opencv 0.82.1

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
pub mod structured_light {
	//! # Structured Light API
	//! 
	//! Structured light is considered one of the most effective techniques to acquire 3D models.
	//! This technique is based on projecting a light pattern and capturing the illuminated scene
	//! from one or more points of view. Since the pattern is coded, correspondences between image
	//! points and points of the projected pattern can be quickly found and 3D information easily
	//! retrieved.
	//! 
	//! One of the most commonly exploited coding strategies is based on trmatime-multiplexing. In this
	//! case, a set of patterns  are successively projected onto the measuring surface.
	//! The codeword for a given pixel is usually formed by  the sequence of illuminance values for that
	//! pixel across the projected patterns. Thus, the codification is called  temporal because the bits
	//! of the codewords are multiplexed in time [pattern](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_pattern) .
	//! 
	//! In this module a time-multiplexing coding strategy based on Gray encoding is implemented following the
	//! (stereo) approach described in 3DUNDERWORLD algorithm [UNDERWORLD](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_UNDERWORLD) .
	//! For more details, see [tutorial_structured_light].
	use crate::{mod_prelude::*, core, sys, types};
	pub mod prelude {
		pub use { super::StructuredLightPatternTraitConst, super::StructuredLightPatternTrait, super::GrayCodePattern_ParamsTraitConst, super::GrayCodePattern_ParamsTrait, super::GrayCodePatternTraitConst, super::GrayCodePatternTrait, super::SinusoidalPattern_ParamsTraitConst, super::SinusoidalPattern_ParamsTrait, super::SinusoidalPatternTraitConst, super::SinusoidalPatternTrait };
	}
	
	/// Kyriakos Herakleous, Charalambos Poullis. "3DUNDERWORLD-SLS: An Open-Source Structured-Light Scanning System for Rapid Geometry Acquisition", arXiv preprint arXiv:1406.6595 (2014).
	pub const DECODE_3D_UNDERWORLD: i32 = 0;
	pub const FAPS: i32 = 2;
	pub const FTP: i32 = 0;
	pub const PSP: i32 = 1;
	/// Constant methods for [crate::structured_light::GrayCodePattern]
	pub trait GrayCodePatternTraitConst: crate::structured_light::StructuredLightPatternTraitConst {
		fn as_raw_GrayCodePattern(&self) -> *const c_void;
	
		/// Get the number of pattern images needed for the graycode pattern.
		/// 
		/// ## Returns
		/// The number of pattern images needed for the graycode pattern.
		#[inline]
		fn get_number_of_pattern_images(&self) -> Result<size_t> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_getNumberOfPatternImages_const(self.as_raw_GrayCodePattern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Generates the all-black and all-white images needed for shadowMasks computation.
		/// 
		/// To identify shadow regions, the regions of two images where the pixels are not lit by projector's light and thus where there is not coded information,
		/// the 3DUNDERWORLD algorithm computes a shadow mask for the two cameras views, starting from a white and a black images captured by each camera.
		/// This method generates these two additional images to project.
		/// 
		/// ## Parameters
		/// * blackImage: The generated all-black CV_8U image, at projector's resolution.
		/// * whiteImage: The generated all-white CV_8U image, at projector's resolution.
		#[inline]
		fn get_images_for_shadow_masks(&self, black_image: &mut impl core::ToInputOutputArray, white_image: &mut impl core::ToInputOutputArray) -> Result<()> {
			input_output_array_arg!(black_image);
			input_output_array_arg!(white_image);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_getImagesForShadowMasks_const_const__InputOutputArrayR_const__InputOutputArrayR(self.as_raw_GrayCodePattern(), black_image.as_raw__InputOutputArray(), white_image.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// For a (x,y) pixel of a camera returns the corresponding projector pixel.
		/// 
		/// The function decodes each pixel in the pattern images acquired by a camera into their corresponding decimal numbers representing the projector's column and row,
		/// providing a mapping between camera's and projector's pixel.
		/// 
		/// ## Parameters
		/// * patternImages: The pattern images acquired by the camera, stored in a grayscale vector < Mat >.
		/// * x: x coordinate of the image pixel.
		/// * y: y coordinate of the image pixel.
		/// * projPix: Projector's pixel corresponding to the camera's pixel: projPix.x and projPix.y are the image coordinates of the projector's pixel corresponding to the pixel being decoded in a camera.
		#[inline]
		fn get_proj_pixel(&self, pattern_images: &impl core::ToInputArray, x: i32, y: i32, proj_pix: &mut core::Point) -> Result<bool> {
			input_array_arg!(pattern_images);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_getProjPixel_const_const__InputArrayR_int_int_PointR(self.as_raw_GrayCodePattern(), pattern_images.as_raw__InputArray(), x, y, proj_pix, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::structured_light::GrayCodePattern]
	pub trait GrayCodePatternTrait: crate::structured_light::GrayCodePatternTraitConst + crate::structured_light::StructuredLightPatternTrait {
		fn as_raw_mut_GrayCodePattern(&mut self) -> *mut c_void;
	
