Struct malachite_nz::integer::Integer
source · pub struct Integer { /* private fields */ }
Expand description
An integer.
Any Integer
whose absolute value is small enough to fit into a Limb
is
represented inline. Only integers outside this range incur the costs of heap-allocation.
Implementations§
source§impl Integer
impl Integer
sourcepub const fn unsigned_abs_ref(&self) -> &Natural
pub const fn unsigned_abs_ref(&self) -> &Natural
Finds the absolute value of an Integer
, taking the Integer
by reference and
returning a reference to the internal Natural
absolute value.
$$ f(x) = |x|. $$
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(*Integer::ZERO.unsigned_abs_ref(), 0);
assert_eq!(*Integer::from(123).unsigned_abs_ref(), 123);
assert_eq!(*Integer::from(-123).unsigned_abs_ref(), 123);
sourcepub fn mutate_unsigned_abs<F: FnOnce(&mut Natural) -> T, T>(
&mut self,
f: F,
) -> T
pub fn mutate_unsigned_abs<F: FnOnce(&mut Natural) -> T, T>( &mut self, f: F, ) -> T
Mutates the absolute value of an Integer
using a provided closure, and then returns
whatever the closure returns.
This function is similar to the unsigned_abs_ref
function,
which returns a reference to the absolute value. A function that returns a mutable
reference would be too dangerous, as it could leave the Integer
in an invalid state
(specifically, with a negative sign but a zero absolute value). So rather than returning a
mutable reference, this function allows mutation of the absolute value using a closure.
After the closure executes, this function ensures that the Integer
remains valid.
There is only constant time and memory overhead on top of the time and memory used by the closure.
§Examples
use malachite_base::num::arithmetic::traits::DivAssignMod;
use malachite_base::num::basic::traits::Two;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
let mut n = Integer::from(-123);
let remainder = n.mutate_unsigned_abs(|x| x.div_assign_mod(Natural::TWO));
assert_eq!(n, -61);
assert_eq!(remainder, 1);
let mut n = Integer::from(-123);
n.mutate_unsigned_abs(|x| *x >>= 10);
assert_eq!(n, 0);
source§impl Integer
impl Integer
sourcepub fn from_sign_and_abs(sign: bool, abs: Natural) -> Integer
pub fn from_sign_and_abs(sign: bool, abs: Natural) -> Integer
Converts a sign and a Natural
to an Integer
, taking the Natural
by value. The
Natural
becomes the Integer
’s absolute value, and the sign indicates whether the
Integer
should be non-negative. If the Natural
is zero, then the Integer
will be
non-negative regardless of the sign.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Integer::from_sign_and_abs(true, Natural::from(123u32)), 123);
assert_eq!(
Integer::from_sign_and_abs(false, Natural::from(123u32)),
-123
);
sourcepub fn from_sign_and_abs_ref(sign: bool, abs: &Natural) -> Integer
pub fn from_sign_and_abs_ref(sign: bool, abs: &Natural) -> Integer
Converts a sign and an Natural
to an Integer
, taking the Natural
by reference.
The Natural
becomes the Integer
’s absolute value, and the sign indicates whether the
Integer
should be non-negative. If the Natural
is zero, then the Integer
will be
non-negative regardless of the sign.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, $n$ is abs.significant_bits()
.
§Examples
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
Integer::from_sign_and_abs_ref(true, &Natural::from(123u32)),
123
);
assert_eq!(
Integer::from_sign_and_abs_ref(false, &Natural::from(123u32)),
-123
);
source§impl Integer
impl Integer
sourcepub const fn const_from_unsigned(x: Limb) -> Integer
pub const fn const_from_unsigned(x: Limb) -> Integer
sourcepub const fn const_from_signed(x: SignedLimb) -> Integer
pub const fn const_from_signed(x: SignedLimb) -> Integer
Converts a SignedLimb
to an Integer
.
This function is const, so it may be used to define constants.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_nz::integer::Integer;
const TEN: Integer = Integer::const_from_signed(10);
assert_eq!(TEN, 10);
const NEGATIVE_TEN: Integer = Integer::const_from_signed(-10);
assert_eq!(NEGATIVE_TEN, -10);
source§impl Integer
impl Integer
sourcepub fn from_twos_complement_limbs_asc(xs: &[Limb]) -> Integer
pub fn from_twos_complement_limbs_asc(xs: &[Limb]) -> Integer
Converts a slice of limbs to an Integer
, in ascending order, so that less
significant limbs have lower indices in the input slice.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is non-negative, and if the bit is one it is
negative. If the slice is empty, zero is returned.
