1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
pub mod bioinspired {
//! # Biologically inspired vision models and derivated tools
//!
//! The module provides biological visual systems models (human visual system and others). It also
//! provides derivated objects that take advantage of those bio-inspired models.
//!
//! [bioinspired_retina]
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
pub use { super::RetinaParametersTraitConst, super::RetinaParametersTrait, super::RetinaTraitConst, super::RetinaTrait, super::RetinaFastToneMappingTraitConst, super::RetinaFastToneMappingTrait, super::TransientAreasSegmentationModuleTraitConst, super::TransientAreasSegmentationModuleTrait };
}
/// standard bayer sampling
pub const RETINA_COLOR_BAYER: i32 = 2;
/// color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
pub const RETINA_COLOR_DIAGONAL: i32 = 1;
/// each pixel position is either R, G or B in a random choice
pub const RETINA_COLOR_RANDOM: i32 = 0;
/// Constant methods for [crate::bioinspired::Retina]
pub trait RetinaTraitConst: core::AlgorithmTraitConst {
fn as_raw_Retina(&self) -> *const c_void;
/// Write xml/yml formated parameters information
/// ## Parameters
/// * fs: the filename of the xml file that will be open and writen with formatted parameters
/// information
#[inline]
fn write(&self, fs: &str) -> Result<()> {
extern_container_arg!(mut fs);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_write_const_String(self.as_raw_Retina(), fs.opencv_as_extern_mut(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Write xml/yml formated parameters information
/// ## Parameters
/// * fs: the filename of the xml file that will be open and writen with formatted parameters
/// information
///
/// ## Overloaded parameters
#[inline]
fn write_to_storage(&self, fs: &mut core::FileStorage) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_write_const_FileStorageR(self.as_raw_Retina(), fs.as_raw_mut_FileStorage(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Accessor of the motion channel of the retina (models peripheral vision).
/// ## See also
/// getMagno
///
/// ## Overloaded parameters
#[inline]
fn get_magno_raw(&self) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getMagnoRAW_const(self.as_raw_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Accessor of the details channel of the retina (models foveal vision).
/// ## See also
/// getParvo
///
/// ## Overloaded parameters
#[inline]
fn get_parvo_raw(&self) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getParvoRAW_const(self.as_raw_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
}
/// Mutable methods for [crate::bioinspired::Retina]
pub trait RetinaTrait: core::AlgorithmTrait + crate::bioinspired::RetinaTraitConst {
fn as_raw_mut_Retina(&mut self) -> *mut c_void;
/// Retreive retina input buffer size
/// ## Returns
/// the retina input buffer size
#[inline]
fn get_input_size(&mut self) -> Result<core::Size> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getInputSize(self.as_raw_mut_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Retreive retina output buffer size that can be different from the input if a spatial log
/// transformation is applied
/// ## Returns
/// the retina output buffer size
#[inline]
fn get_output_size(&mut self) -> Result<core::Size> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getOutputSize(self.as_raw_mut_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Try to open an XML retina parameters file to adjust current retina instance setup
///
/// - if the xml file does not exist, then default setup is applied
/// - warning, Exceptions are thrown if read XML file is not valid
/// ## Parameters
/// * retinaParameterFile: the parameters filename
/// * applyDefaultSetupOnFailure: set to true if an error must be thrown on error
///
/// You can retrieve the current parameters structure using the method Retina::getParameters and update
/// it before running method Retina::setup.
///
/// ## C++ default parameters
/// * retina_parameter_file: ""
/// * apply_default_setup_on_failure: true
#[inline]
fn setup_from_file(&mut self, retina_parameter_file: &str, apply_default_setup_on_failure: bool) -> Result<()> {
extern_container_arg!(mut retina_parameter_file);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_setup_String_const_bool(self.as_raw_mut_Retina(), retina_parameter_file.opencv_as_extern_mut(), apply_default_setup_on_failure, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Try to open an XML retina parameters file to adjust current retina instance setup
///
/// - if the xml file does not exist, then default setup is applied
/// - warning, Exceptions are thrown if read XML file is not valid
/// ## Parameters
/// * retinaParameterFile: the parameters filename
/// * applyDefaultSetupOnFailure: set to true if an error must be thrown on error
///
/// You can retrieve the current parameters structure using the method Retina::getParameters and update
/// it before running method Retina::setup.
///
/// ## Overloaded parameters
///
/// * fs: the open Filestorage which contains retina parameters
/// * applyDefaultSetupOnFailure: set to true if an error must be thrown on error
///
/// ## C++ default parameters
/// * apply_default_setup_on_failure: true
#[inline]
fn setup_from_storage(&mut self, fs: &mut core::FileStorage, apply_default_setup_on_failure: bool) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_setup_FileStorageR_const_bool(self.as_raw_mut_Retina(), fs.as_raw_mut_FileStorage(), apply_default_setup_on_failure, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Try to open an XML retina parameters file to adjust current retina instance setup
///
/// - if the xml file does not exist, then default setup is applied
/// - warning, Exceptions are thrown if read XML file is not valid
/// ## Parameters
/// * retinaParameterFile: the parameters filename
/// * applyDefaultSetupOnFailure: set to true if an error must be thrown on error
///
/// You can retrieve the current parameters structure using the method Retina::getParameters and update
/// it before running method Retina::setup.