		/// Sets the value for white threshold, needed for decoding.
		/// 
		/// White threshold is a number between 0-255 that represents the minimum brightness difference required for valid pixels, between the graycode pattern and its inverse images; used in getProjPixel method.
		/// 
		/// ## Parameters
		/// * value: The desired white threshold value.
		#[inline]
		fn set_white_threshold(&mut self, value: size_t) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_setWhiteThreshold_size_t(self.as_raw_mut_GrayCodePattern(), value, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Sets the value for black threshold, needed for decoding (shadowsmasks computation).
		/// 
		/// Black threshold is a number between 0-255 that represents the minimum brightness difference required for valid pixels, between the fully illuminated (white) and the not illuminated images (black); used in computeShadowMasks method.
		/// 
		/// ## Parameters
		/// * value: The desired black threshold value.
		#[inline]
		fn set_black_threshold(&mut self, value: size_t) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_setBlackThreshold_size_t(self.as_raw_mut_GrayCodePattern(), value, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class implementing the Gray-code pattern, based on [UNDERWORLD](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_UNDERWORLD).
	/// 
	/// The generation of the pattern images is performed with Gray encoding using the traditional white and black colors.
	/// 
	/// The information about the two image axes x, y is encoded separately into two different pattern sequences.
	/// A projector P with resolution (P_res_x, P_res_y) will result in Ncols = log 2 (P_res_x) encoded pattern images representing the columns, and
	/// in Nrows = log 2 (P_res_y) encoded pattern images representing the rows.
	/// For example a projector with resolution 1024x768 will result in Ncols = 10 and Nrows = 10.
	/// 
	/// However, the generated pattern sequence consists of both regular color and color-inverted images: inverted pattern images are images
	/// with the same structure as the original but with inverted colors.
	/// This provides an effective method for easily determining the intensity value of each pixel when it is lit (highest value) and
	/// when it is not lit (lowest value). So for a a projector with resolution 1024x768, the number of pattern images will be Ncols * 2 + Nrows * 2 = 40.
	pub struct GrayCodePattern {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { GrayCodePattern }
	
	impl Drop for GrayCodePattern {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_GrayCodePattern_delete(instance: *mut c_void); }
			unsafe { cv_GrayCodePattern_delete(self.as_raw_mut_GrayCodePattern()) };
		}
	}
	
	unsafe impl Send for GrayCodePattern {}
	
	impl core::AlgorithmTraitConst for GrayCodePattern {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for GrayCodePattern {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::structured_light::StructuredLightPatternTraitConst for GrayCodePattern {
		#[inline] fn as_raw_StructuredLightPattern(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::StructuredLightPatternTrait for GrayCodePattern {
		#[inline] fn as_raw_mut_StructuredLightPattern(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::structured_light::GrayCodePatternTraitConst for GrayCodePattern {
		#[inline] fn as_raw_GrayCodePattern(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::GrayCodePatternTrait for GrayCodePattern {
		#[inline] fn as_raw_mut_GrayCodePattern(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl GrayCodePattern {
		/// Constructor
		/// ## Parameters
		/// * parameters: GrayCodePattern parameters GrayCodePattern::Params: the width and the height of the projector.
		/// 
		/// ## C++ default parameters
		/// * parameters: GrayCodePattern::Params()
		#[inline]
		pub fn create(parameters: &crate::structured_light::GrayCodePattern_Params) -> Result<core::Ptr<crate::structured_light::GrayCodePattern>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_create_const_ParamsR(parameters.as_raw_GrayCodePattern_Params(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::structured_light::GrayCodePattern>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		#[inline]
		pub fn create_1(width: i32, height: i32) -> Result<core::Ptr<crate::structured_light::GrayCodePattern>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_create_int_int(width, height, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::structured_light::GrayCodePattern>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { GrayCodePattern, core::Algorithm, cv_GrayCodePattern_to_Algorithm }
	