This function borrows a slice. If taking ownership of a Vec
is possible instead,
from_owned_twos_complement_limbs_asc
is
more efficient.
This function is more efficient than
from_twos_complement_limbs_desc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is xs.len()
.
§Examples
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert_eq!(Integer::from_twos_complement_limbs_asc(&[]), 0);
assert_eq!(Integer::from_twos_complement_limbs_asc(&[123]), 123);
assert_eq!(Integer::from_twos_complement_limbs_asc(&[4294967173]), -123);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from_twos_complement_limbs_asc(&[3567587328, 232]),
1000000000000u64
);
assert_eq!(
Integer::from_twos_complement_limbs_asc(&[727379968, 4294967063]),
-1000000000000i64
);
}
sourcepub fn from_twos_complement_limbs_desc(xs: &[Limb]) -> Integer
pub fn from_twos_complement_limbs_desc(xs: &[Limb]) -> Integer
Converts a slice of limbs to an Integer
, in descending order, so that
less significant limbs have higher indices in the input slice.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is non-negative, and if the bit is one it is
negative. If the slice is empty, zero is returned.
This function borrows a slice. If taking ownership of a Vec
is possible instead,
from_owned_twos_complement_limbs_desc
is
more efficient.
This function is less efficient than
from_twos_complement_limbs_asc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is xs.len()
.
§Examples
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert_eq!(Integer::from_twos_complement_limbs_desc(&[]), 0);
assert_eq!(Integer::from_twos_complement_limbs_desc(&[123]), 123);
assert_eq!(
Integer::from_twos_complement_limbs_desc(&[4294967173]),
-123
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from_twos_complement_limbs_desc(&[232, 3567587328]),
1000000000000u64
);
assert_eq!(
Integer::from_twos_complement_limbs_desc(&[4294967063, 727379968]),
-1000000000000i64
);
}
sourcepub fn from_owned_twos_complement_limbs_asc(xs: Vec<Limb>) -> Integer
pub fn from_owned_twos_complement_limbs_asc(xs: Vec<Limb>) -> Integer
Converts a slice of limbs to an Integer
, in ascending order, so that less
significant limbs have lower indices in the input slice.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is non-negative, and if the bit is one it is
negative. If the slice is empty, zero is returned.
This function takes ownership of a Vec
. If it’s necessary to borrow a slice instead, use
from_twos_complement_limbs_asc
This function is more efficient than
from_owned_twos_complement_limbs_desc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is xs.len()
.
§Examples
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert_eq!(Integer::from_owned_twos_complement_limbs_asc(vec![]), 0);
assert_eq!(
Integer::from_owned_twos_complement_limbs_asc(vec![123]),
123
);
assert_eq!(
Integer::from_owned_twos_complement_limbs_asc(vec![4294967173]),
-123
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from_owned_twos_complement_limbs_asc(vec![3567587328, 232]),
1000000000000i64
);
assert_eq!(
Integer::from_owned_twos_complement_limbs_asc(vec![727379968, 4294967063]),
-1000000000000i64
);
}
sourcepub fn from_owned_twos_complement_limbs_desc(xs: Vec<Limb>) -> Integer
pub fn from_owned_twos_complement_limbs_desc(xs: Vec<Limb>) -> Integer
Converts a slice of limbs to an Integer
, in descending order, so that
less significant limbs have higher indices in the input slice.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is non-negative, and if the bit is one it is
negative. If the slice is empty, zero is returned.
This function takes ownership of a Vec
. If it’s necessary to borrow a slice instead, use
from_twos_complement_limbs_desc
.
This function is less efficient than
from_owned_twos_complement_limbs_asc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is xs.len()
.
