Struct rust_bert::t5::T5ForConditionalGeneration [−][src]
pub struct T5ForConditionalGeneration { /* fields omitted */ }
Expand description
T5 Model for conditional generation
T5 model with a vocabulary decoding head It is made of the following blocks:
base_model
:T5Model
Base T5 modelmodel_dim
:f64
representation of the model dimension for scaling of the generated logits
Implementations
impl T5ForConditionalGeneration
[src]
impl T5ForConditionalGeneration
[src]pub fn new<'p, P>(
p: P,
config: &T5Config,
output_attentions: bool,
output_hidden_states: bool
) -> T5ForConditionalGeneration where
P: Borrow<Path<'p>>,
[src]
pub fn new<'p, P>(
p: P,
config: &T5Config,
output_attentions: bool,
output_hidden_states: bool
) -> T5ForConditionalGeneration where
P: Borrow<Path<'p>>,
[src]Build a new T5ForConditionalGeneration
Arguments
p
- Variable store path for the root of the BART modelconfig
-T5Config
object defining the model architectureoutput_attention
- flag indicating if the model should output the attention weights of intermediate layersoutput_hidden_states
- flag indicating if the model should output the hidden states weights of intermediate layers
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = T5Config::from_file(config_path); let output_attentions = true; let output_hidden_states = true; let t5 = T5ForConditionalGeneration::new( &p.root() / "t5", &config, output_attentions, output_hidden_states, );
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<Tensor>,
decoder_input_embeds: Option<Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> T5ModelOutput
[src]
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
input_embeds: Option<Tensor>,
decoder_input_embeds: Option<Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool
) -> T5ModelOutput
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). This ordecoder_input_embeds
must be provided.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.input_embeds
- Optional input tensor of shape (batch size, source_sequence_length, embeddings dimension). This orinput_ids
must be provided.decoder_input_embeds
- Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This ordecoder_input_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
T5ModelOutput
containing:decoder_output
-Tensor
of shape (batch size, target_sequence_length, vocab_size) representing the logits for each sequence position and vocabulary itemencoder_hidden_states
-Tensor
of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden statecache
-Option<Vec<(Option<Vec<LayerState, LayerState>>)>>
of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { t5_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, None, None, false, ) });
pub fn encode(
&self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>
) -> Tensor
[src]
&self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>
) -> Tensor
Trait Implementations
impl LMHeadModel for T5ForConditionalGeneration
[src]
impl LMHeadModel for T5ForConditionalGeneration
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
cache: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (seeinput_embeds
)layer_past
- Optional vector of lengthnum_layers
containing tuples of optionalLayerStates
containing th elast calculated key and value pairs for the decoder. This avoids recomputing attention weights at past positions and speeds up decoding.attention_mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1input_embeds
- Unused for T5token_type_ids
- Unused for T5position_ids
- Unused for T5encoder_outputs
- Optional tensor of shape (batch size, source_sequence_length, hidden_size). When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length).train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-T5Cache
made ofOption<Vec<(Option<Vec<&LayerState, &LayerState>>)>>
of length n_layer containing the encoder past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
Example
use rust_bert::t5::{T5Config, T5ForConditionalGeneration}; let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56); let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device)); let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device)); let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device)); let model_output = no_grad(|| { t5_model.forward_t( Some(&input_tensor), Some(&encoder_attention_mask), None, Some(&target_tensor), Some(&decoder_attention_mask), None, None, None, false, ) });
impl LanguageGenerator<T5ForConditionalGeneration, T5Vocab, T5Tokenizer> for T5Generator
[src]
impl LanguageGenerator<T5ForConditionalGeneration, T5Vocab, T5Tokenizer> for T5Generator
[src]fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]
fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]Generate text based on a vector of promp texts. Read more
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
[src]
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
Auto Trait Implementations
impl RefUnwindSafe for T5ForConditionalGeneration
impl Send for T5ForConditionalGeneration
impl !Sync for T5ForConditionalGeneration
impl Unpin for T5ForConditionalGeneration
impl UnwindSafe for T5ForConditionalGeneration
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]pub fn borrow_mut(&mut self) -> &mut T
[src]
pub fn borrow_mut(&mut self) -> &mut T
[src]Mutably borrows from an owned value. Read more
impl<T> Instrument for T
[src]
impl<T> Instrument for T
[src]fn instrument(self, span: Span) -> Instrumented<Self>
[src]
fn instrument(self, span: Span) -> Instrumented<Self>
[src]Instruments this type with the provided Span
, returning an
Instrumented
wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>
[src]
fn in_current_span(self) -> Instrumented<Self>
[src]impl<T> Pointable for T
impl<T> Pointable for T
impl<T> Same<T> for T
impl<T> Same<T> for T
type Output = T
type Output = T
Should always be Self
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,