opencv 0.82.1

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
pub mod cudaoptflow {
	//! # Optical Flow
	use crate::{mod_prelude::*, core, sys, types};
	pub mod prelude {
		pub use { super::CUDA_DenseOpticalFlowTraitConst, super::CUDA_DenseOpticalFlowTrait, super::CUDA_SparseOpticalFlowTraitConst, super::CUDA_SparseOpticalFlowTrait, super::CUDA_NvidiaHWOpticalFlowTraitConst, super::CUDA_NvidiaHWOpticalFlowTrait, super::CUDA_BroxOpticalFlowTraitConst, super::CUDA_BroxOpticalFlowTrait, super::CUDA_SparsePyrLKOpticalFlowTraitConst, super::CUDA_SparsePyrLKOpticalFlowTrait, super::CUDA_DensePyrLKOpticalFlowTraitConst, super::CUDA_DensePyrLKOpticalFlowTrait, super::CUDA_FarnebackOpticalFlowTraitConst, super::CUDA_FarnebackOpticalFlowTrait, super::CUDA_OpticalFlowDual_TVL1TraitConst, super::CUDA_OpticalFlowDual_TVL1Trait, super::CUDA_NvidiaOpticalFlow_1_0TraitConst, super::CUDA_NvidiaOpticalFlow_1_0Trait, super::CUDA_NvidiaOpticalFlow_2_0TraitConst, super::CUDA_NvidiaOpticalFlow_2_0Trait };
	}
	
	/// < Fast perf level results in high performance and low quality
	pub const CUDA_NvidiaOpticalFlow_1_0_NV_OF_PERF_LEVEL_FAST: i32 = 20;
	pub const CUDA_NvidiaOpticalFlow_1_0_NV_OF_PERF_LEVEL_MAX: i32 = 21;
	/// < Medium perf level results in low performance and medium quality
	pub const CUDA_NvidiaOpticalFlow_1_0_NV_OF_PERF_LEVEL_MEDIUM: i32 = 10;
	/// < Slow perf level results in lowest performance and best quality
	pub const CUDA_NvidiaOpticalFlow_1_0_NV_OF_PERF_LEVEL_SLOW: i32 = 5;
	pub const CUDA_NvidiaOpticalFlow_1_0_NV_OF_PERF_LEVEL_UNDEFINED: i32 = 0;
	/// < Hint buffer grid size is 1x1.
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_HINT_VECTOR_GRID_SIZE_1: i32 = 1;
	/// < Hint buffer grid size is 2x2.
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_HINT_VECTOR_GRID_SIZE_2: i32 = 2;
	/// < Hint buffer grid size is 4x4.
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_HINT_VECTOR_GRID_SIZE_4: i32 = 4;
	/// < Hint buffer grid size is 8x8.
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_HINT_VECTOR_GRID_SIZE_8: i32 = 8;
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_HINT_VECTOR_GRID_SIZE_MAX: i32 = 9;
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED: i32 = 0;
	/// < Output buffer grid size is 1x1
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_OUTPUT_VECTOR_GRID_SIZE_1: i32 = 1;
	/// < Output buffer grid size is 2x2
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_OUTPUT_VECTOR_GRID_SIZE_2: i32 = 2;
	/// < Output buffer grid size is 4x4
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_OUTPUT_VECTOR_GRID_SIZE_4: i32 = 4;
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_OUTPUT_VECTOR_GRID_SIZE_MAX: i32 = 5;
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_OUTPUT_VECTOR_GRID_SIZE_UNDEFINED: i32 = 0;
	/// < Fast perf level results in high performance and low quality
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_PERF_LEVEL_FAST: i32 = 20;
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_PERF_LEVEL_MAX: i32 = 21;
	/// < Medium perf level results in low performance and medium quality
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_PERF_LEVEL_MEDIUM: i32 = 10;
	/// < Slow perf level results in lowest performance and best quality
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_PERF_LEVEL_SLOW: i32 = 5;
	pub const CUDA_NvidiaOpticalFlow_2_0_NV_OF_PERF_LEVEL_UNDEFINED: i32 = 0;
	/// Supported optical flow performance levels.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum CUDA_NvidiaOpticalFlow_1_0_NVIDIA_OF_PERF_LEVEL {
		NV_OF_PERF_LEVEL_UNDEFINED = 0,
		/// < Slow perf level results in lowest performance and best quality
		NV_OF_PERF_LEVEL_SLOW = 5,
		/// < Medium perf level results in low performance and medium quality
		NV_OF_PERF_LEVEL_MEDIUM = 10,
		/// < Fast perf level results in high performance and low quality
		NV_OF_PERF_LEVEL_FAST = 20,
		NV_OF_PERF_LEVEL_MAX = 21,
	}
	
	opencv_type_enum! { crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0_NVIDIA_OF_PERF_LEVEL }
	
	/// Supported grid size for hint buffer.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_HINT_VECTOR_GRID_SIZE {
		NV_OF_HINT_VECTOR_GRID_SIZE_UNDEFINED = 0,
		/// < Hint buffer grid size is 1x1.
		NV_OF_HINT_VECTOR_GRID_SIZE_1 = 1,
		/// < Hint buffer grid size is 2x2.
		NV_OF_HINT_VECTOR_GRID_SIZE_2 = 2,
		/// < Hint buffer grid size is 4x4.
		NV_OF_HINT_VECTOR_GRID_SIZE_4 = 4,
		/// < Hint buffer grid size is 8x8.
		NV_OF_HINT_VECTOR_GRID_SIZE_8 = 8,
		NV_OF_HINT_VECTOR_GRID_SIZE_MAX = 9,
	}
	
	opencv_type_enum! { crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_HINT_VECTOR_GRID_SIZE }
	
	/// Supported grid size for output buffer.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE {
		NV_OF_OUTPUT_VECTOR_GRID_SIZE_UNDEFINED = 0,
		/// < Output buffer grid size is 1x1
		NV_OF_OUTPUT_VECTOR_GRID_SIZE_1 = 1,
		/// < Output buffer grid size is 2x2
		NV_OF_OUTPUT_VECTOR_GRID_SIZE_2 = 2,
		/// < Output buffer grid size is 4x4
		NV_OF_OUTPUT_VECTOR_GRID_SIZE_4 = 4,
		NV_OF_OUTPUT_VECTOR_GRID_SIZE_MAX = 5,
	}
	
	opencv_type_enum! { crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE }
	
	/// Supported optical flow performance levels.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_PERF_LEVEL {
		NV_OF_PERF_LEVEL_UNDEFINED = 0,
		/// < Slow perf level results in lowest performance and best quality
		NV_OF_PERF_LEVEL_SLOW = 5,
		/// < Medium perf level results in low performance and medium quality
		NV_OF_PERF_LEVEL_MEDIUM = 10,
		/// < Fast perf level results in high performance and low quality
		NV_OF_PERF_LEVEL_FAST = 20,
		NV_OF_PERF_LEVEL_MAX = 21,
	}
	
	opencv_type_enum! { crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_PERF_LEVEL }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_BroxOpticalFlow]
	pub trait CUDA_BroxOpticalFlowTraitConst: crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst {
		fn as_raw_CUDA_BroxOpticalFlow(&self) -> *const c_void;
	