§Examples
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert_eq!(Integer::from_owned_twos_complement_limbs_desc(vec![]), 0);
assert_eq!(
Integer::from_owned_twos_complement_limbs_desc(vec![123]),
123
);
assert_eq!(
Integer::from_owned_twos_complement_limbs_desc(vec![4294967173]),
-123
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from_owned_twos_complement_limbs_desc(vec![232, 3567587328]),
1000000000000i64
);
assert_eq!(
Integer::from_owned_twos_complement_limbs_desc(vec![4294967063, 727379968]),
-1000000000000i64
);
}
source§impl Integer
impl Integer
sourcepub fn to_twos_complement_limbs_asc(&self) -> Vec<Limb>
pub fn to_twos_complement_limbs_asc(&self) -> Vec<Limb>
Returns the limbs of an Integer
, in ascending order, so that less
significant limbs have lower indices in the output vector.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is positive, and if the bit is one it is negative.
There are no trailing zero limbs if the Integer
is positive or trailing Limb::MAX
limbs if the Integer
is negative, except as necessary to include the correct sign bit.
Zero is a special case: it contains no limbs.
This function borrows self
. If taking ownership of self
is possible,
into_twos_complement_limbs_asc
is more
efficient.
This function is more efficient than
to_twos_complement_limbs_desc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert!(Integer::ZERO.to_twos_complement_limbs_asc().is_empty());
assert_eq!(Integer::from(123).to_twos_complement_limbs_asc(), &[123]);
assert_eq!(
Integer::from(-123).to_twos_complement_limbs_asc(),
&[4294967173]
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from(10u32).pow(12).to_twos_complement_limbs_asc(),
&[3567587328, 232]
);
assert_eq!(
(-Integer::from(10u32).pow(12)).to_twos_complement_limbs_asc(),
&[727379968, 4294967063]
);
}
sourcepub fn to_twos_complement_limbs_desc(&self) -> Vec<Limb>
pub fn to_twos_complement_limbs_desc(&self) -> Vec<Limb>
Returns the limbs of an Integer
, in descending order, so that less
significant limbs have higher indices in the output vector.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is positive, and if the bit is one it is negative.
There are no leading zero limbs if the Integer
is non-negative or leading Limb::MAX
limbs if the Integer
is negative, except as necessary to include the correct sign bit.
Zero is a special case: it contains no limbs.
This is similar to how BigInteger
s in Java are represented.
This function borrows self
. If taking ownership of self
is possible,
into_twos_complement_limbs_desc
is more
efficient.
This function is less efficient than
to_twos_complement_limbs_asc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert!(Integer::ZERO.to_twos_complement_limbs_desc().is_empty());
assert_eq!(Integer::from(123).to_twos_complement_limbs_desc(), &[123]);
assert_eq!(
Integer::from(-123).to_twos_complement_limbs_desc(),
&[4294967173]
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from(10u32).pow(12).to_twos_complement_limbs_desc(),
&[232, 3567587328]
);
assert_eq!(
(-Integer::from(10u32).pow(12)).to_twos_complement_limbs_desc(),
&[4294967063, 727379968]
);
}
sourcepub fn into_twos_complement_limbs_asc(self) -> Vec<Limb>
pub fn into_twos_complement_limbs_asc(self) -> Vec<Limb>
Returns the limbs of an Integer
, in ascending order, so that less
significant limbs have lower indices in the output vector.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is positive, and if the bit is one it is negative.
There are no trailing zero limbs if the Integer
is positive or trailing Limb::MAX
limbs if the Integer
is negative, except as necessary to include the correct sign bit.
Zero is a special case: it contains no limbs.
This function takes ownership of self
. If it’s necessary to borrow self
instead, use
to_twos_complement_limbs_asc
.
This function is more efficient than
into_twos_complement_limbs_desc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert!(Integer::ZERO.into_twos_complement_limbs_asc().is_empty());
assert_eq!(Integer::from(123).into_twos_complement_limbs_asc(), &[123]);
assert_eq!(
Integer::from(-123).into_twos_complement_limbs_asc(),
&[4294967173]
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from(10u32)
.pow(12)
.into_twos_complement_limbs_asc(),
&[3567587328, 232]
);
assert_eq!(
(-Integer::from(10u32).pow(12)).into_twos_complement_limbs_asc(),
&[727379968, 4294967063]
);
}
sourcepub fn into_twos_complement_limbs_desc(self) -> Vec<Limb>
pub fn into_twos_complement_limbs_desc(self) -> Vec<Limb>
Returns the limbs of an Integer
, in descending order, so that less
significant limbs have higher indices in the output vector.
The limbs are in two’s complement, and the most significant bit of the limbs indicates the
sign; if the bit is zero, the Integer
is positive, and if the bit is one it is negative.