	/// Constant methods for [crate::structured_light::GrayCodePattern_Params]
	pub trait GrayCodePattern_ParamsTraitConst {
		fn as_raw_GrayCodePattern_Params(&self) -> *const c_void;
	
		#[inline]
		fn width(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_GrayCodePattern_Params_getPropWidth_const(self.as_raw_GrayCodePattern_Params()) };
			ret
		}
		
		#[inline]
		fn height(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_GrayCodePattern_Params_getPropHeight_const(self.as_raw_GrayCodePattern_Params()) };
			ret
		}
		
	}
	
	/// Mutable methods for [crate::structured_light::GrayCodePattern_Params]
	pub trait GrayCodePattern_ParamsTrait: crate::structured_light::GrayCodePattern_ParamsTraitConst {
		fn as_raw_mut_GrayCodePattern_Params(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_width(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_GrayCodePattern_Params_setPropWidth_int(self.as_raw_mut_GrayCodePattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_height(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_GrayCodePattern_Params_setPropHeight_int(self.as_raw_mut_GrayCodePattern_Params(), val) };
			ret
		}
		
	}
	
	/// Parameters of StructuredLightPattern constructor.
	/// ## Parameters
	/// * width: Projector's width. Default value is 1024.
	/// * height: Projector's height. Default value is 768.
	pub struct GrayCodePattern_Params {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { GrayCodePattern_Params }
	
	impl Drop for GrayCodePattern_Params {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_GrayCodePattern_Params_delete(instance: *mut c_void); }
			unsafe { cv_GrayCodePattern_Params_delete(self.as_raw_mut_GrayCodePattern_Params()) };
		}
	}
	
	unsafe impl Send for GrayCodePattern_Params {}
	
	impl crate::structured_light::GrayCodePattern_ParamsTraitConst for GrayCodePattern_Params {
		#[inline] fn as_raw_GrayCodePattern_Params(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::GrayCodePattern_ParamsTrait for GrayCodePattern_Params {
		#[inline] fn as_raw_mut_GrayCodePattern_Params(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl GrayCodePattern_Params {
		#[inline]
		pub fn default() -> Result<crate::structured_light::GrayCodePattern_Params> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_GrayCodePattern_Params_Params(ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::structured_light::GrayCodePattern_Params::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::structured_light::SinusoidalPattern]
	pub trait SinusoidalPatternTraitConst: crate::structured_light::StructuredLightPatternTraitConst {
		fn as_raw_SinusoidalPattern(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::structured_light::SinusoidalPattern]
	pub trait SinusoidalPatternTrait: crate::structured_light::SinusoidalPatternTraitConst + crate::structured_light::StructuredLightPatternTrait {
		fn as_raw_mut_SinusoidalPattern(&mut self) -> *mut c_void;
	