		#[inline]
		fn get_flow_smoothness(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_getFlowSmoothness_const(self.as_raw_CUDA_BroxOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_gradient_constancy_importance(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_getGradientConstancyImportance_const(self.as_raw_CUDA_BroxOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_pyramid_scale_factor(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_getPyramidScaleFactor_const(self.as_raw_CUDA_BroxOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// number of lagged non-linearity iterations (inner loop)
		#[inline]
		fn get_inner_iterations(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_getInnerIterations_const(self.as_raw_CUDA_BroxOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// number of warping iterations (number of pyramid levels)
		#[inline]
		fn get_outer_iterations(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_getOuterIterations_const(self.as_raw_CUDA_BroxOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// number of linear system solver iterations
		#[inline]
		fn get_solver_iterations(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_getSolverIterations_const(self.as_raw_CUDA_BroxOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_BroxOpticalFlow]
	pub trait CUDA_BroxOpticalFlowTrait: crate::cudaoptflow::CUDA_BroxOpticalFlowTraitConst + crate::cudaoptflow::CUDA_DenseOpticalFlowTrait {
		fn as_raw_mut_CUDA_BroxOpticalFlow(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_flow_smoothness(&mut self, alpha: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_setFlowSmoothness_double(self.as_raw_mut_CUDA_BroxOpticalFlow(), alpha, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_gradient_constancy_importance(&mut self, gamma: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_setGradientConstancyImportance_double(self.as_raw_mut_CUDA_BroxOpticalFlow(), gamma, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_pyramid_scale_factor(&mut self, scale_factor: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_setPyramidScaleFactor_double(self.as_raw_mut_CUDA_BroxOpticalFlow(), scale_factor, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_inner_iterations(&mut self, inner_iterations: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_setInnerIterations_int(self.as_raw_mut_CUDA_BroxOpticalFlow(), inner_iterations, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_outer_iterations(&mut self, outer_iterations: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_setOuterIterations_int(self.as_raw_mut_CUDA_BroxOpticalFlow(), outer_iterations, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_solver_iterations(&mut self, solver_iterations: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_setSolverIterations_int(self.as_raw_mut_CUDA_BroxOpticalFlow(), solver_iterations, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class computing the optical flow for two images using Brox et al Optical Flow algorithm ([Brox2004](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Brox2004)).
	pub struct CUDA_BroxOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_BroxOpticalFlow }
	
	impl Drop for CUDA_BroxOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_BroxOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_BroxOpticalFlow_delete(self.as_raw_mut_CUDA_BroxOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_BroxOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_BroxOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_BroxOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst for CUDA_BroxOpticalFlow {
		#[inline] fn as_raw_CUDA_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTrait for CUDA_BroxOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_BroxOpticalFlowTraitConst for CUDA_BroxOpticalFlow {
		#[inline] fn as_raw_CUDA_BroxOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_BroxOpticalFlowTrait for CUDA_BroxOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_BroxOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_BroxOpticalFlow {
		/// ## C++ default parameters
		/// * alpha: 0.197
		/// * gamma: 50.0
		/// * scale_factor: 0.8
		/// * inner_iterations: 5
		/// * outer_iterations: 150
		/// * solver_iterations: 10
		#[inline]
		pub fn create(alpha: f64, gamma: f64, scale_factor: f64, inner_iterations: i32, outer_iterations: i32, solver_iterations: i32) -> Result<core::Ptr<crate::cudaoptflow::CUDA_BroxOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_BroxOpticalFlow_create_double_double_double_int_int_int(alpha, gamma, scale_factor, inner_iterations, outer_iterations, solver_iterations, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_BroxOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_BroxOpticalFlow, core::Algorithm, cv_CUDA_BroxOpticalFlow_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_DenseOpticalFlow]
	pub trait CUDA_DenseOpticalFlowTraitConst: core::AlgorithmTraitConst {
		fn as_raw_CUDA_DenseOpticalFlow(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_DenseOpticalFlow]
	pub trait CUDA_DenseOpticalFlowTrait: core::AlgorithmTrait + crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst {
		fn as_raw_mut_CUDA_DenseOpticalFlow(&mut self) -> *mut c_void;
	
		/// Calculates a dense optical flow.
		/// 
		/// ## Parameters
		/// * I0: first input image.
		/// * I1: second input image of the same size and the same type as I0.
		/// * flow: computed flow image that has the same size as I0 and type CV_32FC2.
		/// * stream: Stream for the asynchronous version.
		/// 
		/// ## C++ default parameters
		/// * stream: Stream::Null()
		#[inline]
		fn calc(&mut self, i0: &impl core::ToInputArray, i1: &impl core::ToInputArray, flow: &mut impl core::ToInputOutputArray, stream: &mut core::Stream) -> Result<()> {
			input_array_arg!(i0);
			input_array_arg!(i1);
			input_output_array_arg!(flow);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DenseOpticalFlow_calc_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_StreamR(self.as_raw_mut_CUDA_DenseOpticalFlow(), i0.as_raw__InputArray(), i1.as_raw__InputArray(), flow.as_raw__InputOutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Base interface for dense optical flow algorithms.
	pub struct CUDA_DenseOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_DenseOpticalFlow }
	
	impl Drop for CUDA_DenseOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_DenseOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_DenseOpticalFlow_delete(self.as_raw_mut_CUDA_DenseOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_DenseOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_DenseOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_DenseOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst for CUDA_DenseOpticalFlow {
		#[inline] fn as_raw_CUDA_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTrait for CUDA_DenseOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_DenseOpticalFlow {
	}
	
	boxed_cast_base! { CUDA_DenseOpticalFlow, core::Algorithm, cv_CUDA_DenseOpticalFlow_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_DensePyrLKOpticalFlow]
	pub trait CUDA_DensePyrLKOpticalFlowTraitConst: crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst {
		fn as_raw_CUDA_DensePyrLKOpticalFlow(&self) -> *const c_void;
	