There are no leading zero limbs if the Integer
is non-negative or leading Limb::MAX
limbs if the Integer
is negative, except as necessary to include the correct sign bit.
Zero is a special case: it contains no limbs.
This is similar to how BigInteger
s in Java are represented.
This function takes ownership of self
. If it’s necessary to borrow self
instead, use
to_twos_complement_limbs_desc
.
This function is less efficient than
into_twos_complement_limbs_asc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert!(Integer::ZERO.into_twos_complement_limbs_desc().is_empty());
assert_eq!(Integer::from(123).into_twos_complement_limbs_desc(), &[123]);
assert_eq!(
Integer::from(-123).into_twos_complement_limbs_desc(),
&[4294967173]
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from(10u32)
.pow(12)
.into_twos_complement_limbs_desc(),
&[232, 3567587328]
);
assert_eq!(
(-Integer::from(10u32).pow(12)).into_twos_complement_limbs_desc(),
&[4294967063, 727379968]
);
}
sourcepub fn twos_complement_limbs(&self) -> TwosComplementLimbIterator<'_> ⓘ
pub fn twos_complement_limbs(&self) -> TwosComplementLimbIterator<'_> ⓘ
Returns a double-ended iterator over the twos-complement limbs of an
Integer
.
The forward order is ascending, so that less significant limbs appear first. There may be a most-significant sign-extension limb.
If it’s necessary to get a Vec
of all the twos_complement limbs, consider using
to_twos_complement_limbs_asc
,
to_twos_complement_limbs_desc
,
into_twos_complement_limbs_asc
, or
into_twos_complement_limbs_desc
instead.
§Worst-case complexity
Constant time and additional memory.
§Examples
use itertools::Itertools;
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert!(Integer::ZERO.twos_complement_limbs().next().is_none());
assert_eq!(
Integer::from(123).twos_complement_limbs().collect_vec(),
&[123]
);
assert_eq!(
Integer::from(-123).twos_complement_limbs().collect_vec(),
&[4294967173]
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from(10u32)
.pow(12)
.twos_complement_limbs()
.collect_vec(),
&[3567587328, 232]
);
// Sign-extension for a non-negative `Integer`
assert_eq!(
Integer::from(4294967295i64)
.twos_complement_limbs()
.collect_vec(),
&[4294967295, 0]
);
assert_eq!(
(-Integer::from(10u32).pow(12))
.twos_complement_limbs()
.collect_vec(),
&[727379968, 4294967063]
);
// Sign-extension for a negative `Integer`
assert_eq!(
(-Integer::from(4294967295i64))
.twos_complement_limbs()
.collect_vec(),
&[1, 4294967295]
);
assert!(Integer::ZERO.twos_complement_limbs().next_back().is_none());
assert_eq!(
Integer::from(123)
.twos_complement_limbs()
.rev()
.collect_vec(),
&[123]
);
assert_eq!(
Integer::from(-123)
.twos_complement_limbs()
.rev()
.collect_vec(),
&[4294967173]
);
// 10^12 = 232 * 2^32 + 3567587328
assert_eq!(
Integer::from(10u32)
.pow(12)
.twos_complement_limbs()
.rev()
.collect_vec(),
&[232, 3567587328]
);
// Sign-extension for a non-negative `Integer`
assert_eq!(
Integer::from(4294967295i64)
.twos_complement_limbs()
.rev()
.collect_vec(),
&[0, 4294967295]
);
assert_eq!(
(-Integer::from(10u32).pow(12))
.twos_complement_limbs()
.rev()
.collect_vec(),
&[4294967063, 727379968]
);
// Sign-extension for a negative `Integer`
assert_eq!(
(-Integer::from(4294967295i64))
.twos_complement_limbs()
.rev()
.collect_vec(),
&[4294967295, 1]
);
}
sourcepub fn twos_complement_limb_count(&self) -> u64
pub fn twos_complement_limb_count(&self) -> u64
Returns the number of twos-complement limbs of an Integer
. There may be a
most-significant sign-extension limb, which is included in the count.