		/// Compute a wrapped phase map from sinusoidal patterns.
		/// ## Parameters
		/// * patternImages: Input data to compute the wrapped phase map.
		/// * wrappedPhaseMap: Wrapped phase map obtained through one of the three methods.
		/// * shadowMask: Mask used to discard shadow regions.
		/// * fundamental: Fundamental matrix used to compute epipolar lines and ease the matching step.
		/// 
		/// ## C++ default parameters
		/// * shadow_mask: noArray()
		/// * fundamental: noArray()
		#[inline]
		fn compute_phase_map(&mut self, pattern_images: &impl core::ToInputArray, wrapped_phase_map: &mut impl core::ToOutputArray, shadow_mask: &mut impl core::ToOutputArray, fundamental: &impl core::ToInputArray) -> Result<()> {
			input_array_arg!(pattern_images);
			output_array_arg!(wrapped_phase_map);
			output_array_arg!(shadow_mask);
			input_array_arg!(fundamental);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_SinusoidalPattern_computePhaseMap_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__InputArrayR(self.as_raw_mut_SinusoidalPattern(), pattern_images.as_raw__InputArray(), wrapped_phase_map.as_raw__OutputArray(), shadow_mask.as_raw__OutputArray(), fundamental.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Unwrap the wrapped phase map to remove phase ambiguities.
		/// ## Parameters
		/// * wrappedPhaseMap: The wrapped phase map computed from the pattern.
		/// * unwrappedPhaseMap: The unwrapped phase map used to find correspondences between the two devices.
		/// * camSize: Resolution of the camera.
		/// * shadowMask: Mask used to discard shadow regions.
		/// 
		/// ## C++ default parameters
		/// * shadow_mask: noArray()
		#[inline]
		fn unwrap_phase_map(&mut self, wrapped_phase_map: &impl core::ToInputArray, unwrapped_phase_map: &mut impl core::ToOutputArray, cam_size: core::Size, shadow_mask: &impl core::ToInputArray) -> Result<()> {
			input_array_arg!(wrapped_phase_map);
			output_array_arg!(unwrapped_phase_map);
			input_array_arg!(shadow_mask);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_SinusoidalPattern_unwrapPhaseMap_const__InputArrayR_const__OutputArrayR_Size_const__InputArrayR(self.as_raw_mut_SinusoidalPattern(), wrapped_phase_map.as_raw__InputArray(), unwrapped_phase_map.as_raw__OutputArray(), cam_size.opencv_as_extern(), shadow_mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Find correspondences between the two devices thanks to unwrapped phase maps.
		/// ## Parameters
		/// * projUnwrappedPhaseMap: Projector's unwrapped phase map.
		/// * camUnwrappedPhaseMap: Camera's unwrapped phase map.
		/// * matches: Images used to display correspondences map.
		#[inline]
		fn find_pro_cam_matches(&mut self, proj_unwrapped_phase_map: &impl core::ToInputArray, cam_unwrapped_phase_map: &impl core::ToInputArray, matches: &mut impl core::ToOutputArray) -> Result<()> {
			input_array_arg!(proj_unwrapped_phase_map);
			input_array_arg!(cam_unwrapped_phase_map);
			output_array_arg!(matches);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_SinusoidalPattern_findProCamMatches_const__InputArrayR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_SinusoidalPattern(), proj_unwrapped_phase_map.as_raw__InputArray(), cam_unwrapped_phase_map.as_raw__InputArray(), matches.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// compute the data modulation term.
		/// ## Parameters
		/// * patternImages: captured images with projected patterns.
		/// * dataModulationTerm: Mat where the data modulation term is saved.
		/// * shadowMask: Mask used to discard shadow regions.
		#[inline]
		fn compute_data_modulation_term(&mut self, pattern_images: &impl core::ToInputArray, data_modulation_term: &mut impl core::ToOutputArray, shadow_mask: &impl core::ToInputArray) -> Result<()> {
			input_array_arg!(pattern_images);
			output_array_arg!(data_modulation_term);
			input_array_arg!(shadow_mask);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_SinusoidalPattern_computeDataModulationTerm_const__InputArrayR_const__OutputArrayR_const__InputArrayR(self.as_raw_mut_SinusoidalPattern(), pattern_images.as_raw__InputArray(), data_modulation_term.as_raw__OutputArray(), shadow_mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class implementing Fourier transform profilometry (FTP) , phase-shifting profilometry (PSP)
	/// and Fourier-assisted phase-shifting profilometry (FAPS) based on [faps](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_faps).
	/// 
	/// This class generates sinusoidal patterns that can be used with FTP, PSP and FAPS.
	pub struct SinusoidalPattern {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { SinusoidalPattern }
	
	impl Drop for SinusoidalPattern {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_SinusoidalPattern_delete(instance: *mut c_void); }
			unsafe { cv_SinusoidalPattern_delete(self.as_raw_mut_SinusoidalPattern()) };
		}
	}
	