		#[inline]
		fn get_win_size(&self) -> Result<core::Size> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_getWinSize_const(self.as_raw_CUDA_DensePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_max_level(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_getMaxLevel_const(self.as_raw_CUDA_DensePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_num_iters(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_getNumIters_const(self.as_raw_CUDA_DensePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_use_initial_flow(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_getUseInitialFlow_const(self.as_raw_CUDA_DensePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_DensePyrLKOpticalFlow]
	pub trait CUDA_DensePyrLKOpticalFlowTrait: crate::cudaoptflow::CUDA_DenseOpticalFlowTrait + crate::cudaoptflow::CUDA_DensePyrLKOpticalFlowTraitConst {
		fn as_raw_mut_CUDA_DensePyrLKOpticalFlow(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_win_size(&mut self, win_size: core::Size) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_setWinSize_Size(self.as_raw_mut_CUDA_DensePyrLKOpticalFlow(), win_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_max_level(&mut self, max_level: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_setMaxLevel_int(self.as_raw_mut_CUDA_DensePyrLKOpticalFlow(), max_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_iters(&mut self, iters: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_setNumIters_int(self.as_raw_mut_CUDA_DensePyrLKOpticalFlow(), iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_use_initial_flow(&mut self, use_initial_flow: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_setUseInitialFlow_bool(self.as_raw_mut_CUDA_DensePyrLKOpticalFlow(), use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class used for calculating a dense optical flow.
	/// 
	/// The class can calculate an optical flow for a dense optical flow using the
	/// iterative Lucas-Kanade method with pyramids.
	pub struct CUDA_DensePyrLKOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_DensePyrLKOpticalFlow }
	
	impl Drop for CUDA_DensePyrLKOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_DensePyrLKOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_DensePyrLKOpticalFlow_delete(self.as_raw_mut_CUDA_DensePyrLKOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_DensePyrLKOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_DensePyrLKOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_DensePyrLKOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst for CUDA_DensePyrLKOpticalFlow {
		#[inline] fn as_raw_CUDA_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTrait for CUDA_DensePyrLKOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_DensePyrLKOpticalFlowTraitConst for CUDA_DensePyrLKOpticalFlow {
		#[inline] fn as_raw_CUDA_DensePyrLKOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_DensePyrLKOpticalFlowTrait for CUDA_DensePyrLKOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_DensePyrLKOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_DensePyrLKOpticalFlow {
		/// ## C++ default parameters
		/// * win_size: Size(13,13)
		/// * max_level: 3
		/// * iters: 30
		/// * use_initial_flow: false
		#[inline]
		pub fn create(win_size: core::Size, max_level: i32, iters: i32, use_initial_flow: bool) -> Result<core::Ptr<crate::cudaoptflow::CUDA_DensePyrLKOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_DensePyrLKOpticalFlow_create_Size_int_int_bool(win_size.opencv_as_extern(), max_level, iters, use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_DensePyrLKOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_DensePyrLKOpticalFlow, core::Algorithm, cv_CUDA_DensePyrLKOpticalFlow_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_FarnebackOpticalFlow]
	pub trait CUDA_FarnebackOpticalFlowTraitConst: crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst {
		fn as_raw_CUDA_FarnebackOpticalFlow(&self) -> *const c_void;
	
		#[inline]
		fn get_num_levels(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getNumLevels_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_pyr_scale(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getPyrScale_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_fast_pyramids(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getFastPyramids_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_win_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getWinSize_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_num_iters(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getNumIters_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_poly_n(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getPolyN_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_poly_sigma(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getPolySigma_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_flags(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_getFlags_const(self.as_raw_CUDA_FarnebackOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_FarnebackOpticalFlow]
	pub trait CUDA_FarnebackOpticalFlowTrait: crate::cudaoptflow::CUDA_DenseOpticalFlowTrait + crate::cudaoptflow::CUDA_FarnebackOpticalFlowTraitConst {
		fn as_raw_mut_CUDA_FarnebackOpticalFlow(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_num_levels(&mut self, num_levels: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setNumLevels_int(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), num_levels, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_pyr_scale(&mut self, pyr_scale: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setPyrScale_double(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), pyr_scale, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_fast_pyramids(&mut self, fast_pyramids: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setFastPyramids_bool(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), fast_pyramids, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_win_size(&mut self, win_size: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setWinSize_int(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), win_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_iters(&mut self, num_iters: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setNumIters_int(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), num_iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_poly_n(&mut self, poly_n: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setPolyN_int(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), poly_n, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_poly_sigma(&mut self, poly_sigma: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setPolySigma_double(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), poly_sigma, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_flags(&mut self, flags: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_setFlags_int(self.as_raw_mut_CUDA_FarnebackOpticalFlow(), flags, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class computing a dense optical flow using the Gunnar Farneback's algorithm.
	pub struct CUDA_FarnebackOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_FarnebackOpticalFlow }
	
	impl Drop for CUDA_FarnebackOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_FarnebackOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_FarnebackOpticalFlow_delete(self.as_raw_mut_CUDA_FarnebackOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_FarnebackOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_FarnebackOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_FarnebackOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst for CUDA_FarnebackOpticalFlow {
		#[inline] fn as_raw_CUDA_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTrait for CUDA_FarnebackOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_FarnebackOpticalFlowTraitConst for CUDA_FarnebackOpticalFlow {
		#[inline] fn as_raw_CUDA_FarnebackOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_FarnebackOpticalFlowTrait for CUDA_FarnebackOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_FarnebackOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_FarnebackOpticalFlow {
		/// ## C++ default parameters
		/// * num_levels: 5
		/// * pyr_scale: 0.5
		/// * fast_pyramids: false
		/// * win_size: 13
		/// * num_iters: 10
		/// * poly_n: 5
		/// * poly_sigma: 1.1
		/// * flags: 0
		#[inline]
		pub fn create(num_levels: i32, pyr_scale: f64, fast_pyramids: bool, win_size: i32, num_iters: i32, poly_n: i32, poly_sigma: f64, flags: i32) -> Result<core::Ptr<crate::cudaoptflow::CUDA_FarnebackOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_FarnebackOpticalFlow_create_int_double_bool_int_int_int_double_int(num_levels, pyr_scale, fast_pyramids, win_size, num_iters, poly_n, poly_sigma, flags, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_FarnebackOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_FarnebackOpticalFlow, core::Algorithm, cv_CUDA_FarnebackOpticalFlow_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_NvidiaHWOpticalFlow]
	pub trait CUDA_NvidiaHWOpticalFlowTraitConst: core::AlgorithmTraitConst {
		fn as_raw_CUDA_NvidiaHWOpticalFlow(&self) -> *const c_void;
	