Zero has 0 limbs.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{Pow, PowerOf2};
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::{One, Zero};
use malachite_nz::integer::Integer;
use malachite_nz::platform::Limb;
if Limb::WIDTH == u32::WIDTH {
assert_eq!(Integer::ZERO.twos_complement_limb_count(), 0);
assert_eq!(Integer::from(123u32).twos_complement_limb_count(), 1);
assert_eq!(Integer::from(10u32).pow(12).twos_complement_limb_count(), 2);
let n = Integer::power_of_2(Limb::WIDTH - 1);
assert_eq!((&n - Integer::ONE).twos_complement_limb_count(), 1);
assert_eq!(n.twos_complement_limb_count(), 2);
assert_eq!((&n + Integer::ONE).twos_complement_limb_count(), 2);
assert_eq!((-(&n - Integer::ONE)).twos_complement_limb_count(), 1);
assert_eq!((-&n).twos_complement_limb_count(), 1);
assert_eq!((-(&n + Integer::ONE)).twos_complement_limb_count(), 2);
}
source§impl Integer
impl Integer
sourcepub fn checked_count_ones(&self) -> Option<u64>
pub fn checked_count_ones(&self) -> Option<u64>
Counts the number of ones in the binary expansion of an Integer
. If the Integer
is
negative, then the number of ones is infinite, so None
is returned.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.checked_count_ones(), Some(0));
// 105 = 1101001b
assert_eq!(Integer::from(105).checked_count_ones(), Some(4));
assert_eq!(Integer::from(-105).checked_count_ones(), None);
// 10^12 = 1110100011010100101001010001000000000000b
assert_eq!(Integer::from(10u32).pow(12).checked_count_ones(), Some(13));
source§impl Integer
impl Integer
sourcepub fn checked_count_zeros(&self) -> Option<u64>
pub fn checked_count_zeros(&self) -> Option<u64>
Counts the number of zeros in the binary expansion of an Integer
. If the Integer
is
non-negative, then the number of zeros is infinite, so None
is returned.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.checked_count_zeros(), None);
// -105 = 10010111 in two's complement
assert_eq!(Integer::from(-105).checked_count_zeros(), Some(3));
assert_eq!(Integer::from(105).checked_count_zeros(), None);
// -10^12 = 10001011100101011010110101111000000000000 in two's complement
assert_eq!(
(-Integer::from(10u32).pow(12)).checked_count_zeros(),
Some(24)
);
source§impl Integer
impl Integer
sourcepub fn trailing_zeros(&self) -> Option<u64>
pub fn trailing_zeros(&self) -> Option<u64>
Returns the number of trailing zeros in the binary expansion of an Integer
(equivalently, the multiplicity of 2 in its prime factorization), or None
is the
Integer
is 0.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.trailing_zeros(), None);
assert_eq!(Integer::from(3).trailing_zeros(), Some(0));
assert_eq!(Integer::from(-72).trailing_zeros(), Some(3));
assert_eq!(Integer::from(100).trailing_zeros(), Some(2));
assert_eq!((-Integer::from(10u32).pow(12)).trailing_zeros(), Some(12));
Trait Implementations§
source§impl<'a> Abs for &'a Integer
impl<'a> Abs for &'a Integer
source§fn abs(self) -> Integer
fn abs(self) -> Integer
Takes the absolute value of an Integer
, taking the Integer
by reference.
$$ f(x) = |x|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Abs;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::ZERO).abs(), 0);
assert_eq!((&Integer::from(123)).abs(), 123);
assert_eq!((&Integer::from(-123)).abs(), 123);
type Output = Integer
source§impl Abs for Integer
impl Abs for Integer
source§fn abs(self) -> Integer
fn abs(self) -> Integer
Takes the absolute value of an Integer
, taking the Integer
by value.
$$ f(x) = |x|. $$
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::Abs;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.abs(), 0);
assert_eq!(Integer::from(123).abs(), 123);
assert_eq!(Integer::from(-123).abs(), 123);
type Output = Integer
source§impl AbsAssign for Integer
impl AbsAssign for Integer
source§fn abs_assign(&mut self)
fn abs_assign(&mut self)
Replaces an Integer
with its absolute value.
$$ x \gets |x|. $$
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::AbsAssign;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x.abs_assign();
assert_eq!(x, 0);
let mut x = Integer::from(123);
x.abs_assign();
assert_eq!(x, 123);
let mut x = Integer::from(-123);
x.abs_assign();
assert_eq!(x, 123);
source§impl<'a, 'b> AbsDiff<&'a Integer> for &'b Integer
impl<'a, 'b> AbsDiff<&'a Integer> for &'b Integer
source§fn abs_diff(self, other: &'a Integer) -> Natural
fn abs_diff(self, other: &'a Integer) -> Natural
Computes the absolute value of the difference between two Integer
s, taking both by
reference. A Natural
is returned.