	unsafe impl Send for SinusoidalPattern {}
	
	impl core::AlgorithmTraitConst for SinusoidalPattern {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for SinusoidalPattern {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::structured_light::StructuredLightPatternTraitConst for SinusoidalPattern {
		#[inline] fn as_raw_StructuredLightPattern(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::StructuredLightPatternTrait for SinusoidalPattern {
		#[inline] fn as_raw_mut_StructuredLightPattern(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::structured_light::SinusoidalPatternTraitConst for SinusoidalPattern {
		#[inline] fn as_raw_SinusoidalPattern(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::SinusoidalPatternTrait for SinusoidalPattern {
		#[inline] fn as_raw_mut_SinusoidalPattern(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl SinusoidalPattern {
		/// Constructor.
		/// ## Parameters
		/// * parameters: SinusoidalPattern parameters SinusoidalPattern::Params: width, height of the projector and patterns parameters.
		/// 
		/// ## C++ default parameters
		/// * parameters: makePtr<SinusoidalPattern::Params>()
		#[inline]
		pub fn create(mut parameters: core::Ptr<crate::structured_light::SinusoidalPattern_Params>) -> Result<core::Ptr<crate::structured_light::SinusoidalPattern>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_SinusoidalPattern_create_PtrLParamsG(parameters.as_raw_mut_PtrOfSinusoidalPattern_Params(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::structured_light::SinusoidalPattern>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { SinusoidalPattern, core::Algorithm, cv_SinusoidalPattern_to_Algorithm }
	
	/// Constant methods for [crate::structured_light::SinusoidalPattern_Params]
	pub trait SinusoidalPattern_ParamsTraitConst {
		fn as_raw_SinusoidalPattern_Params(&self) -> *const c_void;
	
		#[inline]
		fn width(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropWidth_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn height(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropHeight_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn nbr_of_periods(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropNbrOfPeriods_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn shift_value(&self) -> f32 {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropShiftValue_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn method_id(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropMethodId_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn nbr_of_pixels_between_markers(&self) -> i32 {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropNbrOfPixelsBetweenMarkers_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn horizontal(&self) -> bool {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropHorizontal_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn set_markers(&self) -> bool {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropSetMarkers_const(self.as_raw_SinusoidalPattern_Params()) };
			ret
		}
		
		#[inline]
		fn markers_location(&self) -> core::Vector<core::Point2f> {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_getPropMarkersLocation_const(self.as_raw_SinusoidalPattern_Params()) };
			let ret = unsafe { core::Vector::<core::Point2f>::opencv_from_extern(ret) };
			ret
		}
		
	}
	
	/// Mutable methods for [crate::structured_light::SinusoidalPattern_Params]
	pub trait SinusoidalPattern_ParamsTrait: crate::structured_light::SinusoidalPattern_ParamsTraitConst {
		fn as_raw_mut_SinusoidalPattern_Params(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_width(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropWidth_int(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_height(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropHeight_int(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_nbr_of_periods(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropNbrOfPeriods_int(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_shift_value(&mut self, val: f32) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropShiftValue_float(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_method_id(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropMethodId_int(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_nbr_of_pixels_between_markers(&mut self, val: i32) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropNbrOfPixelsBetweenMarkers_int(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_horizontal(&mut self, val: bool) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropHorizontal_bool(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_set_markers(&mut self, val: bool) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropSetMarkers_bool(self.as_raw_mut_SinusoidalPattern_Params(), val) };
			ret
		}
		
		#[inline]
		fn set_markers_location(&mut self, mut val: core::Vector<core::Point2f>) {
			let ret = unsafe { sys::cv_structured_light_SinusoidalPattern_Params_setPropMarkersLocation_vectorLPoint2fG(self.as_raw_mut_SinusoidalPattern_Params(), val.as_raw_mut_VectorOfPoint2f()) };
			ret
		}
		
	}
	
	/// Parameters of SinusoidalPattern constructor
	/// ## Parameters
	/// * width: Projector's width.
	/// * height: Projector's height.
	/// * nbrOfPeriods: Number of period along the patterns direction.
	/// * shiftValue: Phase shift between two consecutive patterns.
	/// * methodId: Allow to choose between FTP, PSP and FAPS.
	/// * nbrOfPixelsBetweenMarkers: Number of pixels between two consecutive markers on the same row.
	/// * setMarkers: Allow to set markers on the patterns.
	/// * markersLocation: vector used to store markers location on the patterns.
	pub struct SinusoidalPattern_Params {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { SinusoidalPattern_Params }
	
	impl Drop for SinusoidalPattern_Params {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_SinusoidalPattern_Params_delete(instance: *mut c_void); }
			unsafe { cv_SinusoidalPattern_Params_delete(self.as_raw_mut_SinusoidalPattern_Params()) };
		}
	}
	
