordinates) and similarity measures (color, size, gradient magnitude, stroke width, etc.).
		/// SLC provides a dendrogram where each node represents a text group hypothesis. Then the algorithm
		/// finds the branches corresponding to text groups by traversing this dendrogram with a stopping rule
		/// that combines the output of a rotation invariant text group classifier and a probabilistic measure
		/// for hierarchical clustering validity assessment.
		/// 
		/// 
		/// Note: This mode is not supported due NFA code removal ( <https://github.com/opencv/opencv_contrib/issues/2235> )
		ERGROUPING_ORIENTATION_ANY = 1,
	}
	
	opencv_type_enum! { crate::text::erGrouping_Modes }
	
	/// Tesseract.OcrEngineMode Enumeration
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum ocr_engine_mode {
		OEM_TESSERACT_ONLY = 0,
		OEM_CUBE_ONLY = 1,
		OEM_TESSERACT_CUBE_COMBINED = 2,
		OEM_DEFAULT = 3,
	}
	
	opencv_type_enum! { crate::text::ocr_engine_mode }
	
	/// Tesseract.PageSegMode Enumeration
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum page_seg_mode {
		PSM_OSD_ONLY = 0,
		PSM_AUTO_OSD = 1,
		PSM_AUTO_ONLY = 2,
		PSM_AUTO = 3,
		PSM_SINGLE_COLUMN = 4,
		PSM_SINGLE_BLOCK_VERT_TEXT = 5,
		PSM_SINGLE_BLOCK = 6,
		PSM_SINGLE_LINE = 7,
		PSM_SINGLE_WORD = 8,
		PSM_CIRCLE_WORD = 9,
		PSM_SINGLE_CHAR = 10,
	}
	
	opencv_type_enum! { crate::text::page_seg_mode }
	
	/// Converts MSER contours (vector\<Point\>) to ERStat regions.
	/// 
	/// ## Parameters
	/// * image: Source image CV_8UC1 from which the MSERs where extracted.
	/// 
	/// * contours: Input vector with all the contours (vector\<Point\>).
	/// 
	/// * regions: Output where the ERStat regions are stored.
	/// 
	/// It takes as input the contours provided by the OpenCV MSER feature detector and returns as output
	/// two vectors of ERStats. This is because MSER() output contains both MSER+ and MSER- regions in a
	/// single vector\<Point\>, the function separates them in two different vectors (this is as if the
	/// ERStats where extracted from two different channels).
	/// 
	/// An example of MSERsToERStats in use can be found in the text detection webcam_demo:
	/// <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/webcam_demo.cpp>
	#[inline]
	pub fn mse_rs_to_er_stats(image: &impl core::ToInputArray, contours: &mut core::Vector<core::Vector<core::Point>>, regions: &mut core::Vector<core::Vector<crate::text::ERStat>>) -> Result<()> {
		input_array_arg!(image);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_MSERsToERStats_const__InputArrayR_vectorLvectorLPointGGR_vectorLvectorLERStatGGR(image.as_raw__InputArray(), contours.as_raw_mut_VectorOfVectorOfPoint(), regions.as_raw_mut_VectorOfVectorOfERStat(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Compute the different channels to be processed independently in the N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12).
	/// 
	/// ## Parameters
	/// * _src: Source image. Must be RGB CV_8UC3.
	/// 
	/// * _channels: Output vector\<Mat\> where computed channels are stored.
	/// 
	/// * _mode: Mode of operation. Currently the only available options are:
	/// **ERFILTER_NM_RGBLGrad** (used by default) and **ERFILTER_NM_IHSGrad**.
	/// 
	/// In N&M algorithm, the combination of intensity (I), hue (H), saturation (S), and gradient magnitude
	/// channels (Grad) are used in order to obtain high localization recall. This implementation also
	/// provides an alternative combination of red (R), green (G), blue (B), lightness (L), and gradient
	/// magnitude (Grad).
	/// 
	/// ## C++ default parameters
	/// * _mode: ERFILTER_NM_RGBLGrad
	#[inline]
	pub fn compute_nm_channels(_src: &impl core::ToInputArray, _channels: &mut impl core::ToOutputArray, _mode: i32) -> Result<()> {
		input_array_arg!(_src);
		output_array_arg!(_channels);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_computeNMChannels_const__InputArrayR_const__OutputArrayR_int(_src.as_raw__InputArray(), _channels.as_raw__OutputArray(), _mode, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12).
	/// 
	/// ## Parameters
	/// * cb: :   Callback with the classifier. Default classifier can be implicitly load with function
	/// loadClassifierNM1, e.g. from file in samples/cpp/trained_classifierNM1.xml
	/// * thresholdDelta: :   Threshold step in subsequent thresholds when extracting the component tree
	/// * minArea: :   The minimum area (% of image size) allowed for retreived ER's
	/// * maxArea: :   The maximum area (% of image size) allowed for retreived ER's
	/// * minProbability: :   The minimum probability P(er|character) allowed for retreived ER's
	/// * nonMaxSuppression: :   Whenever non-maximum suppression is done over the branch probabilities
	/// * minProbabilityDiff: :   The minimum probability difference between local maxima and local minima ERs
	/// 
	/// The component tree of the image is extracted by a threshold increased step by step from 0 to 255,
	/// incrementally computable descriptors (aspect_ratio, compactness, number of holes, and number of
	/// horizontal crossings) are computed for each ER and used as features for a classifier which estimates
	/// the class-conditional probability P(er|character). The value of P(er|character) is tracked using the
	/// inclusion relation of ER across all thresholds and only the ERs which correspond to local maximum of
	/// the probability P(er|character) are selected (if the local maximum of the probability is above a
	/// global limit pmin and the difference between local maximum and local minimum is greater than
	/// minProbabilityDiff).
	/// 
	/// ## C++ default parameters
	/// * threshold_delta: 1
	/// * min_area: (float)0.00025
	/// * max_area: (float)0.13
	/// * min_probability: (float)0.4
	/// * non_max_suppression: true
	/// * min_probability_diff: (float)0.1
	#[inline]
	pub fn create_er_filter_nm1(cb: &core::Ptr<crate::text::ERFilter_Callback>, threshold_delta: i32, min_area: f32, max_area: f32, min_probability: f32, non_max_suppression: bool, min_probability_diff: f32) -> Result<core::Ptr<crate::text::ERFilter>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_createERFilterNM1_const_PtrLCallbackGR_int_float_float_float_bool_float(cb.as_raw_PtrOfERFilter_Callback(), threshold_delta, min_area, max_area, min_probability, non_max_suppression, min_probability_diff, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::ERFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm
	///    from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml
	/// 
	/// Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12).
	/// 
	/// ## Parameters
	/// * cb: :   Callback with the classifier. Default classifier can be implicitly load with function
	/// loadClassifierNM1, e.g. from file in samples/cpp/trained_classifierNM1.xml
	/// * thresholdDelta: :   Threshold step in subsequent thresholds when extracting the component tree
	/// * minArea: :   The minimum area (% of image size) allowed for retreived ER's
	/// * maxArea: :   The maximum area (% of image size) allowed for retreived ER's
	/// * minProbability: :   The minimum probability P(er|character) allowed for retreived ER's
	/// * nonMaxSuppression: :   Whenever non-maximum suppression is done over the branch probabilities
	/// * minProbabilityDiff: :   The minimum probability difference between local maxima and local minima ERs
	/// 
	/// The component tree of the image is extracted by a threshold increased step by step from 0 to 255,
	/// incrementally computable descriptors (aspect_ratio, compactness, number of holes, and number of
	/// horizontal crossings) are computed for each ER and used as features for a classifier which estimates
	/// the class-conditional probability P(er|character). The value of P(er|character) is tracked using the
	/// inclusion relation of ER across all thresholds and only the ERs which correspond to local maximum of
	/// the probability P(er|character) are selected (if the local maximum of the probability is above a
	/// global limit pmin and the difference between local maximum and local minimum is greater than
	/// minProbabilityDiff).
	/// 
	/// ## Overloaded parameters
	/// 
	/// ## C++ default parameters
	/// * threshold_delta: 1
	/// * min_area: (float)0.00025
	/// * max_area: (float)0.13
	/// * min_probability: (float)0.4
	/// * non_max_suppression: true
	/// * min_probability_diff: (float)0.1
	#[inline]
	pub fn create_er_filter_nm1_from_file(filename: &str, threshold_delta: i32, min_area: f32, max_area: f32, min_probability: f32, non_max_suppression: bool, min_probability_diff: f32) -> Result<core::Ptr<crate::text::ERFilter>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_createERFilterNM1_const_StringR_int_float_float_float_bool_float(filename.opencv_as_extern(), threshold_delta, min_area, max_area, min_probability, non_max_suppression, min_probability_diff, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::ERFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12).
	/// 
	/// ## Parameters
	/// * cb: :   Callback with the classifier. Default classifier can be implicitly load with function
	/// loadClassifierNM2, e.g. from file in samples/cpp/trained_classifierNM2.xml
	/// * minProbability: :   The minimum probability P(er|character) allowed for retreived ER's
	/// 
	/// In the second stage, the ERs that passed the first stage are classified into character and
	/// non-character classes using more informative but also more computationally expensive features. The
	/// classifier uses all the features calculated in the first stage and the following additional
	/// features: hole area ratio, convex hull ratio, and number of outer inflexion points.
	/// 
	/// ## C++ default parameters
	/// * min_probability: (float)0.3
	#[inline]
	pub fn create_er_filter_nm2(cb: &core::Ptr<crate::text::ERFilter_Callback>, min_probability: f32) -> Result<core::Ptr<crate::text::ERFilter>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_createERFilterNM2_const_PtrLCallbackGR_float(cb.as_raw_PtrOfERFilter_Callback(), min_probability, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::ERFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
	///    from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml
	/// 
	/// Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12).
	/// 
	/// ## Parameters
	/// * cb: :   Callback with the classifier. Default classifier can be implicitly load with function
	/// loadClassifierNM2, e.g. from file in samples/cpp/trained_classifierNM2.xml
	/// * minProbability: :   The minimum probability P(er|character) allowed for retreived ER's
	/// 
	/// In the second stage, the ERs that passed the first stage are classified into character and
	/// non-character classes using more informative but also more computationally expensive features. The
	/// classifier uses all the features calculated in the first stage and the following additional
	/// features: hole area ratio, convex hull ratio, and number of outer inflexion points.
	/// 
	/// ## Overloaded parameters
	/// 
	/// ## C++ default parameters
	/// * min_probability: (float)0.3
	#[inline]
	pub fn create_er_filter_nm2_from_file(filename: &str, min_probability: f32) -> Result<core::Ptr<crate::text::ERFilter>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_createERFilterNM2_const_StringR_float(filename.opencv_as_extern(), min_probability, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::ERFilter>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	pub fn create_ocrhmm_transitions_table_1(vocabulary: &str, lexicon: &mut core::Vector<String>) -> Result<core::Mat> {
		extern_container_arg!(vocabulary);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_createOCRHMMTransitionsTable_const_StringR_vectorLStringGR(vocabulary.opencv_as_extern(), lexicon.as_raw_mut_VectorOfString(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Utility function to create a tailored language model transitions table from a given list of words (lexicon).
	/// 
	/// ## Parameters
	/// * vocabulary: The language vocabulary (chars when ASCII English text).
	/// 
	/// * lexicon: The list of words that are expected to be found in a particular image.
	/// 
	/// * transition_probabilities_table: Output table with transition probabilities between character pairs. cols == rows == vocabulary.size().
	/// 
	/// The function calculate frequency statistics of character pairs from the given lexicon and fills the output transition_probabilities_table with them. The transition_probabilities_table can be used as input in the OCRHMMDecoder::create() and OCRBeamSearchDecoder::create() methods.
	/// 
	/// Note:
	///    *   (C++) An alternative would be to load the default generic language transition table provided in the text module samples folder (created from ispell 42869 english words list) :
	///            <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/OCRHMM_transitions_table.xml>
	#[inline]
	pub fn create_ocrhmm_transitions_table(vocabulary: &mut String, lexicon: &mut core::Vector<String>, transition_probabilities_table: &mut impl core::ToOutputArray) -> Result<()> {
		string_arg_output_send!(via vocabulary_via);
		output_array_arg!(transition_probabilities_table);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_createOCRHMMTransitionsTable_stringR_vectorLstringGR_const__OutputArrayR(&mut vocabulary_via, lexicon.as_raw_mut_VectorOfString(), transition_probabilities_table.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		string_arg_output_receive!(vocabulary_via => vocabulary);
		Ok(ret)
	}
	