		/// Returns grid size of output buffer as per the hardware's capability.
		#[inline]
		fn get_grid_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaHWOpticalFlow_getGridSize_const(self.as_raw_CUDA_NvidiaHWOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_NvidiaHWOpticalFlow]
	pub trait CUDA_NvidiaHWOpticalFlowTrait: core::AlgorithmTrait + crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTraitConst {
		fn as_raw_mut_CUDA_NvidiaHWOpticalFlow(&mut self) -> *mut c_void;
	
		/// Calculates Optical Flow using NVIDIA Optical Flow SDK.
		/// 
		/// * NVIDIA GPUs starting with Turing contain a dedicated hardware accelerator for computing optical flow vectors between pairs of images.
		/// * The optical flow hardware accelerator generates block-based optical flow vectors.
		/// * The size of the block depends on hardware in use, and can be queried using the function getGridSize().
		/// * The block-based flow vectors generated by the hardware can be converted to dense representation (i.e. per-pixel flow vectors) using upSampler() helper function, if needed.
		/// * The flow vectors are stored in CV_16SC2 format with x and y components of each flow vector in 16-bit signed fixed point representation S10.5.
		/// 
		/// ## Parameters
		/// * inputImage: Input image.
		/// * referenceImage: Reference image of the same size and the same type as input image.
		/// * flow: A buffer consisting of inputImage.Size() / getGridSize() flow vectors in CV_16SC2 format.
		/// * stream: It is highly recommended that CUDA streams for pre and post processing of optical flow vectors should be set once per session in create() function as a part of optical flow session creation.
		///               This parameter is left here for backward compatibility and may be removed in the future.
		///               Default value is NULL stream;
		/// * hint: Hint buffer if client provides external hints. Must have same size as flow buffer.
		///            Caller can provide flow vectors as hints for optical flow calculation.
		/// * cost: Cost buffer contains numbers indicating the confidence associated with each of the generated flow vectors.
		///            Higher the cost, lower the confidence. Cost buffer is of type CV_32SC1.
		/// 
		/// 
		/// Note:
		/// - Client must use critical sections around each calc() function if calling it from multiple threads.
		/// 
		/// ## C++ default parameters
		/// * stream: Stream::Null()
		/// * hint: cv::noArray()
		/// * cost: cv::noArray()
		#[inline]
		fn calc(&mut self, input_image: &impl core::ToInputArray, reference_image: &impl core::ToInputArray, flow: &mut impl core::ToInputOutputArray, stream: &mut core::Stream, hint: &impl core::ToInputArray, cost: &mut impl core::ToOutputArray) -> Result<()> {
			input_array_arg!(input_image);
			input_array_arg!(reference_image);
			input_output_array_arg!(flow);
			input_array_arg!(hint);
			output_array_arg!(cost);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaHWOpticalFlow_calc_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_StreamR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_CUDA_NvidiaHWOpticalFlow(), input_image.as_raw__InputArray(), reference_image.as_raw__InputArray(), flow.as_raw__InputOutputArray(), stream.as_raw_mut_Stream(), hint.as_raw__InputArray(), cost.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Releases all buffers, contexts and device pointers.
		#[inline]
		fn collect_garbage(&mut self) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaHWOpticalFlow_collectGarbage(self.as_raw_mut_CUDA_NvidiaHWOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Base Interface for optical flow algorithms using NVIDIA Optical Flow SDK.
	pub struct CUDA_NvidiaHWOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_NvidiaHWOpticalFlow }
	
	impl Drop for CUDA_NvidiaHWOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_NvidiaHWOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_NvidiaHWOpticalFlow_delete(self.as_raw_mut_CUDA_NvidiaHWOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_NvidiaHWOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_NvidiaHWOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_NvidiaHWOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTraitConst for CUDA_NvidiaHWOpticalFlow {
		#[inline] fn as_raw_CUDA_NvidiaHWOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTrait for CUDA_NvidiaHWOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_NvidiaHWOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_NvidiaHWOpticalFlow {
	}
	
	boxed_cast_base! { CUDA_NvidiaHWOpticalFlow, core::Algorithm, cv_CUDA_NvidiaHWOpticalFlow_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0]
	pub trait CUDA_NvidiaOpticalFlow_1_0TraitConst: crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTraitConst {
		fn as_raw_CUDA_NvidiaOpticalFlow_1_0(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0]
	pub trait CUDA_NvidiaOpticalFlow_1_0Trait: crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTrait + crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0TraitConst {
		fn as_raw_mut_CUDA_NvidiaOpticalFlow_1_0(&mut self) -> *mut c_void;
	
		/// The NVIDIA optical flow hardware generates flow vectors at granularity gridSize, which can be queried via function getGridSize().
		/// Upsampler() helper function converts the hardware-generated flow vectors to dense representation (1 flow vector for each pixel)
		/// using nearest neighbour upsampling method.
		/// 
		/// ## Parameters
		/// * flow: Buffer of type CV_16FC2 containing flow vectors generated by calc().
		/// * imageSize: Size of the input image in pixels for which these flow vectors were generated.
		/// * gridSize: Granularity of the optical flow vectors returned by calc() function. Can be queried using getGridSize().
		/// * upsampledFlow: Buffer of type CV_32FC2, containing upsampled flow vectors, each flow vector for 1 pixel, in the pitch-linear layout.
		#[inline]
		fn up_sampler(&mut self, flow: &impl core::ToInputArray, image_size: core::Size, grid_size: i32, upsampled_flow: &mut impl core::ToInputOutputArray) -> Result<()> {
			input_array_arg!(flow);
			input_output_array_arg!(upsampled_flow);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaOpticalFlow_1_0_upSampler_const__InputArrayR_Size_int_const__InputOutputArrayR(self.as_raw_mut_CUDA_NvidiaOpticalFlow_1_0(), flow.as_raw__InputArray(), image_size.opencv_as_extern(), grid_size, upsampled_flow.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class for computing the optical flow vectors between two images using NVIDIA Optical Flow hardware and Optical Flow SDK 1.0.
	/// 
	/// Note:
	/// - A sample application demonstrating the use of NVIDIA Optical Flow can be found at
	/// opencv_contrib_source_code/modules/cudaoptflow/samples/nvidia_optical_flow.cpp
	/// - An example application comparing accuracy and performance of NVIDIA Optical Flow with other optical flow algorithms in OpenCV can be found at
	/// opencv_contrib_source_code/modules/cudaoptflow/samples/optical_flow.cpp
	pub struct CUDA_NvidiaOpticalFlow_1_0 {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_NvidiaOpticalFlow_1_0 }
	