///
/// ## Overloaded parameters
///
/// * newParameters: a parameters structures updated with the new target configuration.
#[inline]
fn setup(&mut self, mut new_parameters: crate::bioinspired::RetinaParameters) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_setup_RetinaParameters(self.as_raw_mut_Retina(), new_parameters.as_raw_mut_RetinaParameters(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// ## Returns
/// the current parameters setup
#[inline]
fn get_parameters(&mut self) -> Result<crate::bioinspired::RetinaParameters> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getParameters(self.as_raw_mut_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::bioinspired::RetinaParameters::opencv_from_extern(ret) };
Ok(ret)
}
/// Outputs a string showing the used parameters setup
/// ## Returns
/// a string which contains formated parameters information
#[inline]
fn print_setup(&mut self) -> Result<String> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_printSetup(self.as_raw_mut_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { String::opencv_from_extern(ret) };
Ok(ret)
}
/// Setup the OPL and IPL parvo channels (see biologocal model)
///
/// OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
/// which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
/// (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
/// Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
/// reference papers for more informations.
/// for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: <http://dx.doi.org/10.1016/j.cviu.2010.01.011>
/// ## Parameters
/// * colorMode: specifies if (true) color is processed of not (false) to then processing gray
/// level image
/// * normaliseOutput: specifies if (true) output is rescaled between 0 and 255 of not (false)
/// * photoreceptorsLocalAdaptationSensitivity: the photoreceptors sensitivity renage is 0-1
/// (more log compression effect when value increases)
/// * photoreceptorsTemporalConstant: the time constant of the first order low pass filter of
/// the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
/// frames, typical value is 1 frame
/// * photoreceptorsSpatialConstant: the spatial constant of the first order low pass filter of
/// the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
/// pixels, typical value is 1 pixel
/// * horizontalCellsGain: gain of the horizontal cells network, if 0, then the mean value of
/// the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
/// still reachable at the output, typicall value is 0
/// * HcellsTemporalConstant: the time constant of the first order low pass filter of the
/// horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
/// frames, typical value is 1 frame, as the photoreceptors
/// * HcellsSpatialConstant: the spatial constant of the first order low pass filter of the
/// horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
/// typical value is 5 pixel, this value is also used for local contrast computing when computing
/// the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
/// channel model)
/// * ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation
/// output, set a value between 0.6 and 1 for best results, a high value increases more the low
/// value sensitivity... and the output saturates faster, recommended value: 0.7
///
/// ## C++ default parameters
/// * color_mode: true
/// * normalise_output: true
/// * photoreceptors_local_adaptation_sensitivity: 0.7f
/// * photoreceptors_temporal_constant: 0.5f
/// * photoreceptors_spatial_constant: 0.53f
/// * horizontal_cells_gain: 0.f
/// * hcells_temporal_constant: 1.f
/// * hcells_spatial_constant: 7.f
/// * ganglion_cells_sensitivity: 0.7f
#[inline]
fn setup_op_land_ipl_parvo_channel(&mut self, color_mode: bool, normalise_output: bool, photoreceptors_local_adaptation_sensitivity: f32, photoreceptors_temporal_constant: f32, photoreceptors_spatial_constant: f32, horizontal_cells_gain: f32, hcells_temporal_constant: f32, hcells_spatial_constant: f32, ganglion_cells_sensitivity: f32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_setupOPLandIPLParvoChannel_const_bool_const_bool_const_float_const_float_const_float_const_float_const_float_const_float_const_float(self.as_raw_mut_Retina(), color_mode, normalise_output, photoreceptors_local_adaptation_sensitivity, photoreceptors_temporal_constant, photoreceptors_spatial_constant, horizontal_cells_gain, hcells_temporal_constant, hcells_spatial_constant, ganglion_cells_sensitivity, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
///
/// this channel processes signals output from OPL processing stage in peripheral vision, it allows
/// motion information enhancement. It is decorrelated from the details channel. See reference
/// papers for more details.