	/// Extracts text regions from image.
	/// 
	/// ## Parameters
	/// * image: Source image where text blocks needs to be extracted from.  Should be CV_8UC3 (color).
	/// * er_filter1: Extremal Region Filter for the 1st stage classifier of N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12)
	/// * er_filter2: Extremal Region Filter for the 2nd stage classifier of N&M algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12)
	/// * groups_rects: Output list of rectangle blocks with text
	/// * method: Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ, ERGROUPING_ORIENTATION_ANY.
	/// * filename: The XML or YAML file with the classifier model (e.g. samples/trained_classifier_erGrouping.xml). Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.
	/// * minProbability: The minimum probability for accepting a group. Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.
	/// 
	/// ## C++ default parameters
	/// * method: ERGROUPING_ORIENTATION_HORIZ
	/// * filename: String()
	/// * min_probability: (float)0.5
	#[inline]
	pub fn detect_regions_from_file(image: &impl core::ToInputArray, er_filter1: &core::Ptr<crate::text::ERFilter>, er_filter2: &core::Ptr<crate::text::ERFilter>, groups_rects: &mut core::Vector<core::Rect>, method: i32, filename: &str, min_probability: f32) -> Result<()> {
		input_array_arg!(image);
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_detectRegions_const__InputArrayR_const_PtrLERFilterGR_const_PtrLERFilterGR_vectorLRectGR_int_const_StringR_float(image.as_raw__InputArray(), er_filter1.as_raw_PtrOfERFilter(), er_filter2.as_raw_PtrOfERFilter(), groups_rects.as_raw_mut_VectorOfRect(), method, filename.opencv_as_extern(), min_probability, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	pub fn detect_regions(image: &impl core::ToInputArray, er_filter1: &core::Ptr<crate::text::ERFilter>, er_filter2: &core::Ptr<crate::text::ERFilter>, regions: &mut core::Vector<core::Vector<core::Point>>) -> Result<()> {
		input_array_arg!(image);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_detectRegions_const__InputArrayR_const_PtrLERFilterGR_const_PtrLERFilterGR_vectorLvectorLPointGGR(image.as_raw__InputArray(), er_filter1.as_raw_PtrOfERFilter(), er_filter2.as_raw_PtrOfERFilter(), regions.as_raw_mut_VectorOfVectorOfPoint(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Applies the Stroke Width Transform operator followed by filtering of connected components of similar Stroke Widths to return letter candidates. It also chain them by proximity and size, saving the result in chainBBs.
	/// ## Parameters
	/// * input: the input image with 3 channels.
	/// * result: a vector of resulting bounding boxes where probability of finding text is high
	/// * dark_on_light: a boolean value signifying whether the text is darker or lighter than the background, it is observed to reverse the gradient obtained from Scharr operator, and significantly affect the result.
	/// * draw: an optional Mat of type CV_8UC3 which visualises the detected letters using bounding boxes.
	/// * chainBBs: an optional parameter which chains the letter candidates according to heuristics in the paper and returns all possible regions where text is likely to occur.
	/// 
	/// ## C++ default parameters
	/// * draw: noArray()
	/// * chain_b_bs: noArray()
	#[inline]
	pub fn detect_text_swt(input: &impl core::ToInputArray, result: &mut core::Vector<core::Rect>, dark_on_light: bool, draw: &mut impl core::ToOutputArray, chain_b_bs: &mut impl core::ToOutputArray) -> Result<()> {
		input_array_arg!(input);
		output_array_arg!(draw);
		output_array_arg!(chain_b_bs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_detectTextSWT_const__InputArrayR_vectorLRectGR_bool_const__OutputArrayR_const__OutputArrayR(input.as_raw__InputArray(), result.as_raw_mut_VectorOfRect(), dark_on_light, draw.as_raw__OutputArray(), chain_b_bs.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Find groups of Extremal Regions that are organized as text blocks.
	/// 
	/// ## Parameters
	/// * img: Original RGB or Greyscale image from wich the regions were extracted.
	/// 
	/// * channels: Vector of single channel images CV_8UC1 from wich the regions were extracted.
	/// 
	/// * regions: Vector of ER's retrieved from the ERFilter algorithm from each channel.
	/// 
	/// * groups: The output of the algorithm is stored in this parameter as set of lists of indexes to
	/// provided regions.
	/// 
	/// * groups_rects: The output of the algorithm are stored in this parameter as list of rectangles.
	/// 
	/// * method: Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ,
	/// ERGROUPING_ORIENTATION_ANY.
	/// 
	/// * filename: The XML or YAML file with the classifier model (e.g.
	/// samples/trained_classifier_erGrouping.xml). Only to use when grouping method is
	/// ERGROUPING_ORIENTATION_ANY.
	/// 
	/// * minProbablity: The minimum probability for accepting a group. Only to use when grouping
	/// method is ERGROUPING_ORIENTATION_ANY.
	/// 
	/// ## C++ default parameters
	/// * method: ERGROUPING_ORIENTATION_HORIZ
	/// * filename: std::string()
	/// * min_probablity: 0.5
	#[inline]
	pub fn er_grouping(img: &impl core::ToInputArray, channels: &impl core::ToInputArray, regions: &mut core::Vector<core::Vector<crate::text::ERStat>>, groups: &mut core::Vector<core::Vector<core::Vec2i>>, groups_rects: &mut core::Vector<core::Rect>, method: i32, filename: &str, min_probablity: f32) -> Result<()> {
		input_array_arg!(img);
		input_array_arg!(channels);
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_erGrouping_const__InputArrayR_const__InputArrayR_vectorLvectorLERStatGGR_vectorLvectorLVec2iGGR_vectorLRectGR_int_const_stringR_float(img.as_raw__InputArray(), channels.as_raw__InputArray(), regions.as_raw_mut_VectorOfVectorOfERStat(), groups.as_raw_mut_VectorOfVectorOfVec2i(), groups_rects.as_raw_mut_VectorOfRect(), method, filename.opencv_as_extern(), min_probablity, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * method: ERGROUPING_ORIENTATION_HORIZ
	/// * filename: String()
	/// * min_probablity: (float)0.5
	#[inline]
	pub fn er_grouping_1(image: &impl core::ToInputArray, channel: &impl core::ToInputArray, mut regions: core::Vector<core::Vector<core::Point>>, groups_rects: &mut core::Vector<core::Rect>, method: i32, filename: &str, min_probablity: f32) -> Result<()> {
		input_array_arg!(image);
		input_array_arg!(channel);
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_erGrouping_const__InputArrayR_const__InputArrayR_vectorLvectorLPointGG_vectorLRectGR_int_const_StringR_float(image.as_raw__InputArray(), channel.as_raw__InputArray(), regions.as_raw_mut_VectorOfVectorOfPoint(), groups_rects.as_raw_mut_VectorOfRect(), method, filename.opencv_as_extern(), min_probablity, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Allow to implicitly load the default classifier when creating an ERFilter object.
	/// 
	/// ## Parameters
	/// * filename: The XML or YAML file with the classifier model (e.g. trained_classifierNM1.xml)
	/// 
	/// returns a pointer to ERFilter::Callback.
	#[inline]
	pub fn load_classifier_nm1(filename: &str) -> Result<core::Ptr<crate::text::ERFilter_Callback>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_loadClassifierNM1_const_StringR(filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::ERFilter_Callback>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Allow to implicitly load the default classifier when creating an ERFilter object.
	/// 
	/// ## Parameters
	/// * filename: The XML or YAML file with the classifier model (e.g. trained_classifierNM2.xml)
	/// 
	/// returns a pointer to ERFilter::Callback.
	#[inline]
	pub fn load_classifier_nm2(filename: &str) -> Result<core::Ptr<crate::text::ERFilter_Callback>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_loadClassifierNM2_const_StringR(filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::ERFilter_Callback>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Allow to implicitly load the default character classifier when creating an OCRBeamSearchDecoder object.
	/// 
	/// ## Parameters
	/// * filename: The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz)
	/// 
	/// The CNN default classifier is based in the scene text recognition method proposed by Adam Coates &
	/// Andrew NG in [Coates11a]. The character classifier consists in a Single Layer Convolutional Neural Network and
	/// a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions
	/// at each window location.
	#[inline]
	pub fn load_ocr_beam_search_classifier_cnn(filename: &str) -> Result<core::Ptr<crate::text::OCRBeamSearchDecoder_ClassifierCallback>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_loadOCRBeamSearchClassifierCNN_const_StringR(filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::OCRBeamSearchDecoder_ClassifierCallback>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
	/// 
	/// ## Parameters
	/// * filename: The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz)
	/// 
	/// The CNN default classifier is based in the scene text recognition method proposed by Adam Coates &
	/// Andrew NG in [Coates11a]. The character classifier consists in a Single Layer Convolutional Neural Network and
	/// a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions
	/// at each window location.
	/// 
	/// 
	/// **Deprecated**: use loadOCRHMMClassifier instead
	#[deprecated = "use loadOCRHMMClassifier instead"]
	#[inline]
	pub fn load_ocrhmm_classifier_cnn(filename: &str) -> Result<core::Ptr<crate::text::OCRHMMDecoder_ClassifierCallback>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_loadOCRHMMClassifierCNN_const_StringR(filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::OCRHMMDecoder_ClassifierCallback>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
	/// 
	/// ## Parameters
	/// * filename: The XML or YAML file with the classifier model (e.g. OCRHMM_knn_model_data.xml)
	/// 
	/// The KNN default classifier is based in the scene text recognition method proposed by Lukás Neumann &
	/// Jiri Matas in [Neumann11b]. Basically, the region (contour) in the input image is normalized to a
	/// fixed size, while retaining the centroid and aspect ratio, in order to extract a feature vector
	/// based on gradient orientations along the chain-code of its perimeter. Then, the region is classified
	/// using a KNN model trained with synthetic data of rendered characters with different standard font
	/// types.
	/// 
	/// 
	/// **Deprecated**: loadOCRHMMClassifier instead
	#[deprecated = "loadOCRHMMClassifier instead"]
	#[inline]
	pub fn load_ocrhmm_classifier_nm(filename: &str) -> Result<core::Ptr<crate::text::OCRHMMDecoder_ClassifierCallback>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_loadOCRHMMClassifierNM_const_StringR(filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::OCRHMMDecoder_ClassifierCallback>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
	/// 
	/// ## Parameters
	/// * filename: The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz)
	/// 
	/// * classifier: Can be one of classifier_type enum values.
	#[inline]
	pub fn load_ocrhmm_classifier(filename: &str, classifier: i32) -> Result<core::Ptr<crate::text::OCRHMMDecoder_ClassifierCallback>> {
		extern_container_arg!(filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_text_loadOCRHMMClassifier_const_StringR_int(filename.opencv_as_extern(), classifier, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::text::OCRHMMDecoder_ClassifierCallback>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Constant methods for [crate::text::BaseOCR]
	pub trait BaseOCRTraitConst {
		fn as_raw_BaseOCR(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::BaseOCR]
	pub trait BaseOCRTrait: crate::text::BaseOCRTraitConst {
		fn as_raw_mut_BaseOCR(&mut self) -> *mut c_void;
	