	impl Drop for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_NvidiaOpticalFlow_1_0_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_NvidiaOpticalFlow_1_0_delete(self.as_raw_mut_CUDA_NvidiaOpticalFlow_1_0()) };
		}
	}
	
	unsafe impl Send for CUDA_NvidiaOpticalFlow_1_0 {}
	
	impl core::AlgorithmTraitConst for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTraitConst for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline] fn as_raw_CUDA_NvidiaHWOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTrait for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline] fn as_raw_mut_CUDA_NvidiaHWOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0TraitConst for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline] fn as_raw_CUDA_NvidiaOpticalFlow_1_0(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0Trait for CUDA_NvidiaOpticalFlow_1_0 {
		#[inline] fn as_raw_mut_CUDA_NvidiaOpticalFlow_1_0(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_NvidiaOpticalFlow_1_0 {
		/// Instantiate NVIDIA Optical Flow
		/// 
		/// ## Parameters
		/// * imageSize: Size of input image in pixels.
		/// * perfPreset: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about presets.
		///                   Defaults to NV_OF_PERF_LEVEL_SLOW.
		/// * enableTemporalHints: Optional parameter. Flag to enable temporal hints. When set to true, the hardware uses the flow vectors
		///                            generated in previous call to calc() as internal hints for the current call to calc().
		///                            Useful when computing flow vectors between successive video frames. Defaults to false.
		/// * enableExternalHints: Optional Parameter. Flag to enable passing external hints buffer to calc(). Defaults to false.
		/// * enableCostBuffer: Optional Parameter. Flag to enable cost buffer output from calc(). Defaults to false.
		/// * gpuId: Optional parameter to select the GPU ID on which the optical flow should be computed. Useful in multi-GPU systems. Defaults to 0.
		/// * inputStream: Optical flow algorithm may optionally involve cuda preprocessing on the input buffers.
		///                    The input cuda stream can be used to pipeline and synchronize the cuda preprocessing tasks with OF HW engine.
		///                    If input stream is not set, the execute function will use default stream which is NULL stream;
		/// * outputStream: Optical flow algorithm may optionally involve cuda post processing on the output flow vectors.
		///                    The output cuda stream can be used to pipeline and synchronize the cuda post processing tasks with OF HW engine.
		///                    If output stream is not set, the execute function will use default stream which is NULL stream;
		/// 
		/// ## C++ default parameters
		/// * perf_preset: cv::cuda::NvidiaOpticalFlow_1_0::NV_OF_PERF_LEVEL_SLOW
		/// * enable_temporal_hints: false
		/// * enable_external_hints: false
		/// * enable_cost_buffer: false
		/// * gpu_id: 0
		/// * input_stream: Stream::Null()
		/// * output_stream: Stream::Null()
		#[inline]
		pub fn create(image_size: core::Size, perf_preset: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0_NVIDIA_OF_PERF_LEVEL, enable_temporal_hints: bool, enable_external_hints: bool, enable_cost_buffer: bool, gpu_id: i32, input_stream: &mut core::Stream, output_stream: &mut core::Stream) -> Result<core::Ptr<crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaOpticalFlow_1_0_create_Size_NVIDIA_OF_PERF_LEVEL_bool_bool_bool_int_StreamR_StreamR(image_size.opencv_as_extern(), perf_preset, enable_temporal_hints, enable_external_hints, enable_cost_buffer, gpu_id, input_stream.as_raw_mut_Stream(), output_stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_NvidiaOpticalFlow_1_0>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_NvidiaOpticalFlow_1_0, core::Algorithm, cv_CUDA_NvidiaOpticalFlow_1_0_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0]
	pub trait CUDA_NvidiaOpticalFlow_2_0TraitConst: crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTraitConst {
		fn as_raw_CUDA_NvidiaOpticalFlow_2_0(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0]
	pub trait CUDA_NvidiaOpticalFlow_2_0Trait: crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTrait + crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0TraitConst {
		fn as_raw_mut_CUDA_NvidiaOpticalFlow_2_0(&mut self) -> *mut c_void;
	
		/// convertToFloat() helper function converts the hardware-generated flow vectors to floating point representation (1 flow vector for gridSize).
		/// gridSize can be queried via function getGridSize().
		/// 
		/// ## Parameters
		/// * flow: Buffer of type CV_16FC2 containing flow vectors generated by calc().
		/// * floatFlow: Buffer of type CV_32FC2, containing flow vectors in floating point representation, each flow vector for 1 pixel per gridSize, in the pitch-linear layout.
		#[inline]
		fn convert_to_float(&mut self, flow: &impl core::ToInputArray, float_flow: &mut impl core::ToInputOutputArray) -> Result<()> {
			input_array_arg!(flow);
			input_output_array_arg!(float_flow);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaOpticalFlow_2_0_convertToFloat_const__InputArrayR_const__InputOutputArrayR(self.as_raw_mut_CUDA_NvidiaOpticalFlow_2_0(), flow.as_raw__InputArray(), float_flow.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class for computing the optical flow vectors between two images using NVIDIA Optical Flow hardware and Optical Flow SDK 2.0.
	/// 
	/// Note:
	/// - A sample application demonstrating the use of NVIDIA Optical Flow can be found at
	/// opencv_contrib_source_code/modules/cudaoptflow/samples/nvidia_optical_flow.cpp
	/// - An example application comparing accuracy and performance of NVIDIA Optical Flow with other optical flow algorithms in OpenCV can be found at
	/// opencv_contrib_source_code/modules/cudaoptflow/samples/optical_flow.cpp
	pub struct CUDA_NvidiaOpticalFlow_2_0 {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_NvidiaOpticalFlow_2_0 }
	
	impl Drop for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_NvidiaOpticalFlow_2_0_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_NvidiaOpticalFlow_2_0_delete(self.as_raw_mut_CUDA_NvidiaOpticalFlow_2_0()) };
		}
	}
	
