Struct rust_bert::marian::MarianForConditionalGeneration [−][src]
pub struct MarianForConditionalGeneration { /* fields omitted */ }
Expand description
Marian Model for conditional generation
Marian model with a vocabulary decoding head It is made of the following blocks:
base_model
:BartModel
Base BART modellinear
: Linear layer with bias tied to the weights of the token id embeddings
Implementations
impl MarianForConditionalGeneration
[src]
impl MarianForConditionalGeneration
[src]pub fn new<'p, P>(p: P, config: &BartConfig) -> MarianForConditionalGeneration where
P: Borrow<Path<'p>>,
[src]
pub fn new<'p, P>(p: P, config: &BartConfig) -> MarianForConditionalGeneration where
P: Borrow<Path<'p>>,
[src]Build a new MarianForConditionalGeneration
Arguments
p
- Variable store path for the root of the BART modelconfig
-BartConfig
object defining the model architecturegeneration_mode
- flag indicating if the model should run in generation mode (a decoder start token must then be provided)
Example
use rust_bert::bart::{BartConfig, BartForConditionalGeneration}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = BartConfig::from_file(config_path); let bart: BartForConditionalGeneration = BartForConditionalGeneration::new(&p.root() / "bart", &config);
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> BartModelOutput
[src]
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> BartModelOutput
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). Must be provided when not running in generation modeattention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialiazed with a BOS token)decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
BartModelOutput
containing:decoder_output
-Tensor
of shape (batch size, target_sequence_length, vocab_size) representing the logits for each vocabulary item and positioncache
-(Option<Tensor>, Option<Vec<&LayerState, &LayerState>>)
of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::bart::BartConfig; use rust_bert::marian::MarianForConditionalGeneration; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { marian_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, false, ) });
pub fn encode(
&self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>
) -> Tensor
[src]
&self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>
) -> Tensor
Trait Implementations
impl LMHeadModel for MarianForConditionalGeneration
[src]
impl LMHeadModel for MarianForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Unused for BARTattention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Unused for BARTtoken_type_ids
- Unused for BARTposition_ids
- Unused for BARTencoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialiazed with a BOS token)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-BartCache
made ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::bart::BartConfig; use rust_bert::marian::MarianForConditionalGeneration; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { marian_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, false, ) });
impl LanguageGenerator<MarianForConditionalGeneration, MarianVocab, MarianTokenizer> for MarianGenerator
[src]
impl LanguageGenerator<MarianForConditionalGeneration, MarianVocab, MarianTokenizer> for MarianGenerator
[src]fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]
fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]Generate text based on a vector of promp texts. Read more
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
[src]
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
Auto Trait Implementations
impl RefUnwindSafe for MarianForConditionalGeneration
impl Send for MarianForConditionalGeneration
impl !Sync for MarianForConditionalGeneration
impl Unpin for MarianForConditionalGeneration
impl UnwindSafe for MarianForConditionalGeneration
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]pub fn borrow_mut(&mut self) -> &mut T
[src]
pub fn borrow_mut(&mut self) -> &mut T
[src]Mutably borrows from an owned value. Read more
impl<T> Instrument for T
[src]
impl<T> Instrument for T
[src]fn instrument(self, span: Span) -> Instrumented<Self>
[src]
fn instrument(self, span: Span) -> Instrumented<Self>
[src]Instruments this type with the provided Span
, returning an
Instrumented
wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>
[src]
fn in_current_span(self) -> Instrumented<Self>
[src]impl<T> Pointable for T
impl<T> Pointable for T
impl<T> Same<T> for T
impl<T> Same<T> for T
type Output = T
type Output = T
Should always be Self
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,