///
/// ## Parameters
/// * normaliseOutput: specifies if (true) output is rescaled between 0 and 255 of not (false)
/// * parasolCells_beta: the low pass filter gain used for local contrast adaptation at the
/// IPL level of the retina (for ganglion cells local adaptation), typical value is 0
/// * parasolCells_tau: the low pass filter time constant used for local contrast adaptation
/// at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
/// value is 0 (immediate response)
/// * parasolCells_k: the low pass filter spatial constant used for local contrast adaptation
/// at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
/// value is 5
/// * amacrinCellsTemporalCutFrequency: the time constant of the first order high pass fiter of
/// the magnocellular way (motion information channel), unit is frames, typical value is 1.2
/// * V0CompressionParameter: the compression strengh of the ganglion cells local adaptation
/// output, set a value between 0.6 and 1 for best results, a high value increases more the low
/// value sensitivity... and the output saturates faster, recommended value: 0.95
/// * localAdaptintegration_tau: specifies the temporal constant of the low pas filter
/// involved in the computation of the local "motion mean" for the local adaptation computation
/// * localAdaptintegration_k: specifies the spatial constant of the low pas filter involved
/// in the computation of the local "motion mean" for the local adaptation computation
///
/// ## C++ default parameters
/// * normalise_output: true
/// * parasol_cells_beta: 0.f
/// * parasol_cells_tau: 0.f
/// * parasol_cells_k: 7.f
/// * amacrin_cells_temporal_cut_frequency: 1.2f
/// * v0_compression_parameter: 0.95f
/// * local_adaptintegration_tau: 0.f
/// * local_adaptintegration_k: 7.f
#[inline]
fn setup_ipl_magno_channel(&mut self, normalise_output: bool, parasol_cells_beta: f32, parasol_cells_tau: f32, parasol_cells_k: f32, amacrin_cells_temporal_cut_frequency: f32, v0_compression_parameter: f32, local_adaptintegration_tau: f32, local_adaptintegration_k: f32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_setupIPLMagnoChannel_const_bool_const_float_const_float_const_float_const_float_const_float_const_float_const_float(self.as_raw_mut_Retina(), normalise_output, parasol_cells_beta, parasol_cells_tau, parasol_cells_k, amacrin_cells_temporal_cut_frequency, v0_compression_parameter, local_adaptintegration_tau, local_adaptintegration_k, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Method which allows retina to be applied on an input image,
///
/// after run, encapsulated retina module is ready to deliver its outputs using dedicated
/// acccessors, see getParvo and getMagno methods
/// ## Parameters
/// * inputImage: the input Mat image to be processed, can be gray level or BGR coded in any
/// format (from 8bit to 16bits)
#[inline]
fn run(&mut self, input_image: &impl core::ToInputArray) -> Result<()> {
input_array_arg!(input_image);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_run_const__InputArrayR(self.as_raw_mut_Retina(), input_image.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Method which processes an image in the aim to correct its luminance correct
/// backlight problems, enhance details in shadows.
///
/// This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel
/// images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
/// (simplified version of the run/getParvo methods call) since it does not include the
/// spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
/// whitening and many other stuff. However, it works great for tone mapping and in a faster way.
///
/// Check the demos and experiments section to see examples and the way to perform tone mapping
/// using the original retina model and the method.
///
/// ## Parameters
/// * inputImage: the input image to process (should be coded in float format : CV_32F,
/// CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).
/// * outputToneMappedImage: the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).
#[inline]
fn apply_fast_tone_mapping(&mut self, input_image: &impl core::ToInputArray, output_tone_mapped_image: &mut impl core::ToOutputArray) -> Result<()> {
input_array_arg!(input_image);
output_array_arg!(output_tone_mapped_image);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_applyFastToneMapping_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_Retina(), input_image.as_raw__InputArray(), output_tone_mapped_image.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Accessor of the details channel of the retina (models foveal vision).
///
/// Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
/// the non RAW method allows a normalized matrix to be retrieved.
///
/// ## Parameters
/// * retinaOutput_parvo: the output buffer (reallocated if necessary), format can be :
/// * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
/// * RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
/// B2, ...Bn), this output is the original retina filter model output, without any
/// quantification or rescaling.
/// ## See also
/// getParvoRAW
#[inline]
fn get_parvo(&mut self, retina_output_parvo: &mut impl core::ToOutputArray) -> Result<()> {
output_array_arg!(retina_output_parvo);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getParvo_const__OutputArrayR(self.as_raw_mut_Retina(), retina_output_parvo.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Accessor of the details channel of the retina (models foveal vision).
/// ## See also
/// getParvo
#[inline]
fn get_parvo_raw_to(&mut self, retina_output_parvo: &mut impl core::ToOutputArray) -> Result<()> {
output_array_arg!(retina_output_parvo);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getParvoRAW_const__OutputArrayR(self.as_raw_mut_Retina(), retina_output_parvo.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Accessor of the motion channel of the retina (models peripheral vision).
///
/// Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
/// the non RAW method allows a normalized matrix to be retrieved.
/// ## Parameters
/// * retinaOutput_magno: the output buffer (reallocated if necessary), format can be :
/// * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
/// * RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
/// original retina filter model output, without any quantification or rescaling.
/// ## See also
/// getMagnoRAW
#[inline]
fn get_magno(&mut self, retina_output_magno: &mut impl core::ToOutputArray) -> Result<()> {
output_array_arg!(retina_output_magno);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getMagno_const__OutputArrayR(self.as_raw_mut_Retina(), retina_output_magno.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Accessor of the motion channel of the retina (models peripheral vision).
/// ## See also
/// getMagno
#[inline]
fn get_magno_raw_to(&mut self, retina_output_magno: &mut impl core::ToOutputArray) -> Result<()> {
output_array_arg!(retina_output_magno);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_getMagnoRAW_const__OutputArrayR(self.as_raw_mut_Retina(), retina_output_magno.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Activate color saturation as the final step of the color demultiplexing process -\> this
/// saturation is a sigmoide function applied to each channel of the demultiplexed image.