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run(&mut self, image: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_BaseOCR_run_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_BaseOCR(), image.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_mask(&mut self, image: &mut core::Mat, mask: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_BaseOCR_run_MatR_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_BaseOCR(), image.as_raw_mut_Mat(), mask.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
	}
	
	pub struct BaseOCR {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { BaseOCR }
	
	impl Drop for BaseOCR {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_BaseOCR_delete(instance: *mut c_void); }
			unsafe { cv_BaseOCR_delete(self.as_raw_mut_BaseOCR()) };
		}
	}
	
	unsafe impl Send for BaseOCR {}
	
	impl crate::text::BaseOCRTraitConst for BaseOCR {
		#[inline] fn as_raw_BaseOCR(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::BaseOCRTrait for BaseOCR {
		#[inline] fn as_raw_mut_BaseOCR(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl BaseOCR {
	}
	
	boxed_cast_descendant! { BaseOCR, crate::text::OCRBeamSearchDecoder, cv_BaseOCR_to_OCRBeamSearchDecoder }
	
	boxed_cast_descendant! { BaseOCR, crate::text::OCRHMMDecoder, cv_BaseOCR_to_OCRHMMDecoder }
	
	/// Constant methods for [crate::text::ERFilter]
	pub trait ERFilterTraitConst: core::AlgorithmTraitConst {
		fn as_raw_ERFilter(&self) -> *const c_void;
	
		#[inline]
		fn get_num_rejected(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_getNumRejected_const(self.as_raw_ERFilter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::text::ERFilter]
	pub trait ERFilterTrait: core::AlgorithmTrait + crate::text::ERFilterTraitConst {
		fn as_raw_mut_ERFilter(&mut self) -> *mut c_void;
	
		/// The key method of ERFilter algorithm.
		/// 
		/// Takes image on input and returns the selected regions in a vector of ERStat only distinctive
		/// ERs which correspond to characters are selected by a sequential classifier
		/// 
		/// ## Parameters
		/// * image: Single channel image CV_8UC1
		/// 
		/// * regions: Output for the 1st stage and Input/Output for the 2nd. The selected Extremal Regions
		/// are stored here.
		/// 
		/// Extracts the component tree (if needed) and filter the extremal regions (ER's) by using a given
		/// classifier.
		#[inline]
		fn run(&mut self, image: &impl core::ToInputArray, regions: &mut core::Vector<crate::text::ERStat>) -> Result<()> {
			input_array_arg!(image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_run_const__InputArrayR_vectorLERStatGR(self.as_raw_mut_ERFilter(), image.as_raw__InputArray(), regions.as_raw_mut_VectorOfERStat(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// set/get methods to set the algorithm properties,
		#[inline]
		fn set_callback(&mut self, cb: &core::Ptr<crate::text::ERFilter_Callback>) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setCallback_const_PtrLCallbackGR(self.as_raw_mut_ERFilter(), cb.as_raw_PtrOfERFilter_Callback(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_threshold_delta(&mut self, threshold_delta: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setThresholdDelta_int(self.as_raw_mut_ERFilter(), threshold_delta, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_min_area(&mut self, min_area: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setMinArea_float(self.as_raw_mut_ERFilter(), min_area, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_max_area(&mut self, max_area: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setMaxArea_float(self.as_raw_mut_ERFilter(), max_area, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_min_probability(&mut self, min_probability: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setMinProbability_float(self.as_raw_mut_ERFilter(), min_probability, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_min_probability_diff(&mut self, min_probability_diff: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setMinProbabilityDiff_float(self.as_raw_mut_ERFilter(), min_probability_diff, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_non_max_suppression(&mut self, non_max_suppression: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_setNonMaxSuppression_bool(self.as_raw_mut_ERFilter(), non_max_suppression, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Base class for 1st and 2nd stages of Neumann and Matas scene text detection algorithm [Neumann12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Neumann12). :
	/// 
	/// Extracts the component tree (if needed) and filter the extremal regions (ER's) by using a given classifier.
	pub struct ERFilter {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { ERFilter }
	
	impl Drop for ERFilter {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_ERFilter_delete(instance: *mut c_void); }
			unsafe { cv_ERFilter_delete(self.as_raw_mut_ERFilter()) };
		}
	}
	
	unsafe impl Send for ERFilter {}
	
	impl core::AlgorithmTraitConst for ERFilter {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for ERFilter {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::text::ERFilterTraitConst for ERFilter {
		#[inline] fn as_raw_ERFilter(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::ERFilterTrait for ERFilter {
		#[inline] fn as_raw_mut_ERFilter(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl ERFilter {
	}
	
	boxed_cast_base! { ERFilter, core::Algorithm, cv_ERFilter_to_Algorithm }
	
	/// Constant methods for [crate::text::ERFilter_Callback]
	pub trait ERFilter_CallbackTraitConst {
		fn as_raw_ERFilter_Callback(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::ERFilter_Callback]
	pub trait ERFilter_CallbackTrait: crate::text::ERFilter_CallbackTraitConst {
		fn as_raw_mut_ERFilter_Callback(&mut self) -> *mut c_void;
	
