Struct rust_bert::xlnet::XLNetLMHeadModel [−][src]
pub struct XLNetLMHeadModel { /* fields omitted */ }
Expand description
XLNetLMHeadModel
XLNet model with a language model head for language generation tasks It is made of the following blocks:
base_model
:XLNetModel
lm_head
: Linear language modeling head, projecting the hidden state logits to the vocabulary space
Implementations
impl XLNetLMHeadModel
[src]
impl XLNetLMHeadModel
[src]pub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel where
P: Borrow<Path<'p>>,
[src]
pub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel where
P: Borrow<Path<'p>>,
[src]Build a new XLNetLMHeadModel
Arguments
p
- Variable store path for the root of the XLNet modelconfig
-XLNetConfig
object defining the model architecture
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel}; use rust_bert::Config; use std::path::Path; use tch::{nn, Device}; let config_path = Path::new("path/to/config.json"); let device = Device::Cpu; let p = nn::VarStore::new(device); let config = XLNetConfig::from_file(config_path); let xlnet_model = XLNetLMHeadModel::new(&p.root(), &config);
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask
- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping
- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids
- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing optionalLayerStates
containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-XLNetCache
made ofOption<Vec<Option<LayerState>>>
of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous contentencoder_hidden_states
- Noneall_hidden_states
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device)); let _ = target_mapping.narrow(2, 3, 1).fill_(1.0); let model_output = no_grad(|| { xlnet_model.forward_t( Some(&input_tensor), Some(&attention_mask), None, Some(&target_mapping), None, None, None, false, ) });
Trait Implementations
impl LMHeadModel for XLNetLMHeadModel
[src]
impl LMHeadModel for XLNetLMHeadModel
[src]fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]
fn forward_t(
&self,
input_ids: &Option<Tensor>,
layer_past: Cache,
attention_mask: &Option<Tensor>,
_token_type_ids: &Option<Tensor>,
_position_ids: &Option<Tensor>,
_input_embeds: &Option<Tensor>,
_encoder_outputs: Option<&Tensor>,
decoder_input_ids: &Option<Tensor>,
train: bool
) -> Result<LMModelOutput, RustBertError>
[src]Forward pass through the model
Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask
- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping
- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids
- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing optionalLayerStates
containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-XLNetCache
made ofOption<Vec<Option<LayerState>>>
of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous content
Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel}; let (batch_size, sequence_length) = (64, 128); let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device)); let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device)); let _ = target_mapping.narrow(2, 3, 1).fill_(1.0); let model_output = no_grad(|| { xlnet_model.forward_t( Some(&input_tensor), Some(&attention_mask), None, Some(&target_mapping), None, None, None, false, ) });
impl LanguageGenerator<XLNetLMHeadModel, XLNetVocab, XLNetTokenizer> for XLNetGenerator
[src]
impl LanguageGenerator<XLNetLMHeadModel, XLNetVocab, XLNetTokenizer> for XLNetGenerator
[src]fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]
fn generate<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<String> where
S: AsRef<[&'a str]>,
[src]Generate text based on a vector of promp texts. Read more
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]
fn generate_indices<'a, S>(
&self,
prompt_texts: Option<S>,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>> where
S: AsRef<[&'a str]>,
[src]Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training). Read more
fn generate_from_ids_and_past(
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
[src]
&self,
input_ids: Tensor,
attention_mask: Option<Tensor>,
min_length: impl Into<Option<i64>>,
max_length: impl Into<Option<i64>>,
decoder_start_token_id: impl Into<Option<i64>>
) -> Vec<Vec<i64>>
Auto Trait Implementations
impl RefUnwindSafe for XLNetLMHeadModel
impl Send for XLNetLMHeadModel
impl !Sync for XLNetLMHeadModel
impl Unpin for XLNetLMHeadModel
impl UnwindSafe for XLNetLMHeadModel
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]pub fn borrow_mut(&mut self) -> &mut T
[src]
pub fn borrow_mut(&mut self) -> &mut T
[src]Mutably borrows from an owned value. Read more
impl<T> Instrument for T
[src]
impl<T> Instrument for T
[src]fn instrument(self, span: Span) -> Instrumented<Self>
[src]
fn instrument(self, span: Span) -> Instrumented<Self>
[src]Instruments this type with the provided Span
, returning an
Instrumented
wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>
[src]
fn in_current_span(self) -> Instrumented<Self>
[src]impl<T> Pointable for T
impl<T> Pointable for T
impl<T> Same<T> for T
impl<T> Same<T> for T
type Output = T
type Output = T
Should always be Self
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,