/// ## Parameters
/// * saturateColors: boolean that activates color saturation (if true) or desactivate (if false)
/// * colorSaturationValue: the saturation factor : a simple factor applied on the chrominance
/// buffers
///
/// ## C++ default parameters
/// * saturate_colors: true
/// * color_saturation_value: 4.0f
#[inline]
fn set_color_saturation(&mut self, saturate_colors: bool, color_saturation_value: f32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_setColorSaturation_const_bool_const_float(self.as_raw_mut_Retina(), saturate_colors, color_saturation_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Clears all retina buffers
///
/// (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
/// transition occuring just after this method call.
#[inline]
fn clear_buffers(&mut self) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_clearBuffers(self.as_raw_mut_Retina(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
/// default, it is activated
/// ## Parameters
/// * activate: true if Magnocellular output should be activated, false if not... if activated,
/// the Magnocellular output can be retrieved using the **getMagno** methods
#[inline]
fn activate_moving_contours_processing(&mut self, activate: bool) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_activateMovingContoursProcessing_const_bool(self.as_raw_mut_Retina(), activate, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
/// default, it is activated
/// ## Parameters
/// * activate: true if Parvocellular (contours information extraction) output should be
/// activated, false if not... if activated, the Parvocellular output can be retrieved using the
/// Retina::getParvo methods
#[inline]
fn activate_contours_processing(&mut self, activate: bool) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_activateContoursProcessing_const_bool(self.as_raw_mut_Retina(), activate, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// class which allows the Gipsa/Listic Labs model to be used with OpenCV.
///
/// This retina model allows spatio-temporal image processing (applied on still images, video sequences).
/// As a summary, these are the retina model properties:
/// - It applies a spectral whithening (mid-frequency details enhancement)
/// - high frequency spatio-temporal noise reduction
/// - low frequency luminance to be reduced (luminance range compression)
/// - local logarithmic luminance compression allows details to be enhanced in low light conditions
///
/// USE : this model can be used basically for spatio-temporal video effects but also for :
/// _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
/// _using the getMagno method output matrix : motion analysis also with the previously cited properties
///
/// for more information, reer to the following papers :
/// Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: <http://dx.doi.org/10.1016/j.cviu.2010.01.011>
/// Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
///
/// The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
/// take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
/// B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
/// take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
/// more informations in the above cited Jeanny Heraults's book.
pub struct Retina {
ptr: *mut c_void
}
opencv_type_boxed! { Retina }
impl Drop for Retina {
#[inline]
fn drop(&mut self) {
extern "C" { fn cv_Retina_delete(instance: *mut c_void); }
unsafe { cv_Retina_delete(self.as_raw_mut_Retina()) };
}
}
unsafe impl Send for Retina {}
impl core::AlgorithmTraitConst for Retina {
#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
}
impl core::AlgorithmTrait for Retina {
#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl crate::bioinspired::RetinaTraitConst for Retina {
#[inline] fn as_raw_Retina(&self) -> *const c_void { self.as_raw() }
}
impl crate::bioinspired::RetinaTrait for Retina {
#[inline] fn as_raw_mut_Retina(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl Retina {
/// Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
///
/// ## Parameters
/// * inputSize: the input frame size
/// * colorMode: the chosen processing mode : with or without color processing
/// * colorSamplingMethod: specifies which kind of color sampling will be used :
/// * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
/// * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
/// * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
/// * useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can
/// be used
/// * reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction
/// factor of the output frame (as the center (fovea) is high resolution and corners can be
/// underscaled, then a reduction of the output is allowed without precision leak
/// * samplingStrength: only usefull if param useRetinaLogSampling=true, specifies the strength of
/// the log scale that is applied
///
/// ## Overloaded parameters
#[inline]
pub fn create(input_size: core::Size) -> Result<core::Ptr<crate::bioinspired::Retina>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_create_Size(input_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<crate::bioinspired::Retina>::opencv_from_extern(ret) };
Ok(ret)
}
/// Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
///
/// ## Parameters
/// * inputSize: the input frame size
/// * colorMode: the chosen processing mode : with or without color processing
/// * colorSamplingMethod: specifies which kind of color sampling will be used :
/// * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
/// * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
/// * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling
/// * useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can