		/// The classifier must return probability measure for the region.
		/// 
		/// ## Parameters
		/// * stat: :   The region to be classified
		#[inline]
		fn eval(&mut self, stat: &crate::text::ERStat) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERFilter_Callback_eval_const_ERStatR(self.as_raw_mut_ERFilter_Callback(), stat.as_raw_ERStat(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Callback with the classifier is made a class.
	/// 
	/// By doing it we hide SVM, Boost etc. Developers can provide their own classifiers to the
	/// ERFilter algorithm.
	pub struct ERFilter_Callback {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { ERFilter_Callback }
	
	impl Drop for ERFilter_Callback {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_ERFilter_Callback_delete(instance: *mut c_void); }
			unsafe { cv_ERFilter_Callback_delete(self.as_raw_mut_ERFilter_Callback()) };
		}
	}
	
	unsafe impl Send for ERFilter_Callback {}
	
	impl crate::text::ERFilter_CallbackTraitConst for ERFilter_Callback {
		#[inline] fn as_raw_ERFilter_Callback(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::ERFilter_CallbackTrait for ERFilter_Callback {
		#[inline] fn as_raw_mut_ERFilter_Callback(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl ERFilter_Callback {
	}
	
	/// Constant methods for [crate::text::ERStat]
	pub trait ERStatTraitConst {
		fn as_raw_ERStat(&self) -> *const c_void;
	
		/// seed point and the threshold (max grey-level value)
		#[inline]
		fn pixel(&self) -> i32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropPixel_const(self.as_raw_ERStat()) };
			ret
		}
		
		#[inline]
		fn level(&self) -> i32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropLevel_const(self.as_raw_ERStat()) };
			ret
		}
		
		/// incrementally computable features
		#[inline]
		fn area(&self) -> i32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropArea_const(self.as_raw_ERStat()) };
			ret
		}
		
		#[inline]
		fn perimeter(&self) -> i32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropPerimeter_const(self.as_raw_ERStat()) };
			ret
		}
		
		/// Euler's number
		#[inline]
		fn euler(&self) -> i32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropEuler_const(self.as_raw_ERStat()) };
			ret
		}
		
		#[inline]
		fn rect(&self) -> core::Rect {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERStat_getPropRect_const(self.as_raw_ERStat(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			ret
		}
		
		/// median of the crossings at three different height levels
		#[inline]
		fn med_crossings(&self) -> f32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropMed_crossings_const(self.as_raw_ERStat()) };
			ret
		}
		
		/// 2nd stage features
		#[inline]
		fn hole_area_ratio(&self) -> f32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropHole_area_ratio_const(self.as_raw_ERStat()) };
			ret
		}
		
		#[inline]
		fn convex_hull_ratio(&self) -> f32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropConvex_hull_ratio_const(self.as_raw_ERStat()) };
			ret
		}
		
		#[inline]
		fn num_inflexion_points(&self) -> f32 {
			let ret = unsafe { sys::cv_text_ERStat_getPropNum_inflexion_points_const(self.as_raw_ERStat()) };
			ret
		}
		
		/// probability that the ER belongs to the class we are looking for
		#[inline]
		fn probability(&self) -> f64 {
			let ret = unsafe { sys::cv_text_ERStat_getPropProbability_const(self.as_raw_ERStat()) };
			ret
		}
		
		/// whenever the regions is a local maxima of the probability
		#[inline]
		fn local_maxima(&self) -> bool {
			let ret = unsafe { sys::cv_text_ERStat_getPropLocal_maxima_const(self.as_raw_ERStat()) };
			ret
		}
		
	}
	
	/// Mutable methods for [crate::text::ERStat]
	pub trait ERStatTrait: crate::text::ERStatTraitConst {
		fn as_raw_mut_ERStat(&mut self) -> *mut c_void;
	
		/// seed point and the threshold (max grey-level value)
		#[inline]
		fn set_pixel(&mut self, val: i32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropPixel_int(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		#[inline]
		fn set_level(&mut self, val: i32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropLevel_int(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		/// incrementally computable features
		#[inline]
		fn set_area(&mut self, val: i32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropArea_int(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		#[inline]
		fn set_perimeter(&mut self, val: i32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropPerimeter_int(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		/// Euler's number
		#[inline]
		fn set_euler(&mut self, val: i32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropEuler_int(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		#[inline]
		fn set_rect(&mut self, val: core::Rect) {
			let ret = unsafe { sys::cv_text_ERStat_setPropRect_Rect(self.as_raw_mut_ERStat(), val.opencv_as_extern()) };
			ret
		}
		
		/// order 1 raw moments to derive the centroid
		#[inline]
		fn raw_moments(&mut self) -> &mut [f64; 2] {
			let ret = unsafe { sys::cv_text_ERStat_getPropRaw_moments(self.as_raw_mut_ERStat()) };
			let ret = unsafe { ret.as_mut() }.expect("Function returned null pointer");
			ret
		}
		
		/// order 2 central moments to construct the covariance matrix
		#[inline]
		fn central_moments(&mut self) -> &mut [f64; 3] {
			let ret = unsafe { sys::cv_text_ERStat_getPropCentral_moments(self.as_raw_mut_ERStat()) };
			let ret = unsafe { ret.as_mut() }.expect("Function returned null pointer");
			ret
		}
		
		/// median of the crossings at three different height levels
		#[inline]
		fn set_med_crossings(&mut self, val: f32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropMed_crossings_float(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		/// 2nd stage features
		#[inline]
		fn set_hole_area_ratio(&mut self, val: f32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropHole_area_ratio_float(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		#[inline]
		fn set_convex_hull_ratio(&mut self, val: f32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropConvex_hull_ratio_float(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		#[inline]
		fn set_num_inflexion_points(&mut self, val: f32) {
			let ret = unsafe { sys::cv_text_ERStat_setPropNum_inflexion_points_float(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		/// probability that the ER belongs to the class we are looking for
		#[inline]
		fn set_probability(&mut self, val: f64) {
			let ret = unsafe { sys::cv_text_ERStat_setPropProbability_double(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		/// pointers preserving the tree structure of the component tree
		#[inline]
		fn parent(&mut self) -> crate::text::ERStat {
			let ret = unsafe { sys::cv_text_ERStat_getPropParent(self.as_raw_mut_ERStat()) };
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			ret
		}
		
		/// pointers preserving the tree structure of the component tree
		#[inline]
		fn set_parent(&mut self, val: &mut crate::text::ERStat) {
			let ret = unsafe { sys::cv_text_ERStat_setPropParent_ERStatX(self.as_raw_mut_ERStat(), val.as_raw_mut_ERStat()) };
			ret
		}
		
		#[inline]
		fn child(&mut self) -> crate::text::ERStat {
			let ret = unsafe { sys::cv_text_ERStat_getPropChild(self.as_raw_mut_ERStat()) };
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			ret
		}
		
		#[inline]
		fn set_child(&mut self, val: &mut crate::text::ERStat) {
			let ret = unsafe { sys::cv_text_ERStat_setPropChild_ERStatX(self.as_raw_mut_ERStat(), val.as_raw_mut_ERStat()) };
			ret
		}
		
		#[inline]
		fn next(&mut self) -> crate::text::ERStat {
			let ret = unsafe { sys::cv_text_ERStat_getPropNext(self.as_raw_mut_ERStat()) };
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			ret
		}
		
		#[inline]
		fn set_next(&mut self, val: &mut crate::text::ERStat) {
			let ret = unsafe { sys::cv_text_ERStat_setPropNext_ERStatX(self.as_raw_mut_ERStat(), val.as_raw_mut_ERStat()) };
			ret
		}
		
		#[inline]
		fn prev(&mut self) -> crate::text::ERStat {
			let ret = unsafe { sys::cv_text_ERStat_getPropPrev(self.as_raw_mut_ERStat()) };
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			ret
		}
		
		#[inline]
		fn set_prev(&mut self, val: &mut crate::text::ERStat) {
			let ret = unsafe { sys::cv_text_ERStat_setPropPrev_ERStatX(self.as_raw_mut_ERStat(), val.as_raw_mut_ERStat()) };
			ret
		}
		
		/// whenever the regions is a local maxima of the probability
		#[inline]
		fn set_local_maxima(&mut self, val: bool) {
			let ret = unsafe { sys::cv_text_ERStat_setPropLocal_maxima_bool(self.as_raw_mut_ERStat(), val) };
			ret
		}
		
		#[inline]
		fn max_probability_ancestor(&mut self) -> crate::text::ERStat {
			let ret = unsafe { sys::cv_text_ERStat_getPropMax_probability_ancestor(self.as_raw_mut_ERStat()) };
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			ret
		}
		
		#[inline]
		fn set_max_probability_ancestor(&mut self, val: &mut crate::text::ERStat) {
			let ret = unsafe { sys::cv_text_ERStat_setPropMax_probability_ancestor_ERStatX(self.as_raw_mut_ERStat(), val.as_raw_mut_ERStat()) };
			ret
		}
		
		#[inline]
		fn min_probability_ancestor(&mut self) -> crate::text::ERStat {
			let ret = unsafe { sys::cv_text_ERStat_getPropMin_probability_ancestor(self.as_raw_mut_ERStat()) };
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			ret
		}
		
		#[inline]
		fn set_min_probability_ancestor(&mut self, val: &mut crate::text::ERStat) {
			let ret = unsafe { sys::cv_text_ERStat_setPropMin_probability_ancestor_ERStatX(self.as_raw_mut_ERStat(), val.as_raw_mut_ERStat()) };
			ret
		}
		