$$ f(x, y) = |x - y|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::{AbsDiff, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(123)).abs_diff(&Integer::ZERO), 123);
assert_eq!((&Integer::ZERO).abs_diff(&Integer::from(123)), 123);
assert_eq!((&Integer::from(456)).abs_diff(&Integer::from(-123)), 579);
assert_eq!((&Integer::from(123)).abs_diff(&Integer::from(-456)), 579);
assert_eq!(
(&(Integer::from(10).pow(12) * Integer::from(3))).abs_diff(&Integer::from(10).pow(12)),
2000000000000u64
);
assert_eq!(
(&(-Integer::from(10).pow(12)))
.abs_diff(&(-Integer::from(10).pow(12) * Integer::from(3))),
2000000000000u64
);
type Output = Natural
source§impl<'a> AbsDiff<&'a Integer> for Integer
impl<'a> AbsDiff<&'a Integer> for Integer
source§fn abs_diff(self, other: &'a Integer) -> Natural
fn abs_diff(self, other: &'a Integer) -> Natural
Computes the absolute value of the difference between two Integer
s, taking the first by
value and the second by reference. A Natural
is returned.
$$ f(x, y) = |x - y|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::{AbsDiff, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(123).abs_diff(&Integer::ZERO), 123);
assert_eq!(Integer::ZERO.abs_diff(&Integer::from(123)), 123);
assert_eq!(Integer::from(456).abs_diff(&Integer::from(-123)), 579);
assert_eq!(Integer::from(123).abs_diff(&Integer::from(-456)), 579);
assert_eq!(
(Integer::from(10).pow(12) * Integer::from(3)).abs_diff(&Integer::from(10).pow(12)),
2000000000000u64
);
assert_eq!(
(-Integer::from(10).pow(12)).abs_diff(&(-Integer::from(10).pow(12) * Integer::from(3))),
2000000000000u64
);
type Output = Natural
source§impl<'a> AbsDiff<Integer> for &'a Integer
impl<'a> AbsDiff<Integer> for &'a Integer
source§fn abs_diff(self, other: Integer) -> Natural
fn abs_diff(self, other: Integer) -> Natural
Computes the absolute value of the difference between two Integer
s, taking the first by
reference and the second by value. A Natural
is returned.
$$ f(x, y) = |x - y|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::{AbsDiff, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(123)).abs_diff(Integer::ZERO), 123);
assert_eq!((&Integer::ZERO).abs_diff(Integer::from(123)), 123);
assert_eq!((&Integer::from(456)).abs_diff(Integer::from(-123)), 579);
assert_eq!((&Integer::from(123)).abs_diff(Integer::from(-456)), 579);
assert_eq!(
(&(Integer::from(10).pow(12) * Integer::from(3))).abs_diff(Integer::from(10).pow(12)),
2000000000000u64
);
assert_eq!(
(&(-Integer::from(10).pow(12))).abs_diff(-Integer::from(10).pow(12) * Integer::from(3)),
2000000000000u64
);
type Output = Natural
source§impl AbsDiff for Integer
impl AbsDiff for Integer
source§fn abs_diff(self, other: Integer) -> Natural
fn abs_diff(self, other: Integer) -> Natural
Computes the absolute value of the difference between two Integer
s, taking both by
value. A Natural
is returned.
$$ f(x, y) = |x - y|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AbsDiff, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(123).abs_diff(Integer::ZERO), 123);
assert_eq!(Integer::ZERO.abs_diff(Integer::from(123)), 123);
assert_eq!(Integer::from(456).abs_diff(Integer::from(-123)), 579);
assert_eq!(Integer::from(123).abs_diff(Integer::from(-456)), 579);
assert_eq!(
(Integer::from(10).pow(12) * Integer::from(3)).abs_diff(Integer::from(10).pow(12)),
2000000000000u64
);
assert_eq!(
(-Integer::from(10).pow(12)).abs_diff(-Integer::from(10).pow(12) * Integer::from(3)),
2000000000000u64
);
type Output = Natural
source§impl<'a> AbsDiffAssign<&'a Integer> for Integer
impl<'a> AbsDiffAssign<&'a Integer> for Integer
source§fn abs_diff_assign(&mut self, other: &'a Integer)
fn abs_diff_assign(&mut self, other: &'a Integer)
Subtracts an Integer
by another Integer
in place and takes the absolute value,
taking the Integer
on the right-hand side by reference.
$$ x \gets |x - y|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if other
is greater than self
.