/// be used
/// * reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction
/// factor of the output frame (as the center (fovea) is high resolution and corners can be
/// underscaled, then a reduction of the output is allowed without precision leak
/// * samplingStrength: only usefull if param useRetinaLogSampling=true, specifies the strength of
/// the log scale that is applied
///
/// ## C++ default parameters
/// * color_sampling_method: RETINA_COLOR_BAYER
/// * use_retina_log_sampling: false
/// * reduction_factor: 1.0f
/// * sampling_strength: 10.0f
#[inline]
pub fn create_ext(input_size: core::Size, color_mode: bool, color_sampling_method: i32, use_retina_log_sampling: bool, reduction_factor: f32, sampling_strength: f32) -> Result<core::Ptr<crate::bioinspired::Retina>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_Retina_create_Size_const_bool_int_const_bool_const_float_const_float(input_size.opencv_as_extern(), color_mode, color_sampling_method, use_retina_log_sampling, reduction_factor, sampling_strength, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<crate::bioinspired::Retina>::opencv_from_extern(ret) };
Ok(ret)
}
}
boxed_cast_base! { Retina, core::Algorithm, cv_Retina_to_Algorithm }
/// Constant methods for [crate::bioinspired::RetinaFastToneMapping]
pub trait RetinaFastToneMappingTraitConst: core::AlgorithmTraitConst {
fn as_raw_RetinaFastToneMapping(&self) -> *const c_void;
}
/// Mutable methods for [crate::bioinspired::RetinaFastToneMapping]
pub trait RetinaFastToneMappingTrait: core::AlgorithmTrait + crate::bioinspired::RetinaFastToneMappingTraitConst {
fn as_raw_mut_RetinaFastToneMapping(&mut self) -> *mut c_void;
/// applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)
///
/// using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors
/// level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal
/// smoothing and eventually high frequencies attenuation. This is a lighter method than the one
/// available using the regular retina::run method. It is then faster but it does not include
/// complete temporal filtering nor retina spectral whitening. Then, it can have a more limited
/// effect on images with a very high dynamic range. This is an adptation of the original still
/// image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's
/// work, please cite: -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local
/// Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of
/// America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
///
/// ## Parameters
/// * inputImage: the input image to process RGB or gray levels
/// * outputToneMappedImage: the output tone mapped image
#[inline]
fn apply_fast_tone_mapping(&mut self, input_image: &impl core::ToInputArray, output_tone_mapped_image: &mut impl core::ToOutputArray) -> Result<()> {
input_array_arg!(input_image);
output_array_arg!(output_tone_mapped_image);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaFastToneMapping_applyFastToneMapping_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_RetinaFastToneMapping(), input_image.as_raw__InputArray(), output_tone_mapped_image.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// updates tone mapping behaviors by adjusing the local luminance computation area
///
/// ## Parameters
/// * photoreceptorsNeighborhoodRadius: the first stage local adaptation area
/// * ganglioncellsNeighborhoodRadius: the second stage local adaptation area
/// * meanLuminanceModulatorK: the factor applied to modulate the meanLuminance information
/// (default is 1, see reference paper)
///
/// ## C++ default parameters
/// * photoreceptors_neighborhood_radius: 3.f
/// * ganglioncells_neighborhood_radius: 1.f
/// * mean_luminance_modulator_k: 1.f
#[inline]
fn setup(&mut self, photoreceptors_neighborhood_radius: f32, ganglioncells_neighborhood_radius: f32, mean_luminance_modulator_k: f32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaFastToneMapping_setup_const_float_const_float_const_float(self.as_raw_mut_RetinaFastToneMapping(), photoreceptors_neighborhood_radius, ganglioncells_neighborhood_radius, mean_luminance_modulator_k, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV.
///
/// This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc.
/// As a summary, these are the model properties:
/// - 2 stages of local luminance adaptation with a different local neighborhood for each.
/// - first stage models the retina photorecetors local luminance adaptation
/// - second stage models th ganglion cells local information adaptation
/// - compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters.
/// this can help noise robustness and temporal stability for video sequence use cases.
///
/// for more information, read to the following papers :
/// Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: <http://dx.doi.org/10.1016/j.cviu.2010.01.011>
/// regarding spatio-temporal filter and the bigger retina model :
/// Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
pub struct RetinaFastToneMapping {
ptr: *mut c_void
}
opencv_type_boxed! { RetinaFastToneMapping }
impl Drop for RetinaFastToneMapping {
#[inline]
fn drop(&mut self) {
extern "C" { fn cv_RetinaFastToneMapping_delete(instance: *mut c_void); }
unsafe { cv_RetinaFastToneMapping_delete(self.as_raw_mut_RetinaFastToneMapping()) };
}
}
unsafe impl Send for RetinaFastToneMapping {}
impl core::AlgorithmTraitConst for RetinaFastToneMapping {
#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
}
impl core::AlgorithmTrait for RetinaFastToneMapping {
#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl crate::bioinspired::RetinaFastToneMappingTraitConst for RetinaFastToneMapping {
#[inline] fn as_raw_RetinaFastToneMapping(&self) -> *const c_void { self.as_raw() }