	}
	
	/// The ERStat structure represents a class-specific Extremal Region (ER).
	/// 
	/// An ER is a 4-connected set of pixels with all its grey-level values smaller than the values in its
	/// outer boundary. A class-specific ER is selected (using a classifier) from all the ER's in the
	/// component tree of the image. :
	pub struct ERStat {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { ERStat }
	
	impl Drop for ERStat {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_ERStat_delete(instance: *mut c_void); }
			unsafe { cv_ERStat_delete(self.as_raw_mut_ERStat()) };
		}
	}
	
	unsafe impl Send for ERStat {}
	
	impl crate::text::ERStatTraitConst for ERStat {
		#[inline] fn as_raw_ERStat(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::ERStatTrait for ERStat {
		#[inline] fn as_raw_mut_ERStat(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl ERStat {
		/// Constructor
		/// 
		/// ## C++ default parameters
		/// * level: 256
		/// * pixel: 0
		/// * x: 0
		/// * y: 0
		#[inline]
		pub fn new(level: i32, pixel: i32, x: i32, y: i32) -> Result<crate::text::ERStat> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_ERStat_ERStat_int_int_int_int(level, pixel, x, y, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::text::ERStat::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::text::OCRBeamSearchDecoder]
	pub trait OCRBeamSearchDecoderTraitConst: crate::text::BaseOCRTraitConst {
		fn as_raw_OCRBeamSearchDecoder(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::OCRBeamSearchDecoder]
	pub trait OCRBeamSearchDecoderTrait: crate::text::BaseOCRTrait + crate::text::OCRBeamSearchDecoderTraitConst {
		fn as_raw_mut_OCRBeamSearchDecoder(&mut self) -> *mut c_void;
	
		/// Recognize text using Beam Search.
		/// 
		/// Takes image on input and returns recognized text in the output_text parameter. Optionally
		/// provides also the Rects for individual text elements found (e.g. words), and the list of those
		/// text elements with their confidence values.
		/// 
		/// ## Parameters
		/// * image: Input binary image CV_8UC1 with a single text line (or word).
		/// 
		/// * output_text: Output text. Most likely character sequence found by the HMM decoder.
		/// 
		/// * component_rects: If provided the method will output a list of Rects for the individual
		/// text elements found (e.g. words).
		/// 
		/// * component_texts: If provided the method will output a list of text strings for the
		/// recognition of individual text elements found (e.g. words).
		/// 
		/// * component_confidences: If provided the method will output a list of confidence values
		/// for the recognition of individual text elements found (e.g. words).
		/// 
		/// * component_level: Only OCR_LEVEL_WORD is supported.
		/// 
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_multiple(&mut self, image: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_run_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRBeamSearchDecoder(), image.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_multiple_mask(&mut self, image: &mut core::Mat, mask: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_run_MatR_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRBeamSearchDecoder(), image.as_raw_mut_Mat(), mask.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_level: 0
		#[inline]
		fn run(&mut self, image: &impl core::ToInputArray, min_confidence: i32, component_level: i32) -> Result<String> {
			input_array_arg!(image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_run_const__InputArrayR_int_int(self.as_raw_mut_OCRBeamSearchDecoder(), image.as_raw__InputArray(), min_confidence, component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { String::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_level: 0
		#[inline]
		fn run_mask(&mut self, image: &impl core::ToInputArray, mask: &impl core::ToInputArray, min_confidence: i32, component_level: i32) -> Result<String> {
			input_array_arg!(image);
			input_array_arg!(mask);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_run_const__InputArrayR_const__InputArrayR_int_int(self.as_raw_mut_OCRBeamSearchDecoder(), image.as_raw__InputArray(), mask.as_raw__InputArray(), min_confidence, component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { String::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// OCRBeamSearchDecoder class provides an interface for OCR using Beam Search algorithm.
	/// 
	/// 
	/// Note:
	///    *   (C++) An example on using OCRBeamSearchDecoder recognition combined with scene text detection can
	///        be found at the demo sample:
	///        <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/word_recognition.cpp>
	pub struct OCRBeamSearchDecoder {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { OCRBeamSearchDecoder }
	
	impl Drop for OCRBeamSearchDecoder {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_OCRBeamSearchDecoder_delete(instance: *mut c_void); }
			unsafe { cv_OCRBeamSearchDecoder_delete(self.as_raw_mut_OCRBeamSearchDecoder()) };
		}
	}
	
	unsafe impl Send for OCRBeamSearchDecoder {}
	
	impl crate::text::BaseOCRTraitConst for OCRBeamSearchDecoder {
		#[inline] fn as_raw_BaseOCR(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::BaseOCRTrait for OCRBeamSearchDecoder {
		#[inline] fn as_raw_mut_BaseOCR(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::text::OCRBeamSearchDecoderTraitConst for OCRBeamSearchDecoder {
		#[inline] fn as_raw_OCRBeamSearchDecoder(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::OCRBeamSearchDecoderTrait for OCRBeamSearchDecoder {
		#[inline] fn as_raw_mut_OCRBeamSearchDecoder(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl OCRBeamSearchDecoder {
		/// Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.
		/// 
		/// ## Parameters
		/// * classifier: The character classifier with built in feature extractor.
		/// 
		/// * vocabulary: The language vocabulary (chars when ASCII English text). vocabulary.size()
		/// must be equal to the number of classes of the classifier.
		/// 
		/// * transition_probabilities_table: Table with transition probabilities between character
		/// pairs. cols == rows == vocabulary.size().
		/// 
		/// * emission_probabilities_table: Table with observation emission probabilities. cols ==
		/// rows == vocabulary.size().
		/// 
		/// * mode: HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
		/// (<http://en.wikipedia.org/wiki/Viterbi_algorithm>).
		/// 
		/// * beam_size: Size of the beam in Beam Search algorithm.
		/// 
		/// ## C++ default parameters
		/// * mode: OCR_DECODER_VITERBI
		/// * beam_size: 500
		#[inline]
		pub fn create(classifier: core::Ptr<crate::text::OCRBeamSearchDecoder_ClassifierCallback>, vocabulary: &str, transition_probabilities_table: &impl core::ToInputArray, emission_probabilities_table: &impl core::ToInputArray, mode: crate::text::decoder_mode, beam_size: i32) -> Result<core::Ptr<crate::text::OCRBeamSearchDecoder>> {
			extern_container_arg!(vocabulary);
			input_array_arg!(transition_probabilities_table);
			input_array_arg!(emission_probabilities_table);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_create_const_PtrLClassifierCallbackG_const_stringR_const__InputArrayR_const__InputArrayR_decoder_mode_int(classifier.as_raw_PtrOfOCRBeamSearchDecoder_ClassifierCallback(), vocabulary.opencv_as_extern(), transition_probabilities_table.as_raw__InputArray(), emission_probabilities_table.as_raw__InputArray(), mode, beam_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::OCRBeamSearchDecoder>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder from the specified path.
		/// 
		///    Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.
		/// 
		/// ## Parameters
		/// * classifier: The character classifier with built in feature extractor.
		/// 
		/// * vocabulary: The language vocabulary (chars when ASCII English text). vocabulary.size()
		/// must be equal to the number of classes of the classifier.
		/// 
		/// * transition_probabilities_table: Table with transition probabilities between character
		/// pairs. cols == rows == vocabulary.size().
		/// 
		/// * emission_probabilities_table: Table with observation emission probabilities. cols ==
		/// rows == vocabulary.size().
		/// 
		/// * mode: HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
		/// (<http://en.wikipedia.org/wiki/Viterbi_algorithm>).
		/// 
		/// * beam_size: Size of the beam in Beam Search algorithm.
		/// 
		/// ## Overloaded parameters
		/// 
		/// ## C++ default parameters
		/// * mode: OCR_DECODER_VITERBI
		/// * beam_size: 500
		#[inline]
		pub fn create_from_file(filename: &str, vocabulary: &str, transition_probabilities_table: &impl core::ToInputArray, emission_probabilities_table: &impl core::ToInputArray, mode: crate::text::decoder_mode, beam_size: i32) -> Result<core::Ptr<crate::text::OCRBeamSearchDecoder>> {
			extern_container_arg!(filename);
			extern_container_arg!(vocabulary);
			input_array_arg!(transition_probabilities_table);
			input_array_arg!(emission_probabilities_table);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_create_const_StringR_const_StringR_const__InputArrayR_const__InputArrayR_decoder_mode_int(filename.opencv_as_extern(), vocabulary.opencv_as_extern(), transition_probabilities_table.as_raw__InputArray(), emission_probabilities_table.as_raw__InputArray(), mode, beam_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::OCRBeamSearchDecoder>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::text::OCRBeamSearchDecoder_ClassifierCallback]
	pub trait OCRBeamSearchDecoder_ClassifierCallbackTraitConst {
		fn as_raw_OCRBeamSearchDecoder_ClassifierCallback(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::OCRBeamSearchDecoder_ClassifierCallback]
	pub trait OCRBeamSearchDecoder_ClassifierCallbackTrait: crate::text::OCRBeamSearchDecoder_ClassifierCallbackTraitConst {
		fn as_raw_mut_OCRBeamSearchDecoder_ClassifierCallback(&mut self) -> *mut c_void;
	
		/// The character classifier must return a (ranked list of) class(es) id('s)
		/// 
		/// ## Parameters
		/// * image: Input image CV_8UC1 or CV_8UC3 with a single letter.
		/// * recognition_probabilities: For each of the N characters found the classifier returns a list with
		/// class probabilities for each class.
		/// * oversegmentation: The classifier returns a list of N+1 character locations' x-coordinates,
		/// including 0 as start-sequence location.
		#[inline]
		fn eval(&mut self, image: &impl core::ToInputArray, recognition_probabilities: &mut core::Vector<core::Vector<f64>>, oversegmentation: &mut core::Vector<i32>) -> Result<()> {
			input_array_arg!(image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_ClassifierCallback_eval_const__InputArrayR_vectorLvectorLdoubleGGR_vectorLintGR(self.as_raw_mut_OCRBeamSearchDecoder_ClassifierCallback(), image.as_raw__InputArray(), recognition_probabilities.as_raw_mut_VectorOfVectorOff64(), oversegmentation.as_raw_mut_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_window_size(&mut self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_ClassifierCallback_getWindowSize(self.as_raw_mut_OCRBeamSearchDecoder_ClassifierCallback(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_step_size(&mut self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRBeamSearchDecoder_ClassifierCallback_getStepSize(self.as_raw_mut_OCRBeamSearchDecoder_ClassifierCallback(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Callback with the character classifier is made a class.
	/// 
	/// This way it hides the feature extractor and the classifier itself, so developers can write
	/// their own OCR code.
	/// 
	/// The default character classifier and feature extractor can be loaded using the utility function
	/// loadOCRBeamSearchClassifierCNN with all its parameters provided in
	/// <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/OCRBeamSearch_CNN_model_data.xml.gz>.
	pub struct OCRBeamSearchDecoder_ClassifierCallback {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { OCRBeamSearchDecoder_ClassifierCallback }
	
	impl Drop for OCRBeamSearchDecoder_ClassifierCallback {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_OCRBeamSearchDecoder_ClassifierCallback_delete(instance: *mut c_void); }
			unsafe { cv_OCRBeamSearchDecoder_ClassifierCallback_delete(self.as_raw_mut_OCRBeamSearchDecoder_ClassifierCallback()) };
		}
	}
	
	unsafe impl Send for OCRBeamSearchDecoder_ClassifierCallback {}
	
	impl crate::text::OCRBeamSearchDecoder_ClassifierCallbackTraitConst for OCRBeamSearchDecoder_ClassifierCallback {
		#[inline] fn as_raw_OCRBeamSearchDecoder_ClassifierCallback(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::OCRBeamSearchDecoder_ClassifierCallbackTrait for OCRBeamSearchDecoder_ClassifierCallback {
		#[inline] fn as_raw_mut_OCRBeamSearchDecoder_ClassifierCallback(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl OCRBeamSearchDecoder_ClassifierCallback {
	}
	