	unsafe impl Send for CUDA_NvidiaOpticalFlow_2_0 {}
	
	impl core::AlgorithmTraitConst for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTraitConst for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline] fn as_raw_CUDA_NvidiaHWOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaHWOpticalFlowTrait for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline] fn as_raw_mut_CUDA_NvidiaHWOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0TraitConst for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline] fn as_raw_CUDA_NvidiaOpticalFlow_2_0(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0Trait for CUDA_NvidiaOpticalFlow_2_0 {
		#[inline] fn as_raw_mut_CUDA_NvidiaOpticalFlow_2_0(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_NvidiaOpticalFlow_2_0 {
		/// Instantiate NVIDIA Optical Flow
		/// 
		/// ## Parameters
		/// * imageSize: Size of input image in pixels.
		/// * perfPreset: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about presets.
		///                   Defaults to NV_OF_PERF_LEVEL_SLOW.
		/// * outputGridSize: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about output grid sizes.
		///                       Defaults to NV_OF_OUTPUT_VECTOR_GRID_SIZE_1.
		/// * hintGridSize: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about hint grid sizes.
		///                    Defaults to NV_OF_HINT_VECTOR_GRID_SIZE_1.
		/// * enableTemporalHints: Optional parameter. Flag to enable temporal hints. When set to true, the hardware uses the flow vectors
		///                            generated in previous call to calc() as internal hints for the current call to calc().
		///                            Useful when computing flow vectors between successive video frames. Defaults to false.
		/// * enableExternalHints: Optional Parameter. Flag to enable passing external hints buffer to calc(). Defaults to false.
		/// * enableCostBuffer: Optional Parameter. Flag to enable cost buffer output from calc(). Defaults to false.
		/// * gpuId: Optional parameter to select the GPU ID on which the optical flow should be computed. Useful in multi-GPU systems. Defaults to 0.
		/// * inputStream: Optical flow algorithm may optionally involve cuda preprocessing on the input buffers.
		///                    The input cuda stream can be used to pipeline and synchronize the cuda preprocessing tasks with OF HW engine.
		///                    If input stream is not set, the execute function will use default stream which is NULL stream;
		/// * outputStream: Optical flow algorithm may optionally involve cuda post processing on the output flow vectors.
		///                    The output cuda stream can be used to pipeline and synchronize the cuda post processing tasks with OF HW engine.
		///                    If output stream is not set, the execute function will use default stream which is NULL stream;
		/// 
		/// ## C++ default parameters
		/// * perf_preset: cv::cuda::NvidiaOpticalFlow_2_0::NV_OF_PERF_LEVEL_SLOW
		/// * output_grid_size: cv::cuda::NvidiaOpticalFlow_2_0::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1
		/// * hint_grid_size: cv::cuda::NvidiaOpticalFlow_2_0::NV_OF_HINT_VECTOR_GRID_SIZE_1
		/// * enable_temporal_hints: false
		/// * enable_external_hints: false
		/// * enable_cost_buffer: false
		/// * gpu_id: 0
		/// * input_stream: Stream::Null()
		/// * output_stream: Stream::Null()
		#[inline]
		pub fn create(image_size: core::Size, perf_preset: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_PERF_LEVEL, output_grid_size: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE, hint_grid_size: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_HINT_VECTOR_GRID_SIZE, enable_temporal_hints: bool, enable_external_hints: bool, enable_cost_buffer: bool, gpu_id: i32, input_stream: &mut core::Stream, output_stream: &mut core::Stream) -> Result<core::Ptr<crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaOpticalFlow_2_0_create_Size_NVIDIA_OF_PERF_LEVEL_NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE_NVIDIA_OF_HINT_VECTOR_GRID_SIZE_bool_bool_bool_int_StreamR_StreamR(image_size.opencv_as_extern(), perf_preset, output_grid_size, hint_grid_size, enable_temporal_hints, enable_external_hints, enable_cost_buffer, gpu_id, input_stream.as_raw_mut_Stream(), output_stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
		/// Instantiate NVIDIA Optical Flow with ROI Feature
		/// 
		/// ## Parameters
		/// * imageSize: Size of input image in pixels.
		/// * roiData: Pointer to ROI data.
		/// * perfPreset: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about presets.
		///                   Defaults to NV_OF_PERF_LEVEL_SLOW.
		/// * outputGridSize: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about output grid sizes.
		///                       Defaults to NV_OF_OUTPUT_VECTOR_GRID_SIZE_1.
		/// * hintGridSize: Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about hint grid sizes.
		///                    Defaults to NV_OF_HINT_VECTOR_GRID_SIZE_1.
		/// * enableTemporalHints: Optional parameter. Flag to enable temporal hints. When set to true, the hardware uses the flow vectors
		///                            generated in previous call to calc() as internal hints for the current call to calc().
		///                            Useful when computing flow vectors between successive video frames. Defaults to false.
		/// * enableExternalHints: Optional Parameter. Flag to enable passing external hints buffer to calc(). Defaults to false.
		/// * enableCostBuffer: Optional Parameter. Flag to enable cost buffer output from calc(). Defaults to false.
		/// * gpuId: Optional parameter to select the GPU ID on which the optical flow should be computed. Useful in multi-GPU systems. Defaults to 0.
		/// * inputStream: Optical flow algorithm may optionally involve cuda preprocessing on the input buffers.
		///                    The input cuda stream can be used to pipeline and synchronize the cuda preprocessing tasks with OF HW engine.
		///                    If input stream is not set, the execute function will use default stream which is NULL stream;
		/// * outputStream: Optical flow algorithm may optionally involve cuda post processing on the output flow vectors.
		///                    The output cuda stream can be used to pipeline and synchronize the cuda post processing tasks with OF HW engine.
		///                    If output stream is not set, the execute function will use default stream which is NULL stream;
		/// 
		/// ## C++ default parameters
		/// * perf_preset: cv::cuda::NvidiaOpticalFlow_2_0::NV_OF_PERF_LEVEL_SLOW
		/// * output_grid_size: cv::cuda::NvidiaOpticalFlow_2_0::NV_OF_OUTPUT_VECTOR_GRID_SIZE_1
		/// * hint_grid_size: cv::cuda::NvidiaOpticalFlow_2_0::NV_OF_HINT_VECTOR_GRID_SIZE_1
		/// * enable_temporal_hints: false
		/// * enable_external_hints: false
		/// * enable_cost_buffer: false
		/// * gpu_id: 0
		/// * input_stream: Stream::Null()
		/// * output_stream: Stream::Null()
		#[inline]
		pub fn create_1(image_size: core::Size, mut roi_data: core::Vector<core::Rect>, perf_preset: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_PERF_LEVEL, output_grid_size: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE, hint_grid_size: crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0_NVIDIA_OF_HINT_VECTOR_GRID_SIZE, enable_temporal_hints: bool, enable_external_hints: bool, enable_cost_buffer: bool, gpu_id: i32, input_stream: &mut core::Stream, output_stream: &mut core::Stream) -> Result<core::Ptr<crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_NvidiaOpticalFlow_2_0_create_Size_vectorLRectG_NVIDIA_OF_PERF_LEVEL_NVIDIA_OF_OUTPUT_VECTOR_GRID_SIZE_NVIDIA_OF_HINT_VECTOR_GRID_SIZE_bool_bool_bool_int_StreamR_StreamR(image_size.opencv_as_extern(), roi_data.as_raw_mut_VectorOfRect(), perf_preset, output_grid_size, hint_grid_size, enable_temporal_hints, enable_external_hints, enable_cost_buffer, gpu_id, input_stream.as_raw_mut_Stream(), output_stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_NvidiaOpticalFlow_2_0>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_NvidiaOpticalFlow_2_0, core::Algorithm, cv_CUDA_NvidiaOpticalFlow_2_0_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1]
	pub trait CUDA_OpticalFlowDual_TVL1TraitConst: crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst {
		fn as_raw_CUDA_OpticalFlowDual_TVL1(&self) -> *const c_void;
	