}
impl crate::bioinspired::RetinaFastToneMappingTrait for RetinaFastToneMapping {
#[inline] fn as_raw_mut_RetinaFastToneMapping(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl RetinaFastToneMapping {
#[inline]
pub fn create(input_size: core::Size) -> Result<core::Ptr<crate::bioinspired::RetinaFastToneMapping>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaFastToneMapping_create_Size(input_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<crate::bioinspired::RetinaFastToneMapping>::opencv_from_extern(ret) };
Ok(ret)
}
}
boxed_cast_base! { RetinaFastToneMapping, core::Algorithm, cv_RetinaFastToneMapping_to_Algorithm }
/// Constant methods for [crate::bioinspired::RetinaParameters]
pub trait RetinaParametersTraitConst {
fn as_raw_RetinaParameters(&self) -> *const c_void;
#[inline]
fn op_land_ipl_parvo(&self) -> crate::bioinspired::RetinaParameters_OPLandIplParvoParameters {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaParameters_getPropOPLandIplParvo_const(self.as_raw_RetinaParameters(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
ret
}
#[inline]
fn ipl_magno(&self) -> crate::bioinspired::RetinaParameters_IplMagnoParameters {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaParameters_getPropIplMagno_const(self.as_raw_RetinaParameters(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
ret
}
}
/// Mutable methods for [crate::bioinspired::RetinaParameters]
pub trait RetinaParametersTrait: crate::bioinspired::RetinaParametersTraitConst {
fn as_raw_mut_RetinaParameters(&mut self) -> *mut c_void;
#[inline]
fn set_op_land_ipl_parvo(&mut self, val: crate::bioinspired::RetinaParameters_OPLandIplParvoParameters) {
let ret = unsafe { sys::cv_bioinspired_RetinaParameters_setPropOPLandIplParvo_OPLandIplParvoParameters(self.as_raw_mut_RetinaParameters(), val.opencv_as_extern()) };
ret
}
#[inline]
fn set_ipl_magno(&mut self, val: crate::bioinspired::RetinaParameters_IplMagnoParameters) {
let ret = unsafe { sys::cv_bioinspired_RetinaParameters_setPropIplMagno_IplMagnoParameters(self.as_raw_mut_RetinaParameters(), val.opencv_as_extern()) };
ret
}
}
/// retina model parameters structure
///
/// For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel
///
/// Here is the default configuration file of the retina module. It gives results such as the first
/// retina output shown on the top of this page.
///
/// ```C++
/// <?xml version="1.0"?>
/// <opencv_storage>
/// <OPLandIPLparvo>
/// <colorMode>1</colorMode>
/// <normaliseOutput>1</normaliseOutput>
/// <photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
/// <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
/// <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
/// <horizontalCellsGain>0.01</horizontalCellsGain>
/// <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
/// <hcellsSpatialConstant>7.</hcellsSpatialConstant>
/// <ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
/// <IPLmagno>
/// <normaliseOutput>1</normaliseOutput>
/// <parasolCells_beta>0.</parasolCells_beta>
/// <parasolCells_tau>0.</parasolCells_tau>
/// <parasolCells_k>7.</parasolCells_k>
/// <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
/// <V0CompressionParameter>9.5e-01</V0CompressionParameter>
/// <localAdaptintegration_tau>0.</localAdaptintegration_tau>
/// <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
/// </opencv_storage>
/// ```
///
///
/// Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page.
///
/// ```C++
/// <?xml version="1.0"?>
/// <opencv_storage>
/// <OPLandIPLparvo>
/// <colorMode>1</colorMode>
/// <normaliseOutput>1</normaliseOutput>
/// <photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
/// <photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
/// <photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
/// <horizontalCellsGain>0.3</horizontalCellsGain>
/// <hcellsTemporalConstant>0.5</hcellsTemporalConstant>
/// <hcellsSpatialConstant>7.</hcellsSpatialConstant>
/// <ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity></OPLandIPLparvo>
/// <IPLmagno>
/// <normaliseOutput>1</normaliseOutput>
/// <parasolCells_beta>0.</parasolCells_beta>
/// <parasolCells_tau>0.</parasolCells_tau>
/// <parasolCells_k>7.</parasolCells_k>
/// <amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
/// <V0CompressionParameter>9.5e-01</V0CompressionParameter>
/// <localAdaptintegration_tau>0.</localAdaptintegration_tau>
/// <localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
/// </opencv_storage>
/// ```
///
pub struct RetinaParameters {
ptr: *mut c_void
}
opencv_type_boxed! { RetinaParameters }
impl Drop for RetinaParameters {
#[inline]
fn drop(&mut self) {
extern "C" { fn cv_RetinaParameters_delete(instance: *mut c_void); }
unsafe { cv_RetinaParameters_delete(self.as_raw_mut_RetinaParameters()) };
}
}
unsafe impl Send for RetinaParameters {}
impl crate::bioinspired::RetinaParametersTraitConst for RetinaParameters {
#[inline] fn as_raw_RetinaParameters(&self) -> *const c_void { self.as_raw() }
}
impl crate::bioinspired::RetinaParametersTrait for RetinaParameters {
#[inline] fn as_raw_mut_RetinaParameters(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl RetinaParameters {
fn default() -> Self {
extern "C" { fn cv_RetinaParameters_default_new() -> extern_receive!(RetinaParameters: 'static); }
unsafe { Self::from_raw(cv_RetinaParameters_default_new()) }
}
}
impl Clone for RetinaParameters {
#[inline]
fn clone(&self) -> Self {
extern "C" { fn cv_RetinaParameters_implicit_clone(val: extern_send!(RetinaParameters)) -> extern_receive!(RetinaParameters: 'static); }
unsafe { Self::from_raw(cv_RetinaParameters_implicit_clone(self.as_raw_RetinaParameters())) }
}
}
impl Default for RetinaParameters {
#[inline]