	/// Constant methods for [crate::text::OCRHMMDecoder]
	pub trait OCRHMMDecoderTraitConst: crate::text::BaseOCRTraitConst {
		fn as_raw_OCRHMMDecoder(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::OCRHMMDecoder]
	pub trait OCRHMMDecoderTrait: crate::text::BaseOCRTrait + crate::text::OCRHMMDecoderTraitConst {
		fn as_raw_mut_OCRHMMDecoder(&mut self) -> *mut c_void;
	
		/// Recognize text using HMM.
		/// 
		/// Takes binary image on input and returns recognized text in the output_text parameter. Optionally
		/// provides also the Rects for individual text elements found (e.g. words), and the list of those
		/// text elements with their confidence values.
		/// 
		/// ## Parameters
		/// * image: Input binary image CV_8UC1 with a single text line (or word).
		/// 
		/// * output_text: Output text. Most likely character sequence found by the HMM decoder.
		/// 
		/// * component_rects: If provided the method will output a list of Rects for the individual
		/// text elements found (e.g. words).
		/// 
		/// * component_texts: If provided the method will output a list of text strings for the
		/// recognition of individual text elements found (e.g. words).
		/// 
		/// * component_confidences: If provided the method will output a list of confidence values
		/// for the recognition of individual text elements found (e.g. words).
		/// 
		/// * component_level: Only OCR_LEVEL_WORD is supported.
		/// 
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_multiple(&mut self, image: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_run_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRHMMDecoder(), image.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// Recognize text using HMM.
		/// 
		/// Takes an image and a mask (where each connected component corresponds to a segmented character)
		/// on input and returns recognized text in the output_text parameter. Optionally
		/// provides also the Rects for individual text elements found (e.g. words), and the list of those
		/// text elements with their confidence values.
		/// 
		/// ## Parameters
		/// * image: Input image CV_8UC1 or CV_8UC3 with a single text line (or word).
		/// * mask: Input binary image CV_8UC1 same size as input image. Each connected component in mask corresponds to a segmented character in the input image.
		/// 
		/// * output_text: Output text. Most likely character sequence found by the HMM decoder.
		/// 
		/// * component_rects: If provided the method will output a list of Rects for the individual
		/// text elements found (e.g. words).
		/// 
		/// * component_texts: If provided the method will output a list of text strings for the
		/// recognition of individual text elements found (e.g. words).
		/// 
		/// * component_confidences: If provided the method will output a list of confidence values
		/// for the recognition of individual text elements found (e.g. words).
		/// 
		/// * component_level: Only OCR_LEVEL_WORD is supported.
		/// 
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_multiple_mask(&mut self, image: &mut core::Mat, mask: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_run_MatR_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRHMMDecoder(), image.as_raw_mut_Mat(), mask.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_level: 0
		#[inline]
		fn run(&mut self, image: &impl core::ToInputArray, min_confidence: i32, component_level: i32) -> Result<String> {
			input_array_arg!(image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_run_const__InputArrayR_int_int(self.as_raw_mut_OCRHMMDecoder(), image.as_raw__InputArray(), min_confidence, component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { String::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_level: 0
		#[inline]
		fn run_mask(&mut self, image: &impl core::ToInputArray, mask: &impl core::ToInputArray, min_confidence: i32, component_level: i32) -> Result<String> {
			input_array_arg!(image);
			input_array_arg!(mask);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_run_const__InputArrayR_const__InputArrayR_int_int(self.as_raw_mut_OCRHMMDecoder(), image.as_raw__InputArray(), mask.as_raw__InputArray(), min_confidence, component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { String::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// OCRHMMDecoder class provides an interface for OCR using Hidden Markov Models.
	/// 
	/// 
	/// Note:
	///    *   (C++) An example on using OCRHMMDecoder recognition combined with scene text detection can
	///        be found at the webcam_demo sample:
	///        <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/webcam_demo.cpp>
	pub struct OCRHMMDecoder {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { OCRHMMDecoder }
	
	impl Drop for OCRHMMDecoder {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_OCRHMMDecoder_delete(instance: *mut c_void); }
			unsafe { cv_OCRHMMDecoder_delete(self.as_raw_mut_OCRHMMDecoder()) };
		}
	}
	
	unsafe impl Send for OCRHMMDecoder {}
	
	impl crate::text::BaseOCRTraitConst for OCRHMMDecoder {
		#[inline] fn as_raw_BaseOCR(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::BaseOCRTrait for OCRHMMDecoder {
		#[inline] fn as_raw_mut_BaseOCR(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::text::OCRHMMDecoderTraitConst for OCRHMMDecoder {
		#[inline] fn as_raw_OCRHMMDecoder(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::OCRHMMDecoderTrait for OCRHMMDecoder {
		#[inline] fn as_raw_mut_OCRHMMDecoder(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl OCRHMMDecoder {
		/// Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
		/// 
		/// ## Parameters
		/// * classifier: The character classifier with built in feature extractor.
		/// 
		/// * vocabulary: The language vocabulary (chars when ascii english text). vocabulary.size()
		/// must be equal to the number of classes of the classifier.
		/// 
		/// * transition_probabilities_table: Table with transition probabilities between character
		/// pairs. cols == rows == vocabulary.size().
		/// 
		/// * emission_probabilities_table: Table with observation emission probabilities. cols ==
		/// rows == vocabulary.size().
		/// 
		/// * mode: HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
		/// (<http://en.wikipedia.org/wiki/Viterbi_algorithm>).
		/// 
		/// ## C++ default parameters
		/// * mode: OCR_DECODER_VITERBI
		#[inline]
		pub fn create(classifier: core::Ptr<crate::text::OCRHMMDecoder_ClassifierCallback>, vocabulary: &str, transition_probabilities_table: &impl core::ToInputArray, emission_probabilities_table: &impl core::ToInputArray, mode: i32) -> Result<core::Ptr<crate::text::OCRHMMDecoder>> {
			extern_container_arg!(vocabulary);
			input_array_arg!(transition_probabilities_table);
			input_array_arg!(emission_probabilities_table);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_create_const_PtrLClassifierCallbackG_const_StringR_const__InputArrayR_const__InputArrayR_int(classifier.as_raw_PtrOfOCRHMMDecoder_ClassifierCallback(), vocabulary.opencv_as_extern(), transition_probabilities_table.as_raw__InputArray(), emission_probabilities_table.as_raw__InputArray(), mode, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::OCRHMMDecoder>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
		/// 
		///      Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
		/// 
		/// ## Parameters
		/// * classifier: The character classifier with built in feature extractor.
		/// 
		/// * vocabulary: The language vocabulary (chars when ascii english text). vocabulary.size()
		/// must be equal to the number of classes of the classifier.
		/// 
		/// * transition_probabilities_table: Table with transition probabilities between character
		/// pairs. cols == rows == vocabulary.size().
		/// 
		/// * emission_probabilities_table: Table with observation emission probabilities. cols ==
		/// rows == vocabulary.size().
		/// 
		/// * mode: HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
		/// (<http://en.wikipedia.org/wiki/Viterbi_algorithm>).
		/// 
		/// ## Overloaded parameters
		/// 
		/// ## C++ default parameters
		/// * mode: OCR_DECODER_VITERBI
		/// * classifier: OCR_KNN_CLASSIFIER
		#[inline]
		pub fn create_from_file(filename: &str, vocabulary: &str, transition_probabilities_table: &impl core::ToInputArray, emission_probabilities_table: &impl core::ToInputArray, mode: i32, classifier: i32) -> Result<core::Ptr<crate::text::OCRHMMDecoder>> {
			extern_container_arg!(filename);
			extern_container_arg!(vocabulary);
			input_array_arg!(transition_probabilities_table);
			input_array_arg!(emission_probabilities_table);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_create_const_StringR_const_StringR_const__InputArrayR_const__InputArrayR_int_int(filename.opencv_as_extern(), vocabulary.opencv_as_extern(), transition_probabilities_table.as_raw__InputArray(), emission_probabilities_table.as_raw__InputArray(), mode, classifier, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::OCRHMMDecoder>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::text::OCRHMMDecoder_ClassifierCallback]
	pub trait OCRHMMDecoder_ClassifierCallbackTraitConst {
		fn as_raw_OCRHMMDecoder_ClassifierCallback(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::OCRHMMDecoder_ClassifierCallback]
	pub trait OCRHMMDecoder_ClassifierCallbackTrait: crate::text::OCRHMMDecoder_ClassifierCallbackTraitConst {
		fn as_raw_mut_OCRHMMDecoder_ClassifierCallback(&mut self) -> *mut c_void;
	