§Examples
use malachite_base::num::arithmetic::traits::{AbsDiffAssign, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::from(123);
x.abs_diff_assign(&Integer::ZERO);
assert_eq!(x, 123);
let mut x = Integer::ZERO;
x.abs_diff_assign(&Integer::from(123));
assert_eq!(x, 123);
let mut x = Integer::from(456);
x.abs_diff_assign(&Integer::from(-123));
assert_eq!(x, 579);
let mut x = Integer::from(-123);
x.abs_diff_assign(&Integer::from(456));
assert_eq!(x, 579);
let mut x = Integer::from(10).pow(12) * Integer::from(3);
x.abs_diff_assign(&Integer::from(10u32).pow(12));
assert_eq!(x, 2000000000000u64);
let mut x = -Integer::from(10u32).pow(12);
x.abs_diff_assign(&(-(Integer::from(10).pow(12) * Integer::from(3))));
assert_eq!(x, 2000000000000u64);
source§impl AbsDiffAssign for Integer
impl AbsDiffAssign for Integer
source§fn abs_diff_assign(&mut self, other: Integer)
fn abs_diff_assign(&mut self, other: Integer)
Subtracts an Integer
by another Integer
in place and takes the absolute value,
taking the Integer
on the right-hand side by value.
$$ x \gets |x - y|. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if other
is greater than self
.
§Examples
use malachite_base::num::arithmetic::traits::{AbsDiffAssign, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::from(123);
x.abs_diff_assign(Integer::ZERO);
assert_eq!(x, 123);
let mut x = Integer::ZERO;
x.abs_diff_assign(Integer::from(123));
assert_eq!(x, 123);
let mut x = Integer::from(456);
x.abs_diff_assign(Integer::from(-123));
assert_eq!(x, 579);
let mut x = Integer::from(-123);
x.abs_diff_assign(Integer::from(456));
assert_eq!(x, 579);
let mut x = Integer::from(10).pow(12) * Integer::from(3);
x.abs_diff_assign(Integer::from(10u32).pow(12));
assert_eq!(x, 2000000000000u64);
let mut x = -Integer::from(10u32).pow(12);
x.abs_diff_assign(-(Integer::from(10).pow(12) * Integer::from(3)));
assert_eq!(x, 2000000000000u64);
source§impl<'a, 'b> Add<&'a Integer> for &'b Integer
impl<'a, 'b> Add<&'a Integer> for &'b Integer
source§fn add(self, other: &'a Integer) -> Integer
fn add(self, other: &'a Integer) -> Integer
Adds two Integer
s, taking both by reference.
$$ f(x, y) = x + y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::ZERO + &Integer::from(123), 123);
assert_eq!(&Integer::from(-123) + &Integer::ZERO, -123);
assert_eq!(&Integer::from(-123) + &Integer::from(456), 333);
assert_eq!(
&-Integer::from(10u32).pow(12) + &(Integer::from(10u32).pow(12) << 1),
1000000000000u64
);
source§impl<'a> Add<&'a Integer> for Integer
impl<'a> Add<&'a Integer> for Integer
source§fn add(self, other: &'a Integer) -> Integer
fn add(self, other: &'a Integer) -> Integer
Adds two Integer
s, taking the first by reference and the second by value.
$$ f(x, y) = x + y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO + &Integer::from(123), 123);
assert_eq!(Integer::from(-123) + &Integer::ZERO, -123);
assert_eq!(Integer::from(-123) + &Integer::from(456), 333);
assert_eq!(
-Integer::from(10u32).pow(12) + &(Integer::from(10u32).pow(12) << 1),
1000000000000u64
);
source§impl<'a> Add<Integer> for &'a Integer
impl<'a> Add<Integer> for &'a Integer
source§fn add(self, other: Integer) -> Integer
fn add(self, other: Integer) -> Integer
Adds two Integer
s, taking the first by value and the second by reference.