/// Forwards to infallible Self::default()
fn default() -> Self {
Self::default()
}
}
/// Inner Plexiform Layer Magnocellular channel (IplMagno)
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct RetinaParameters_IplMagnoParameters {
pub normalise_output: bool,
pub parasol_cells_beta: f32,
pub parasol_cells_tau: f32,
pub parasol_cells_k: f32,
pub amacrin_cells_temporal_cut_frequency: f32,
pub v0_compression_parameter: f32,
pub local_adaptintegration_tau: f32,
pub local_adaptintegration_k: f32,
}
opencv_type_simple! { crate::bioinspired::RetinaParameters_IplMagnoParameters }
impl RetinaParameters_IplMagnoParameters {
#[inline]
pub fn default() -> Result<crate::bioinspired::RetinaParameters_IplMagnoParameters> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaParameters_IplMagnoParameters_IplMagnoParameters(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct RetinaParameters_OPLandIplParvoParameters {
pub color_mode: bool,
pub normalise_output: bool,
pub photoreceptors_local_adaptation_sensitivity: f32,
pub photoreceptors_temporal_constant: f32,
pub photoreceptors_spatial_constant: f32,
pub horizontal_cells_gain: f32,
pub hcells_temporal_constant: f32,
pub hcells_spatial_constant: f32,
pub ganglion_cells_sensitivity: f32,
}
opencv_type_simple! { crate::bioinspired::RetinaParameters_OPLandIplParvoParameters }
impl RetinaParameters_OPLandIplParvoParameters {
#[inline]
pub fn default() -> Result<crate::bioinspired::RetinaParameters_OPLandIplParvoParameters> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_RetinaParameters_OPLandIplParvoParameters_OPLandIplParvoParameters(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// parameter structure that stores the transient events detector setup parameters
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct SegmentationParameters {
pub threshold_on: f32,
pub threshold_off: f32,
/// the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame
pub local_energy_temporal_constant: f32,
/// the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel
pub local_energy_spatial_constant: f32,
/// local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis
pub neighborhood_energy_temporal_constant: f32,
pub neighborhood_energy_spatial_constant: f32,
/// context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects
pub context_energy_temporal_constant: f32,
pub context_energy_spatial_constant: f32,
}
opencv_type_simple! { crate::bioinspired::SegmentationParameters }
impl SegmentationParameters {
#[inline]
pub fn default() -> Result<crate::bioinspired::SegmentationParameters> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_SegmentationParameters_SegmentationParameters(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// Constant methods for [crate::bioinspired::TransientAreasSegmentationModule]
pub trait TransientAreasSegmentationModuleTraitConst: core::AlgorithmTraitConst {
fn as_raw_TransientAreasSegmentationModule(&self) -> *const c_void;
/// write xml/yml formated parameters information
/// ## Parameters
/// * fs: : the filename of the xml file that will be open and writen with formatted parameters information
#[inline]
fn write(&self, fs: &str) -> Result<()> {
extern_container_arg!(mut fs);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_write_const_String(self.as_raw_TransientAreasSegmentationModule(), fs.opencv_as_extern_mut(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// write xml/yml formated parameters information
/// ## Parameters
/// * fs: : a cv::Filestorage object ready to be filled
#[inline]
fn write_to_storage(&self, fs: &mut core::FileStorage) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_write_const_FileStorageR(self.as_raw_TransientAreasSegmentationModule(), fs.as_raw_mut_FileStorage(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// Mutable methods for [crate::bioinspired::TransientAreasSegmentationModule]
pub trait TransientAreasSegmentationModuleTrait: core::AlgorithmTrait + crate::bioinspired::TransientAreasSegmentationModuleTraitConst {
fn as_raw_mut_TransientAreasSegmentationModule(&mut self) -> *mut c_void;
/// return the sze of the manage input and output images
#[inline]
fn get_size(&mut self) -> Result<core::Size> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_getSize(self.as_raw_mut_TransientAreasSegmentationModule(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// try to open an XML segmentation parameters file to adjust current segmentation instance setup
///
/// - if the xml file does not exist, then default setup is applied
/// - warning, Exceptions are thrown if read XML file is not valid
/// ## Parameters
/// * segmentationParameterFile: : the parameters filename
/// * applyDefaultSetupOnFailure: : set to true if an error must be thrown on error
///
/// ## C++ default parameters
/// * segmentation_parameter_file: ""
/// * apply_default_setup_on_failure: true
#[inline]
fn setup_from_file(&mut self, segmentation_parameter_file: &str, apply_default_setup_on_failure: bool) -> Result<()> {
extern_container_arg!(mut segmentation_parameter_file);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_setup_String_const_bool(self.as_raw_mut_TransientAreasSegmentationModule(), segmentation_parameter_file.opencv_as_extern_mut(), apply_default_setup_on_failure, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// try to open an XML segmentation parameters file to adjust current segmentation instance setup
///
/// - if the xml file does not exist, then default setup is applied
/// - warning, Exceptions are thrown if read XML file is not valid
/// ## Parameters
/// * fs: : the open Filestorage which contains segmentation parameters
/// * applyDefaultSetupOnFailure: : set to true if an error must be thrown on error
///