		/// The character classifier must return a (ranked list of) class(es) id('s)
		/// 
		/// ## Parameters
		/// * image: Input image CV_8UC1 or CV_8UC3 with a single letter.
		/// * out_class: The classifier returns the character class categorical label, or list of
		/// class labels, to which the input image corresponds.
		/// * out_confidence: The classifier returns the probability of the input image
		/// corresponding to each classes in out_class.
		#[inline]
		fn eval(&mut self, image: &impl core::ToInputArray, out_class: &mut core::Vector<i32>, out_confidence: &mut core::Vector<f64>) -> Result<()> {
			input_array_arg!(image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHMMDecoder_ClassifierCallback_eval_const__InputArrayR_vectorLintGR_vectorLdoubleGR(self.as_raw_mut_OCRHMMDecoder_ClassifierCallback(), image.as_raw__InputArray(), out_class.as_raw_mut_VectorOfi32(), out_confidence.as_raw_mut_VectorOff64(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Callback with the character classifier is made a class.
	/// 
	/// This way it hides the feature extractor and the classifier itself, so developers can write
	/// their own OCR code.
	/// 
	/// The default character classifier and feature extractor can be loaded using the utility function
	/// loadOCRHMMClassifierNM and KNN model provided in
	/// <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/OCRHMM_knn_model_data.xml.gz>.
	pub struct OCRHMMDecoder_ClassifierCallback {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { OCRHMMDecoder_ClassifierCallback }
	
	impl Drop for OCRHMMDecoder_ClassifierCallback {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_OCRHMMDecoder_ClassifierCallback_delete(instance: *mut c_void); }
			unsafe { cv_OCRHMMDecoder_ClassifierCallback_delete(self.as_raw_mut_OCRHMMDecoder_ClassifierCallback()) };
		}
	}
	
	unsafe impl Send for OCRHMMDecoder_ClassifierCallback {}
	
	impl crate::text::OCRHMMDecoder_ClassifierCallbackTraitConst for OCRHMMDecoder_ClassifierCallback {
		#[inline] fn as_raw_OCRHMMDecoder_ClassifierCallback(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::OCRHMMDecoder_ClassifierCallbackTrait for OCRHMMDecoder_ClassifierCallback {
		#[inline] fn as_raw_mut_OCRHMMDecoder_ClassifierCallback(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl OCRHMMDecoder_ClassifierCallback {
	}
	
	/// Constant methods for [crate::text::OCRHolisticWordRecognizer]
	pub trait OCRHolisticWordRecognizerTraitConst: crate::text::BaseOCRTraitConst {
		fn as_raw_OCRHolisticWordRecognizer(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::OCRHolisticWordRecognizer]
	pub trait OCRHolisticWordRecognizerTrait: crate::text::BaseOCRTrait + crate::text::OCRHolisticWordRecognizerTraitConst {
		fn as_raw_mut_OCRHolisticWordRecognizer(&mut self) -> *mut c_void;
	
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: OCR_LEVEL_WORD
		#[inline]
		fn run(&mut self, image: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHolisticWordRecognizer_run_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRHolisticWordRecognizer(), image.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// Recognize text using a segmentation based word-spotting/classifier cnn.
		/// 
		/// Takes image on input and returns recognized text in the output_text parameter. Optionally
		/// provides also the Rects for individual text elements found (e.g. words), and the list of those
		/// text elements with their confidence values.
		/// 
		/// ## Parameters
		/// * image: Input image CV_8UC1 or CV_8UC3
		/// 
		/// * mask: is totally ignored and is only available for compatibillity reasons
		/// 
		/// * output_text: Output text of the the word spoting, always one that exists in the dictionary.
		/// 
		/// * component_rects: Not applicable for word spotting can be be NULL if not, a single elemnt will
		///    be put in the vector.
		/// 
		/// * component_texts: Not applicable for word spotting can be be NULL if not, a single elemnt will
		///    be put in the vector.
		/// 
		/// * component_confidences: Not applicable for word spotting can be be NULL if not, a single elemnt will
		///    be put in the vector.
		/// 
		/// * component_level: must be OCR_LEVEL_WORD.
		/// 
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: OCR_LEVEL_WORD
		#[inline]
		fn run_mask(&mut self, image: &mut core::Mat, mask: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHolisticWordRecognizer_run_MatR_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRHolisticWordRecognizer(), image.as_raw_mut_Mat(), mask.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
	}
	
	/// OCRHolisticWordRecognizer class provides the functionallity of segmented wordspotting.
	/// Given a predefined vocabulary , a DictNet is employed to select the most probable
	/// word given an input image.
	/// 
	/// DictNet is described in detail in:
	/// Max Jaderberg et al.: Reading Text in the Wild with Convolutional Neural Networks, IJCV 2015
	/// <http://arxiv.org/abs/1412.1842>
	pub struct OCRHolisticWordRecognizer {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { OCRHolisticWordRecognizer }
	
	impl Drop for OCRHolisticWordRecognizer {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_OCRHolisticWordRecognizer_delete(instance: *mut c_void); }
			unsafe { cv_OCRHolisticWordRecognizer_delete(self.as_raw_mut_OCRHolisticWordRecognizer()) };
		}
	}
	
	unsafe impl Send for OCRHolisticWordRecognizer {}
	
	impl crate::text::BaseOCRTraitConst for OCRHolisticWordRecognizer {
		#[inline] fn as_raw_BaseOCR(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::BaseOCRTrait for OCRHolisticWordRecognizer {
		#[inline] fn as_raw_mut_BaseOCR(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::text::OCRHolisticWordRecognizerTraitConst for OCRHolisticWordRecognizer {
		#[inline] fn as_raw_OCRHolisticWordRecognizer(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::OCRHolisticWordRecognizerTrait for OCRHolisticWordRecognizer {
		#[inline] fn as_raw_mut_OCRHolisticWordRecognizer(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl OCRHolisticWordRecognizer {
		/// Creates an instance of the OCRHolisticWordRecognizer class.
		#[inline]
		pub fn create(arch_filename: &str, weights_filename: &str, words_filename: &str) -> Result<core::Ptr<crate::text::OCRHolisticWordRecognizer>> {
			extern_container_arg!(arch_filename);
			extern_container_arg!(weights_filename);
			extern_container_arg!(words_filename);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRHolisticWordRecognizer_create_const_stringR_const_stringR_const_stringR(arch_filename.opencv_as_extern(), weights_filename.opencv_as_extern(), words_filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::OCRHolisticWordRecognizer>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::text::OCRTesseract]
	pub trait OCRTesseractTraitConst: crate::text::BaseOCRTraitConst {
		fn as_raw_OCRTesseract(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::OCRTesseract]
	pub trait OCRTesseractTrait: crate::text::BaseOCRTrait + crate::text::OCRTesseractTraitConst {
		fn as_raw_mut_OCRTesseract(&mut self) -> *mut c_void;
	
		/// Recognize text using the tesseract-ocr API.
		/// 
		/// Takes image on input and returns recognized text in the output_text parameter. Optionally
		/// provides also the Rects for individual text elements found (e.g. words), and the list of those
		/// text elements with their confidence values.
		/// 
		/// ## Parameters
		/// * image: Input image CV_8UC1 or CV_8UC3
		/// * output_text: Output text of the tesseract-ocr.
		/// * component_rects: If provided the method will output a list of Rects for the individual
		/// text elements found (e.g. words or text lines).
		/// * component_texts: If provided the method will output a list of text strings for the
		/// recognition of individual text elements found (e.g. words or text lines).
		/// * component_confidences: If provided the method will output a list of confidence values
		/// for the recognition of individual text elements found (e.g. words or text lines).
		/// * component_level: OCR_LEVEL_WORD (by default), or OCR_LEVEL_TEXTLINE.
		/// 
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_multiple(&mut self, image: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRTesseract_run_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRTesseract(), image.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_rects: NULL
		/// * component_texts: NULL
		/// * component_confidences: NULL
		/// * component_level: 0
		#[inline]
		fn run_multiple_mask(&mut self, image: &mut core::Mat, mask: &mut core::Mat, output_text: &mut String, component_rects: &mut core::Vector<core::Rect>, component_texts: &mut core::Vector<String>, component_confidences: &mut core::Vector<f32>, component_level: i32) -> Result<()> {
			string_arg_output_send!(via output_text_via);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRTesseract_run_MatR_MatR_stringR_vectorLRectGX_vectorLstringGX_vectorLfloatGX_int(self.as_raw_mut_OCRTesseract(), image.as_raw_mut_Mat(), mask.as_raw_mut_Mat(), &mut output_text_via, component_rects.as_raw_mut_VectorOfRect(), component_texts.as_raw_mut_VectorOfString(), component_confidences.as_raw_mut_VectorOff32(), component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(output_text_via => output_text);
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_level: 0
		#[inline]
		fn run(&mut self, image: &impl core::ToInputArray, min_confidence: i32, component_level: i32) -> Result<String> {
			input_array_arg!(image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRTesseract_run_const__InputArrayR_int_int(self.as_raw_mut_OCRTesseract(), image.as_raw__InputArray(), min_confidence, component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { String::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// ## C++ default parameters
		/// * component_level: 0
		#[inline]
		fn run_mask(&mut self, image: &impl core::ToInputArray, mask: &impl core::ToInputArray, min_confidence: i32, component_level: i32) -> Result<String> {
			input_array_arg!(image);
			input_array_arg!(mask);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRTesseract_run_const__InputArrayR_const__InputArrayR_int_int(self.as_raw_mut_OCRTesseract(), image.as_raw__InputArray(), mask.as_raw__InputArray(), min_confidence, component_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { String::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		#[inline]
		fn set_white_list(&mut self, char_whitelist: &str) -> Result<()> {
			extern_container_arg!(char_whitelist);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRTesseract_setWhiteList_const_StringR(self.as_raw_mut_OCRTesseract(), char_whitelist.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// OCRTesseract class provides an interface with the tesseract-ocr API (v3.02.02) in C++.
	/// 
	/// Notice that it is compiled only when tesseract-ocr is correctly installed.
	/// 
	/// 
	/// Note:
	///    *   (C++) An example of OCRTesseract recognition combined with scene text detection can be found
	///        at the end_to_end_recognition demo:
	///        <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/end_to_end_recognition.cpp>
	///    *   (C++) Another example of OCRTesseract recognition combined with scene text detection can be
	///        found at the webcam_demo:
	///        <https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/webcam_demo.cpp>
	pub struct OCRTesseract {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { OCRTesseract }
	
