Struct rust_bert::reformer::ReformerModelWithLMHead [−][src]
pub struct ReformerModelWithLMHead { /* fields omitted */ }
Expand description
Reformer Model for text generation
Reformer model with a vocabulary decoding head It is made of the following blocks:
reformer
:ReformerModel
Base Reformer modellm_head
:ReformerLMHead
projecting hidden states to the vocabulary dimension
Implementations
impl ReformerModelWithLMHead
[src]
impl ReformerModelWithLMHead
[src]pub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerModelWithLMHead, RustBertError> where
P: Borrow<Path<'p>>,
[src]
pub fn new<'p, P>(
p: P,
config: &ReformerConfig
) -> Result<ReformerModelWithLMHead, RustBertError> where
P: Borrow<Path<'p>>,
[src]Build a new ReformerModelWithLMHead
Arguments
p
- Variable store path for the root of the BART modelconfig
-ReformerConfig
object defining the model architecture
Example
use rust_bert::reformer::{ReformerConfig, ReformerModelWithLMHead}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = ReformerConfig::from_file(config_path); let reformer_model: ReformerModelWithLMHead = ReformerModelWithLMHead::new(&p.root(), &config).unwrap();
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
old_layer_states: Option<Vec<Option<LayerState>>>,
train: bool
) -> Result<ReformerLMModelOutput, RustBertError>
[src]
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
attention_mask: Option<&Tensor>,
num_hashes: Option<i64>,
old_layer_states: Option<Vec<Option<LayerState>>>,
train: bool
) -> Result<ReformerLMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). Must be provided when no pre-computed embeddings are given.position_ids
- Optional input tensor of shape (batch size, sequence_length). If not provided will be calculated on the fly starting from position 0.input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings_dim). Must be provided when no input ids are given.attention_mask
- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.num_hashes
- Optional specification of the number of hashes to use. If not provided will use the value provided in the model configuration.old_layer_states
- Optional cached input (Option<Vec<Option<LayerState>>>
) containing previous values for the cached states and buckets.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
ReformerLMModelOutput
containing:logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocabulary itemall_hidden_states
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)cache
-Option<Vec<Option<LayerState>>>
of length n_layer containing values for the states and buckets for future use.
Example
use rust_bert::reformer::{ReformerConfig, ReformerModelWithLMHead}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let input_positions = Tensor::arange(sequence_length, (Kind::Int64, device)).unsqueeze(0).expand(&[batch_size, sequence_length], true); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let model_output = no_grad(|| { reformer_model.forward_t( Some(&input_tensor), Some(&input_positions), None, Some(&attention_mask), Some(4), None, false, ) });
Trait Implementations
impl LMHeadModel for ReformerModelWithLMHead
[src]
impl LMHeadModel for ReformerModelWithLMHead
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
_decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model. Example provided for GPT2. Read more
impl LanguageGenerator<ReformerModelWithLMHead, ReformerVocab, ReformerTokenizer> for ReformerGenerator
[src]
impl LanguageGenerator<ReformerModelWithLMHead, ReformerVocab, ReformerTokenizer> for ReformerGenerator
[src]fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]
fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]Generate text based on a vector of promp texts. Read more
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
[src]
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
Auto Trait Implementations
impl RefUnwindSafe for ReformerModelWithLMHead
impl Send for ReformerModelWithLMHead
impl !Sync for ReformerModelWithLMHead
impl Unpin for ReformerModelWithLMHead
impl UnwindSafe for ReformerModelWithLMHead
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]pub fn borrow_mut(&mut self) -> &mut T
[src]
pub fn borrow_mut(&mut self) -> &mut T
[src]Mutably borrows from an owned value. Read more
impl<T> Instrument for T
[src]
impl<T> Instrument for T
[src]fn instrument(self, span: Span) -> Instrumented<Self>
[src]
fn instrument(self, span: Span) -> Instrumented<Self>
[src]Instruments this type with the provided Span
, returning an
Instrumented
wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>
[src]
fn in_current_span(self) -> Instrumented<Self>
[src]impl<T> Pointable for T
impl<T> Pointable for T
impl<T> Same<T> for T
impl<T> Same<T> for T
type Output = T
type Output = T
Should always be Self
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,