Trait rust_bert::pipelines::generation_utils::LMHeadModel [−][src]
pub trait LMHeadModel { fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>; }
Expand description
Language Model trait
Shared trait between language generation models (e.g. GPT2, GPT, BART) used in language generation pipelines.
Required methods
fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
Expand description
Forward pass through the model. Example provided for GPT2.
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of size n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head). When provided, these are concatenated with the current input keys and values.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)token_type_ids
- Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
output
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positionpast
-Option<Vec<Tensor>>
of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head)hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::gpt2::{GPT2LMHeadModel, Gpt2Config}; use rust_bert::pipelines::generation_utils::{Cache, LMHeadModel}; let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let mut past: Vec<Tensor> = Vec::with_capacity(config.n_layer as usize); for _ in 0..config.n_layer as usize { past.push(Tensor::rand( &[ 2, batch_size, config.n_head, past_sequence_length, config.n_embd / config.n_head, ], (Double, device), )) } let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)) .expand(&[batch_size, sequence_length], true); let model_output = no_grad(|| { gpt2_model .forward_t( &Some(input_tensor), Cache::GPT2Cache(Some(past)), &Some(attention_mask), &Some(token_type_ids), &Some(position_ids), &None, None, &None, false, ) .unwrap() });
Implementors
impl LMHeadModel for BartForConditionalGeneration
[src]
impl LMHeadModel for BartForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Unused for BARTtoken_type_ids
- Unused for BARTposition_ids
- Unused for BARTencoder_outputs
- Optional tensor of shape (batch size, source_sequence_length, hidden_size). When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialized with a BOS token)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-BartCache
made ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::pipelines::generation_utils::LMHeadModel; use rust_bert::bart::{BartForConditionalGeneration, BartConfig}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { bart_model .forward_t(Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, false) });
impl LMHeadModel for GPT2LMHeadModel
[src]
impl LMHeadModel for GPT2LMHeadModel
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of size n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head). When provided, these are concatenated with the current input keys and values.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)token_type_ids
- Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input._encoder_outputs
- Optional tensor of shape (batch size, source_sequence_length, encoder_hidden_dim). Unused for GPT2_decoder_input_ids
- Optional tensor of shape (batch size, target_sequence_length). Unused for GPT2train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-Gpt2Cache
made ofOption<Vec<Tensor>>
of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head)
Example
use rust_bert::gpt2::{GPT2LMHeadModel, Gpt2Config}; use rust_bert::pipelines::generation_utils::{Cache, LMHeadModel}; let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let mut past: Vec<Tensor> = Vec::with_capacity(config.n_layer as usize); for _ in 0..config.n_layer as usize { past.push(Tensor::rand( &[ 2, batch_size, config.n_head, past_sequence_length, config.n_embd / config.n_head, ], (Double, device), )) } let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)) .expand(&[batch_size, sequence_length], true); let model_output = no_grad(|| { gpt2_model .forward_t( &Some(input_tensor), Cache::GPT2Cache(Some(past)), &Some(attention_mask), &Some(token_type_ids), &Some(position_ids), &None, None, &None, false, ) .unwrap() });
impl LMHeadModel for GptNeoForCausalLM
[src]
impl LMHeadModel for GptNeoForCausalLM
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
impl LMHeadModel for MarianForConditionalGeneration
[src]
impl LMHeadModel for MarianForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Unused for BARTattention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Unused for BARTtoken_type_ids
- Unused for BARTposition_ids
- Unused for BARTencoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialiazed with a BOS token)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-BartCache
made ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::bart::BartConfig; use rust_bert::marian::MarianForConditionalGeneration; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { marian_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, false, ) });
impl LMHeadModel for OpenAIGPTLMHeadModel
[src]
impl LMHeadModel for OpenAIGPTLMHeadModel
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
_layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
_layer_past: Cache,
attention_mask: &Option<Tensor>,
token_type_ids: &Option<Tensor>,
position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)_layer_past
- Unused for GPTattention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)token_type_ids
- Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input._encoder_outputs
- Unused for GPT_decoder_input_ids
- Unused for GPTtrain
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
- Noneencoder_hidden_states
- Noneall_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::gpt2::Gpt2Config; use rust_bert::openai_gpt::OpenAIGPTLMHeadModel; use rust_bert::pipelines::generation_utils::{LMHeadModel, Cache}; let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true); let model_output = no_grad(|| { gpt_model .forward_t(&Some(input_tensor), Cache::None, &Some(attention_mask), &Some(token_type_ids), &Some(position_ids), &None, None, &None, false).unwrap() });
impl LMHeadModel for PegasusForConditionalGeneration
[src]
impl LMHeadModel for PegasusForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Unused for Pegasustoken_type_ids
- Unused for Pegasusposition_ids
- Unused for Pegasusencoder_outputs
- Optional tensor of shape (batch size, source_sequence_length, hidden_size). When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialized with a BOS token)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-BartCache
made ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::pipelines::generation_utils::LMHeadModel; use rust_bert::pegasus::{PegasusForConditionalGeneration, PegasusConfig}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { pegasus_model .forward_t(Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, false) });
impl LMHeadModel for ProphetNetForConditionalGeneration
[src]
impl LMHeadModel for ProphetNetForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
impl LMHeadModel for ReformerModelWithLMHead
[src]
impl LMHeadModel for ReformerModelWithLMHead
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
impl LMHeadModel for T5ForConditionalGeneration
[src]
impl LMHeadModel for T5ForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Unused for T5token_type_ids
- Unused for T5position_ids
- Unused for T5encoder_outputs
- Optional tensor of shape (batch size, source_sequence_length, hidden_size). When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length).train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-T5Cache
made ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { t5_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, None, None, false, ) });
impl LMHeadModel for XLNetLMHeadModel
[src]
impl LMHeadModel for XLNetLMHeadModel
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask
- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping
- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids
- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing optionalLayerStates
containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-XLNetCache
made ofOption<Vec<Option<LayerState>>>
of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous content
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device)); let _ = target_mapping.narrow(2, 3, 1).fill_(1.0); let model_output = no_grad(|| { xlnet_model.forward_t( Some(&input_tensor), Some(&attention_mask), None, Some(&target_mapping), None, None, None, false, ) });