	impl Drop for OCRTesseract {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_OCRTesseract_delete(instance: *mut c_void); }
			unsafe { cv_OCRTesseract_delete(self.as_raw_mut_OCRTesseract()) };
		}
	}
	
	unsafe impl Send for OCRTesseract {}
	
	impl crate::text::BaseOCRTraitConst for OCRTesseract {
		#[inline] fn as_raw_BaseOCR(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::BaseOCRTrait for OCRTesseract {
		#[inline] fn as_raw_mut_BaseOCR(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::text::OCRTesseractTraitConst for OCRTesseract {
		#[inline] fn as_raw_OCRTesseract(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::OCRTesseractTrait for OCRTesseract {
		#[inline] fn as_raw_mut_OCRTesseract(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl OCRTesseract {
		/// Creates an instance of the OCRTesseract class. Initializes Tesseract.
		/// 
		/// ## Parameters
		/// * datapath: the name of the parent directory of tessdata ended with "/", or NULL to use the
		/// system's default directory.
		/// * language: an ISO 639-3 code or NULL will default to "eng".
		/// * char_whitelist: specifies the list of characters used for recognition. NULL defaults to
		/// "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".
		/// * oem: tesseract-ocr offers different OCR Engine Modes (OEM), by default
		/// tesseract::OEM_DEFAULT is used. See the tesseract-ocr API documentation for other possible
		/// values.
		/// * psmode: tesseract-ocr offers different Page Segmentation Modes (PSM) tesseract::PSM_AUTO
		/// (fully automatic layout analysis) is used. See the tesseract-ocr API documentation for other
		/// possible values.
		/// 
		/// ## C++ default parameters
		/// * datapath: NULL
		/// * language: NULL
		/// * char_whitelist: NULL
		/// * oem: OEM_DEFAULT
		/// * psmode: PSM_AUTO
		#[inline]
		pub fn create(datapath: &str, language: &str, char_whitelist: &str, oem: i32, psmode: i32) -> Result<core::Ptr<crate::text::OCRTesseract>> {
			extern_container_arg!(datapath);
			extern_container_arg!(language);
			extern_container_arg!(char_whitelist);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_OCRTesseract_create_const_charX_const_charX_const_charX_int_int(datapath.opencv_as_extern(), language.opencv_as_extern(), char_whitelist.opencv_as_extern(), oem, psmode, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::OCRTesseract>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::text::TextDetector]
	pub trait TextDetectorTraitConst {
		fn as_raw_TextDetector(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::TextDetector]
	pub trait TextDetectorTrait: crate::text::TextDetectorTraitConst {
		fn as_raw_mut_TextDetector(&mut self) -> *mut c_void;
	
		/// Method that provides a quick and simple interface to detect text inside an image
		/// 
		/// ## Parameters
		/// * inputImage: an image to process
		/// * Bbox: a vector of Rect that will store the detected word bounding box
		/// * confidence: a vector of float that will be updated with the confidence the classifier has for the selected bounding box
		#[inline]
		fn detect(&mut self, input_image: &impl core::ToInputArray, bbox: &mut core::Vector<core::Rect>, confidence: &mut core::Vector<f32>) -> Result<()> {
			input_array_arg!(input_image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_TextDetector_detect_const__InputArrayR_vectorLRectGR_vectorLfloatGR(self.as_raw_mut_TextDetector(), input_image.as_raw__InputArray(), bbox.as_raw_mut_VectorOfRect(), confidence.as_raw_mut_VectorOff32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// An abstract class providing interface for text detection algorithms
	pub struct TextDetector {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { TextDetector }
	
	impl Drop for TextDetector {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_TextDetector_delete(instance: *mut c_void); }
			unsafe { cv_TextDetector_delete(self.as_raw_mut_TextDetector()) };
		}
	}
	
	unsafe impl Send for TextDetector {}
	
	impl crate::text::TextDetectorTraitConst for TextDetector {
		#[inline] fn as_raw_TextDetector(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::TextDetectorTrait for TextDetector {
		#[inline] fn as_raw_mut_TextDetector(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl TextDetector {
	}
	
	/// Constant methods for [crate::text::TextDetectorCNN]
	pub trait TextDetectorCNNTraitConst: crate::text::TextDetectorTraitConst {
		fn as_raw_TextDetectorCNN(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::text::TextDetectorCNN]
	pub trait TextDetectorCNNTrait: crate::text::TextDetectorCNNTraitConst + crate::text::TextDetectorTrait {
		fn as_raw_mut_TextDetectorCNN(&mut self) -> *mut c_void;
	
		/// This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
		/// 
		/// ## Parameters
		/// * inputImage: an image expected to be a CV_U8C3 of any size
		/// * Bbox: a vector of Rect that will store the detected word bounding box
		/// * confidence: a vector of float that will be updated with the confidence the classifier has for the selected bounding box
		#[inline]
		fn detect(&mut self, input_image: &impl core::ToInputArray, bbox: &mut core::Vector<core::Rect>, confidence: &mut core::Vector<f32>) -> Result<()> {
			input_array_arg!(input_image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_TextDetectorCNN_detect_const__InputArrayR_vectorLRectGR_vectorLfloatGR(self.as_raw_mut_TextDetectorCNN(), input_image.as_raw__InputArray(), bbox.as_raw_mut_VectorOfRect(), confidence.as_raw_mut_VectorOff32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// TextDetectorCNN class provides the functionallity of text bounding box detection.
	/// This class is representing to find bounding boxes of text words given an input image.
	/// This class uses OpenCV dnn module to load pre-trained model described in [LiaoSBWL17](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_LiaoSBWL17).
	/// The original repository with the modified SSD Caffe version: <https://github.com/MhLiao/TextBoxes>.
	/// Model can be downloaded from [DropBox](https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0).
	/// Modified .prototxt file with the model description can be found in `opencv_contrib/modules/text/samples/textbox.prototxt`.
	pub struct TextDetectorCNN {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { TextDetectorCNN }
	
	impl Drop for TextDetectorCNN {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_TextDetectorCNN_delete(instance: *mut c_void); }
			unsafe { cv_TextDetectorCNN_delete(self.as_raw_mut_TextDetectorCNN()) };
		}
	}
	
	unsafe impl Send for TextDetectorCNN {}
	
	impl crate::text::TextDetectorTraitConst for TextDetectorCNN {
		#[inline] fn as_raw_TextDetector(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::TextDetectorTrait for TextDetectorCNN {
		#[inline] fn as_raw_mut_TextDetector(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::text::TextDetectorCNNTraitConst for TextDetectorCNN {
		#[inline] fn as_raw_TextDetectorCNN(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::text::TextDetectorCNNTrait for TextDetectorCNN {
		#[inline] fn as_raw_mut_TextDetectorCNN(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl TextDetectorCNN {
		/// Creates an instance of the TextDetectorCNN class using the provided parameters.
		/// 
		/// ## Parameters
		/// * modelArchFilename: the relative or absolute path to the prototxt file describing the classifiers architecture.
		/// * modelWeightsFilename: the relative or absolute path to the file containing the pretrained weights of the model in caffe-binary form.
		/// * detectionSizes: a list of sizes for multiscale detection. The values`[(300,300),(700,500),(700,300),(700,700),(1600,1600)]` are
		/// recommended in [LiaoSBWL17](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_LiaoSBWL17) to achieve the best quality.
		#[inline]
		pub fn create_with_sizes(model_arch_filename: &str, model_weights_filename: &str, mut detection_sizes: core::Vector<core::Size>) -> Result<core::Ptr<crate::text::TextDetectorCNN>> {
			extern_container_arg!(model_arch_filename);
			extern_container_arg!(model_weights_filename);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_TextDetectorCNN_create_const_StringR_const_StringR_vectorLSizeG(model_arch_filename.opencv_as_extern(), model_weights_filename.opencv_as_extern(), detection_sizes.as_raw_mut_VectorOfSize(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::TextDetectorCNN>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// Creates an instance of the TextDetectorCNN class using the provided parameters.
		/// 
		/// ## Parameters
		/// * modelArchFilename: the relative or absolute path to the prototxt file describing the classifiers architecture.
		/// * modelWeightsFilename: the relative or absolute path to the file containing the pretrained weights of the model in caffe-binary form.
		/// * detectionSizes: a list of sizes for multiscale detection. The values`[(300,300),(700,500),(700,300),(700,700),(1600,1600)]` are
		/// recommended in [LiaoSBWL17](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_LiaoSBWL17) to achieve the best quality.
		/// 
		/// ## Overloaded parameters
		#[inline]
		pub fn create(model_arch_filename: &str, model_weights_filename: &str) -> Result<core::Ptr<crate::text::TextDetectorCNN>> {
			extern_container_arg!(model_arch_filename);
			extern_container_arg!(model_weights_filename);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_text_TextDetectorCNN_create_const_StringR_const_StringR(model_arch_filename.opencv_as_extern(), model_weights_filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::text::TextDetectorCNN>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
}