Struct rust_bert::xlnet::XLNetLMHeadModel[][src]

pub struct XLNetLMHeadModel { /* fields omitted */ }
Expand description

XLNetLMHeadModel

XLNet model with a language model head for language generation tasks It is made of the following blocks:

  • base_model: XLNetModel
  • lm_head: Linear language modeling head, projecting the hidden state logits to the vocabulary space

Implementations

impl XLNetLMHeadModel[src]

pub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel where
    P: Borrow<Path<'p>>, 
[src]

Build a new XLNetLMHeadModel

Arguments

  • p - Variable store path for the root of the XLNet model
  • config - XLNetConfig object defining the model architecture

Example

use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = XLNetConfig::from_file(config_path);
let xlnet_model = XLNetLMHeadModel::new(&p.root(), &config);

pub fn forward_t(
    &self,
    input_ids: Option<&Tensor>,
    attention_mask: Option<&Tensor>,
    old_layer_states: Option<Vec<Option<LayerState>>>,
    perm_mask: Option<&Tensor>,
    target_mapping: Option<&Tensor>,
    token_type_ids: Option<&Tensor>,
    input_embeds: Option<Tensor>,
    train: bool
) -> Result<LMModelOutput, RustBertError>
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, sequence_length). This or input_embeds must be provided.
  • attention_mask - Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.
  • perm_mask - Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).
  • target_mapping - Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.
  • token_type_ids - Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).
  • input_embeds - Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This or input_ids must be provided.
  • old_layer_states - Optional vector of length num_layers containing optional LayerStates containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • LMModelOutput containing:
    • lm_logits - Tensor of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and position
    • cache - XLNetCache made of Option<Vec<Option<LayerState>>> of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous content
    • encoder_hidden_states - None
    • all_hidden_states - Option<Vec<Tensor>> of length n_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length n_layers with shape (batch size, sequence_length, hidden_size)

Example

use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device));
let _ = target_mapping.narrow(2, 3, 1).fill_(1.0);

let model_output = no_grad(|| {
    xlnet_model.forward_t(
        Some(&input_tensor),
        Some(&attention_mask),
        None,
        Some(&target_mapping),
        None,
        None,
        None,
        false,
    )
});

Trait Implementations

impl LMHeadModel for XLNetLMHeadModel[src]

fn forward_t(
    &self,
    input_ids: &Option<Tensor>,
    layer_past: Cache,
    attention_mask: &Option<Tensor>,
    _token_type_ids: &Option<Tensor>,
    _position_ids: &Option<Tensor>,
    _input_embeds: &Option<Tensor>,
    _encoder_outputs: Option<&Tensor>,
    decoder_input_ids: &Option<Tensor>,
    train: bool
) -> Result<LMModelOutput, RustBertError>
[src]

Forward pass through the model

Arguments

  • input_ids - Optional input tensor of shape (batch size, sequence_length). This or input_embeds must be provided.
  • attention_mask - Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.
  • perm_mask - Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).
  • target_mapping - Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.
  • token_type_ids - Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).
  • input_embeds - Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This or input_ids must be provided.
  • old_layer_states - Optional vector of length num_layers containing optional LayerStates containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.

Returns

  • LMModelOutput containing:
    • lm_logits - Tensor of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and position
    • cache - XLNetCache made of Option<Vec<Option<LayerState>>> of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous content

Example

use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device));
let _ = target_mapping.narrow(2, 3, 1).fill_(1.0);

let model_output = no_grad(|| {
    xlnet_model.forward_t(
        Some(&input_tensor),
        Some(&attention_mask),
        None,
        Some(&target_mapping),
        None,
        None,
        None,
        false,
    )
});

impl LanguageGenerator<XLNetLMHeadModel, XLNetVocab, XLNetTokenizer> for XLNetGenerator[src]

fn generate<'a, S>(
    &self,
    prompt_texts: Option<S>,
    attention_mask: Option<Tensor>,
    min_length: impl Into<Option<i64>>,
    max_length: impl Into<Option<i64>>,
    decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
    S: AsRef<[&'a str]>, 
[src]

Generate text based on a vector of promp texts. Read more

fn generate_indices<'a, S>(
    &self,
    prompt_texts: Option<S>,
    attention_mask: Option<Tensor>,
    min_length: impl Into<Option<i64>>,
    max_length: impl Into<Option<i64>>,
    decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
    S: AsRef<[&'a str]>, 
[src]

Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more

fn generate_from_ids_and_past(
    &self,
    input_ids: Tensor,
    attention_mask: Option<Tensor>,
    min_length: impl Into<Option<i64>>,
    max_length: impl Into<Option<i64>>,
    decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

pub fn type_id(&self) -> TypeId[src]

Gets the TypeId of self. Read more

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

pub fn borrow(&self) -> &T[src]

Immutably borrows from an owned value. Read more

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

pub fn borrow_mut(&mut self) -> &mut T[src]

Mutably borrows from an owned value. Read more

impl<T> From<T> for T[src]

pub fn from(t: T) -> T[src]

Performs the conversion.

impl<T> Instrument for T[src]

fn instrument(self, span: Span) -> Instrumented<Self>[src]

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

fn in_current_span(self) -> Instrumented<Self>[src]

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

pub fn into(self) -> U[src]

Performs the conversion.

impl<T> Pointable for T

pub const ALIGN: usize

The alignment of pointer.

type Init = T

The type for initializers.

pub unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more

pub unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more

pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more

pub unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]

Performs the conversion.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]

Performs the conversion.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 

pub fn vzip(self) -> V