		/// Time step of the numerical scheme.
		#[inline]
		fn get_tau(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getTau_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Weight parameter for the data term, attachment parameter.
		/// This is the most relevant parameter, which determines the smoothness of the output.
		/// The smaller this parameter is, the smoother the solutions we obtain.
		/// It depends on the range of motions of the images, so its value should be adapted to each image sequence.
		#[inline]
		fn get_lambda(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getLambda_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Weight parameter for (u - v)^2, tightness parameter.
		/// It serves as a link between the attachment and the regularization terms.
		/// In theory, it should have a small value in order to maintain both parts in correspondence.
		/// The method is stable for a large range of values of this parameter.
		#[inline]
		fn get_gamma(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getGamma_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// parameter used for motion estimation. It adds a variable allowing for illumination variations
		/// Set this parameter to 1. if you have varying illumination.
		/// See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
		/// Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
		#[inline]
		fn get_theta(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getTheta_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Number of scales used to create the pyramid of images.
		#[inline]
		fn get_num_scales(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getNumScales_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Number of warpings per scale.
		/// Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
		/// This is a parameter that assures the stability of the method.
		/// It also affects the running time, so it is a compromise between speed and accuracy.
		#[inline]
		fn get_num_warps(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getNumWarps_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
		/// A small value will yield more accurate solutions at the expense of a slower convergence.
		#[inline]
		fn get_epsilon(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getEpsilon_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		/// Stopping criterion iterations number used in the numerical scheme.
		#[inline]
		fn get_num_iterations(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getNumIterations_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_scale_step(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getScaleStep_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_use_initial_flow(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_getUseInitialFlow_const(self.as_raw_CUDA_OpticalFlowDual_TVL1(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1]
	pub trait CUDA_OpticalFlowDual_TVL1Trait: crate::cudaoptflow::CUDA_DenseOpticalFlowTrait + crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1TraitConst {
		fn as_raw_mut_CUDA_OpticalFlowDual_TVL1(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_tau(&mut self, tau: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setTau_double(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), tau, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_lambda(&mut self, lambda: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setLambda_double(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), lambda, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_gamma(&mut self, gamma: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setGamma_double(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), gamma, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_theta(&mut self, theta: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setTheta_double(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), theta, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_scales(&mut self, nscales: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setNumScales_int(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), nscales, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_warps(&mut self, warps: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setNumWarps_int(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), warps, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_epsilon(&mut self, epsilon: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setEpsilon_double(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), epsilon, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_iterations(&mut self, iterations: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setNumIterations_int(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), iterations, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_scale_step(&mut self, scale_step: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setScaleStep_double(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), scale_step, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_use_initial_flow(&mut self, use_initial_flow: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_setUseInitialFlow_bool(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1(), use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method.
	/// 
	/// 
	/// Note: C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
	/// 
	/// Note: Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
	pub struct CUDA_OpticalFlowDual_TVL1 {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_OpticalFlowDual_TVL1 }
	
	impl Drop for CUDA_OpticalFlowDual_TVL1 {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_OpticalFlowDual_TVL1_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_OpticalFlowDual_TVL1_delete(self.as_raw_mut_CUDA_OpticalFlowDual_TVL1()) };
		}
	}
	
	unsafe impl Send for CUDA_OpticalFlowDual_TVL1 {}
	
	impl core::AlgorithmTraitConst for CUDA_OpticalFlowDual_TVL1 {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_OpticalFlowDual_TVL1 {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTraitConst for CUDA_OpticalFlowDual_TVL1 {
		#[inline] fn as_raw_CUDA_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_DenseOpticalFlowTrait for CUDA_OpticalFlowDual_TVL1 {
		#[inline] fn as_raw_mut_CUDA_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1TraitConst for CUDA_OpticalFlowDual_TVL1 {
		#[inline] fn as_raw_CUDA_OpticalFlowDual_TVL1(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1Trait for CUDA_OpticalFlowDual_TVL1 {
		#[inline] fn as_raw_mut_CUDA_OpticalFlowDual_TVL1(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_OpticalFlowDual_TVL1 {
		/// ## C++ default parameters
		/// * tau: 0.25
		/// * lambda: 0.15
		/// * theta: 0.3
		/// * nscales: 5
		/// * warps: 5
		/// * epsilon: 0.01
		/// * iterations: 300
		/// * scale_step: 0.8
		/// * gamma: 0.0
		/// * use_initial_flow: false
		#[inline]
		pub fn create(tau: f64, lambda: f64, theta: f64, nscales: i32, warps: i32, epsilon: f64, iterations: i32, scale_step: f64, gamma: f64, use_initial_flow: bool) -> Result<core::Ptr<crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_OpticalFlowDual_TVL1_create_double_double_double_int_int_double_int_double_double_bool(tau, lambda, theta, nscales, warps, epsilon, iterations, scale_step, gamma, use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_OpticalFlowDual_TVL1>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_OpticalFlowDual_TVL1, core::Algorithm, cv_CUDA_OpticalFlowDual_TVL1_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_SparseOpticalFlow]
	pub trait CUDA_SparseOpticalFlowTraitConst: core::AlgorithmTraitConst {
		fn as_raw_CUDA_SparseOpticalFlow(&self) -> *const c_void;
	
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_SparseOpticalFlow]
	pub trait CUDA_SparseOpticalFlowTrait: core::AlgorithmTrait + crate::cudaoptflow::CUDA_SparseOpticalFlowTraitConst {
		fn as_raw_mut_CUDA_SparseOpticalFlow(&mut self) -> *mut c_void;
	