/// ## C++ default parameters
/// * apply_default_setup_on_failure: true
#[inline]
fn setup_from_storage(&mut self, fs: &mut core::FileStorage, apply_default_setup_on_failure: bool) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_setup_FileStorageR_const_bool(self.as_raw_mut_TransientAreasSegmentationModule(), fs.as_raw_mut_FileStorage(), apply_default_setup_on_failure, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// try to open an XML segmentation parameters file to adjust current segmentation instance setup
///
/// - if the xml file does not exist, then default setup is applied
/// - warning, Exceptions are thrown if read XML file is not valid
/// ## Parameters
/// * newParameters: : a parameters structures updated with the new target configuration
#[inline]
fn setup(&mut self, new_parameters: crate::bioinspired::SegmentationParameters) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_setup_SegmentationParameters(self.as_raw_mut_TransientAreasSegmentationModule(), new_parameters.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// return the current parameters setup
#[inline]
fn get_parameters(&mut self) -> Result<crate::bioinspired::SegmentationParameters> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_getParameters(self.as_raw_mut_TransientAreasSegmentationModule(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// parameters setup display method
/// ## Returns
/// a string which contains formatted parameters information
#[inline]
fn print_setup(&mut self) -> Result<String> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_printSetup(self.as_raw_mut_TransientAreasSegmentationModule(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { String::opencv_from_extern(ret) };
Ok(ret)
}
/// main processing method, get result using methods getSegmentationPicture()
/// ## Parameters
/// * inputToSegment: : the image to process, it must match the instance buffer size !
/// * channelIndex: : the channel to process in case of multichannel images
///
/// ## C++ default parameters
/// * channel_index: 0
#[inline]
fn run(&mut self, input_to_segment: &impl core::ToInputArray, channel_index: i32) -> Result<()> {
input_array_arg!(input_to_segment);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_run_const__InputArrayR_const_int(self.as_raw_mut_TransientAreasSegmentationModule(), input_to_segment.as_raw__InputArray(), channel_index, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// access function
/// return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
#[inline]
fn get_segmentation_picture(&mut self, transient_areas: &mut impl core::ToOutputArray) -> Result<()> {
output_array_arg!(transient_areas);
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_getSegmentationPicture_const__OutputArrayR(self.as_raw_mut_TransientAreasSegmentationModule(), transient_areas.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// cleans all the buffers of the instance
#[inline]
fn clear_all_buffers(&mut self) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_clearAllBuffers(self.as_raw_mut_TransientAreasSegmentationModule(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// class which provides a transient/moving areas segmentation module
///
/// perform a locally adapted segmentation by using the retina magno input data Based on Alexandre
/// BENOIT thesis: "Le système visuel humain au secours de la vision par ordinateur"
///
/// 3 spatio temporal filters are used:
/// - a first one which filters the noise and local variations of the input motion energy
/// - a second (more powerfull low pass spatial filter) which gives the neighborhood motion energy the
/// segmentation consists in the comparison of these both outputs, if the local motion energy is higher
/// to the neighborhood otion energy, then the area is considered as moving and is segmented
/// - a stronger third low pass filter helps decision by providing a smooth information about the
/// "motion context" in a wider area
pub struct TransientAreasSegmentationModule {
ptr: *mut c_void
}
opencv_type_boxed! { TransientAreasSegmentationModule }
impl Drop for TransientAreasSegmentationModule {
#[inline]
fn drop(&mut self) {
extern "C" { fn cv_TransientAreasSegmentationModule_delete(instance: *mut c_void); }
unsafe { cv_TransientAreasSegmentationModule_delete(self.as_raw_mut_TransientAreasSegmentationModule()) };
}
}
unsafe impl Send for TransientAreasSegmentationModule {}
impl core::AlgorithmTraitConst for TransientAreasSegmentationModule {
#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
}
impl core::AlgorithmTrait for TransientAreasSegmentationModule {
#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl crate::bioinspired::TransientAreasSegmentationModuleTraitConst for TransientAreasSegmentationModule {
#[inline] fn as_raw_TransientAreasSegmentationModule(&self) -> *const c_void { self.as_raw() }
}
impl crate::bioinspired::TransientAreasSegmentationModuleTrait for TransientAreasSegmentationModule {
#[inline] fn as_raw_mut_TransientAreasSegmentationModule(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl TransientAreasSegmentationModule {
/// allocator
/// ## Parameters
/// * inputSize: : size of the images input to segment (output will be the same size)
#[inline]
pub fn create(input_size: core::Size) -> Result<core::Ptr<crate::bioinspired::TransientAreasSegmentationModule>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_bioinspired_TransientAreasSegmentationModule_create_Size(input_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<crate::bioinspired::TransientAreasSegmentationModule>::opencv_from_extern(ret) };
Ok(ret)
}
}
boxed_cast_base! { TransientAreasSegmentationModule, core::Algorithm, cv_TransientAreasSegmentationModule_to_Algorithm }
}