	unsafe impl Send for SinusoidalPattern_Params {}
	
	impl crate::structured_light::SinusoidalPattern_ParamsTraitConst for SinusoidalPattern_Params {
		#[inline] fn as_raw_SinusoidalPattern_Params(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::SinusoidalPattern_ParamsTrait for SinusoidalPattern_Params {
		#[inline] fn as_raw_mut_SinusoidalPattern_Params(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl SinusoidalPattern_Params {
		#[inline]
		pub fn default() -> Result<crate::structured_light::SinusoidalPattern_Params> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_SinusoidalPattern_Params_Params(ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::structured_light::SinusoidalPattern_Params::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	/// Constant methods for [crate::structured_light::StructuredLightPattern]
	pub trait StructuredLightPatternTraitConst: core::AlgorithmTraitConst {
		fn as_raw_StructuredLightPattern(&self) -> *const c_void;
	
		/// Decodes the structured light pattern, generating a disparity map
		/// 
		/// ## Parameters
		/// * patternImages: The acquired pattern images to decode (vector<vector<Mat>>), loaded as grayscale and previously rectified.
		/// * disparityMap: The decoding result: a CV_64F Mat at image resolution, storing the computed disparity map.
		/// * blackImages: The all-black images needed for shadowMasks computation.
		/// * whiteImages: The all-white images needed for shadowMasks computation.
		/// * flags: Flags setting decoding algorithms. Default: DECODE_3D_UNDERWORLD.
		/// 
		/// Note: All the images must be at the same resolution.
		/// 
		/// ## C++ default parameters
		/// * black_images: noArray()
		/// * white_images: noArray()
		/// * flags: DECODE_3D_UNDERWORLD
		#[inline]
		fn decode(&self, pattern_images: &core::Vector<core::Vector<core::Mat>>, disparity_map: &mut impl core::ToOutputArray, black_images: &impl core::ToInputArray, white_images: &impl core::ToInputArray, flags: i32) -> Result<bool> {
			output_array_arg!(disparity_map);
			input_array_arg!(black_images);
			input_array_arg!(white_images);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_StructuredLightPattern_decode_const_const_vectorLvectorLMatGGR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_int(self.as_raw_StructuredLightPattern(), pattern_images.as_raw_VectorOfVectorOfMat(), disparity_map.as_raw__OutputArray(), black_images.as_raw__InputArray(), white_images.as_raw__InputArray(), flags, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::structured_light::StructuredLightPattern]
	pub trait StructuredLightPatternTrait: core::AlgorithmTrait + crate::structured_light::StructuredLightPatternTraitConst {
		fn as_raw_mut_StructuredLightPattern(&mut self) -> *mut c_void;
	
		/// Generates the structured light pattern to project.
		/// 
		/// ## Parameters
		/// * patternImages: The generated pattern: a vector<Mat>, in which each image is a CV_8U Mat at projector's resolution.
		#[inline]
		fn generate(&mut self, pattern_images: &mut impl core::ToOutputArray) -> Result<bool> {
			output_array_arg!(pattern_images);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_structured_light_StructuredLightPattern_generate_const__OutputArrayR(self.as_raw_mut_StructuredLightPattern(), pattern_images.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Abstract base class for generating and decoding structured light patterns.
	pub struct StructuredLightPattern {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { StructuredLightPattern }
	
	impl Drop for StructuredLightPattern {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_StructuredLightPattern_delete(instance: *mut c_void); }
			unsafe { cv_StructuredLightPattern_delete(self.as_raw_mut_StructuredLightPattern()) };
		}
	}
	
	unsafe impl Send for StructuredLightPattern {}
	
	impl core::AlgorithmTraitConst for StructuredLightPattern {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for StructuredLightPattern {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::structured_light::StructuredLightPatternTraitConst for StructuredLightPattern {
		#[inline] fn as_raw_StructuredLightPattern(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::structured_light::StructuredLightPatternTrait for StructuredLightPattern {
		#[inline] fn as_raw_mut_StructuredLightPattern(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl StructuredLightPattern {
	}
	
	boxed_cast_base! { StructuredLightPattern, core::Algorithm, cv_StructuredLightPattern_to_Algorithm }
}