		/// Calculates a sparse optical flow.
		/// 
		/// ## Parameters
		/// * prevImg: First input image.
		/// * nextImg: Second input image of the same size and the same type as prevImg.
		/// * prevPts: Vector of 2D points for which the flow needs to be found.
		/// * nextPts: Output vector of 2D points containing the calculated new positions of input features in the second image.
		/// * status: Output status vector. Each element of the vector is set to 1 if the
		///               flow for the corresponding features has been found. Otherwise, it is set to 0.
		/// * err: Optional output vector that contains error response for each point (inverse confidence).
		/// * stream: Stream for the asynchronous version.
		/// 
		/// ## C++ default parameters
		/// * err: cv::noArray()
		/// * stream: Stream::Null()
		#[inline]
		fn calc(&mut self, prev_img: &impl core::ToInputArray, next_img: &impl core::ToInputArray, prev_pts: &impl core::ToInputArray, next_pts: &mut impl core::ToInputOutputArray, status: &mut impl core::ToOutputArray, err: &mut impl core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
			input_array_arg!(prev_img);
			input_array_arg!(next_img);
			input_array_arg!(prev_pts);
			input_output_array_arg!(next_pts);
			output_array_arg!(status);
			output_array_arg!(err);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparseOpticalFlow_calc_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_CUDA_SparseOpticalFlow(), prev_img.as_raw__InputArray(), next_img.as_raw__InputArray(), prev_pts.as_raw__InputArray(), next_pts.as_raw__InputOutputArray(), status.as_raw__OutputArray(), err.as_raw__OutputArray(), stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Base interface for sparse optical flow algorithms.
	pub struct CUDA_SparseOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_SparseOpticalFlow }
	
	impl Drop for CUDA_SparseOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_SparseOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_SparseOpticalFlow_delete(self.as_raw_mut_CUDA_SparseOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_SparseOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_SparseOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_SparseOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_SparseOpticalFlowTraitConst for CUDA_SparseOpticalFlow {
		#[inline] fn as_raw_CUDA_SparseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_SparseOpticalFlowTrait for CUDA_SparseOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_SparseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_SparseOpticalFlow {
	}
	
	boxed_cast_base! { CUDA_SparseOpticalFlow, core::Algorithm, cv_CUDA_SparseOpticalFlow_to_Algorithm }
	
	/// Constant methods for [crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlow]
	pub trait CUDA_SparsePyrLKOpticalFlowTraitConst: crate::cudaoptflow::CUDA_SparseOpticalFlowTraitConst {
		fn as_raw_CUDA_SparsePyrLKOpticalFlow(&self) -> *const c_void;
	
		#[inline]
		fn get_win_size(&self) -> Result<core::Size> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_getWinSize_const(self.as_raw_CUDA_SparsePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_max_level(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_getMaxLevel_const(self.as_raw_CUDA_SparsePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_num_iters(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_getNumIters_const(self.as_raw_CUDA_SparsePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn get_use_initial_flow(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_getUseInitialFlow_const(self.as_raw_CUDA_SparsePyrLKOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Mutable methods for [crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlow]
	pub trait CUDA_SparsePyrLKOpticalFlowTrait: crate::cudaoptflow::CUDA_SparseOpticalFlowTrait + crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlowTraitConst {
		fn as_raw_mut_CUDA_SparsePyrLKOpticalFlow(&mut self) -> *mut c_void;
	
		#[inline]
		fn set_win_size(&mut self, win_size: core::Size) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_setWinSize_Size(self.as_raw_mut_CUDA_SparsePyrLKOpticalFlow(), win_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_max_level(&mut self, max_level: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_setMaxLevel_int(self.as_raw_mut_CUDA_SparsePyrLKOpticalFlow(), max_level, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_num_iters(&mut self, iters: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_setNumIters_int(self.as_raw_mut_CUDA_SparsePyrLKOpticalFlow(), iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
		#[inline]
		fn set_use_initial_flow(&mut self, use_initial_flow: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_setUseInitialFlow_bool(self.as_raw_mut_CUDA_SparsePyrLKOpticalFlow(), use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		
	}
	
	/// Class used for calculating a sparse optical flow.
	/// 
	/// The class can calculate an optical flow for a sparse feature set using the
	/// iterative Lucas-Kanade method with pyramids.
	/// ## See also
	/// calcOpticalFlowPyrLK
	/// 
	/// 
	/// Note:
	///    *   An example of the Lucas Kanade optical flow algorithm can be found at
	///        opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
	pub struct CUDA_SparsePyrLKOpticalFlow {
		ptr: *mut c_void
	}
	
	opencv_type_boxed! { CUDA_SparsePyrLKOpticalFlow }
	
	impl Drop for CUDA_SparsePyrLKOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			extern "C" { fn cv_CUDA_SparsePyrLKOpticalFlow_delete(instance: *mut c_void); }
			unsafe { cv_CUDA_SparsePyrLKOpticalFlow_delete(self.as_raw_mut_CUDA_SparsePyrLKOpticalFlow()) };
		}
	}
	
	unsafe impl Send for CUDA_SparsePyrLKOpticalFlow {}
	
	impl core::AlgorithmTraitConst for CUDA_SparsePyrLKOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	
	impl core::AlgorithmTrait for CUDA_SparsePyrLKOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_SparseOpticalFlowTraitConst for CUDA_SparsePyrLKOpticalFlow {
		#[inline] fn as_raw_CUDA_SparseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_SparseOpticalFlowTrait for CUDA_SparsePyrLKOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_SparseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlowTraitConst for CUDA_SparsePyrLKOpticalFlow {
		#[inline] fn as_raw_CUDA_SparsePyrLKOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	
	impl crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlowTrait for CUDA_SparsePyrLKOpticalFlow {
		#[inline] fn as_raw_mut_CUDA_SparsePyrLKOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	
	impl CUDA_SparsePyrLKOpticalFlow {
		/// ## C++ default parameters
		/// * win_size: Size(21,21)
		/// * max_level: 3
		/// * iters: 30
		/// * use_initial_flow: false
		#[inline]
		pub fn create(win_size: core::Size, max_level: i32, iters: i32, use_initial_flow: bool) -> Result<core::Ptr<crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_cuda_SparsePyrLKOpticalFlow_create_Size_int_int_bool(win_size.opencv_as_extern(), max_level, iters, use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(unsafe ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::cudaoptflow::CUDA_SparsePyrLKOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		
	}
	
	boxed_cast_base! { CUDA_SparsePyrLKOpticalFlow, core::Algorithm, cv_CUDA_SparsePyrLKOpticalFlow_to_Algorithm }
}