$$ f(x, y) = x + y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::ZERO + Integer::from(123), 123);
assert_eq!(&Integer::from(-123) + Integer::ZERO, -123);
assert_eq!(&Integer::from(-123) + Integer::from(456), 333);
assert_eq!(
&-Integer::from(10u32).pow(12) + (Integer::from(10u32).pow(12) << 1),
1000000000000u64
);
source§impl Add for Integer
impl Add for Integer
source§fn add(self, other: Integer) -> Integer
fn add(self, other: Integer) -> Integer
Adds two Integer
s, taking both by value.
$$ f(x, y) = x + y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$ (only if the underlying Vec
needs to reallocate)
where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO + Integer::from(123), 123);
assert_eq!(Integer::from(-123) + Integer::ZERO, -123);
assert_eq!(Integer::from(-123) + Integer::from(456), 333);
assert_eq!(
-Integer::from(10u32).pow(12) + (Integer::from(10u32).pow(12) << 1),
1000000000000u64
);
source§impl<'a> AddAssign<&'a Integer> for Integer
impl<'a> AddAssign<&'a Integer> for Integer
source§fn add_assign(&mut self, other: &'a Integer)
fn add_assign(&mut self, other: &'a Integer)
Adds an Integer
to an Integer
in place, taking the Integer
on the right-hand
side by reference.
$$ x \gets x + y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x += &(-Integer::from(10u32).pow(12));
x += &(Integer::from(10u32).pow(12) * Integer::from(2u32));
x += &(-Integer::from(10u32).pow(12) * Integer::from(3u32));
x += &(Integer::from(10u32).pow(12) * Integer::from(4u32));
assert_eq!(x, 2000000000000u64);
source§impl AddAssign for Integer
impl AddAssign for Integer
source§fn add_assign(&mut self, other: Integer)
fn add_assign(&mut self, other: Integer)
Adds an Integer
to an Integer
in place, taking the Integer
on the right-hand
side by value.
$$ x \gets x + y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$ (only if the underlying Vec
needs to reallocate)
where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x += -Integer::from(10u32).pow(12);
x += Integer::from(10u32).pow(12) * Integer::from(2u32);
x += -Integer::from(10u32).pow(12) * Integer::from(3u32);
x += Integer::from(10u32).pow(12) * Integer::from(4u32);
assert_eq!(x, 2000000000000u64);
source§impl<'a> AddMul<&'a Integer> for Integer
impl<'a> AddMul<&'a Integer> for Integer
source§fn add_mul(self, y: &'a Integer, z: Integer) -> Integer
fn add_mul(self, y: &'a Integer, z: Integer) -> Integer
Adds an Integer
and the product of two other Integer
s, taking the first and third by
value and the second by reference.
$f(x, y, z) = x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(10u32).add_mul(&Integer::from(3u32), Integer::from(4u32)),
22
);
assert_eq!(
(-Integer::from(10u32).pow(12))
.add_mul(&Integer::from(0x10000), -Integer::from(10u32).pow(12)),
-65537000000000000i64
);
type Output = Integer
source§impl<'a, 'b, 'c> AddMul<&'a Integer, &'b Integer> for &'c Integer
impl<'a, 'b, 'c> AddMul<&'a Integer, &'b Integer> for &'c Integer
source§fn add_mul(self, y: &'a Integer, z: &'b Integer) -> Integer
fn add_mul(self, y: &'a Integer, z: &'b Integer) -> Integer
Adds an Integer
and the product of two other Integer
s, taking all three by
reference.
$f(x, y, z) = x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n, m) = O(m + n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(10u32)).add_mul(&Integer::from(3u32), &Integer::from(4u32)),
22
);
assert_eq!(
(&-Integer::from(10u32).pow(12))
.add_mul(&Integer::from(0x10000), &-Integer::from(10u32).pow(12)),
-65537000000000000i64
);
type Output = Integer
source§impl<'a, 'b> AddMul<&'a Integer, &'b Integer> for Integer
impl<'a, 'b> AddMul<&'a Integer, &'b Integer> for Integer
source§fn add_mul(self, y: &'a Integer, z: &'b Integer) -> Integer
fn add_mul(self, y: &'a Integer, z: &'b Integer) -> Integer
Adds an Integer
and the product of two other Integer
s, taking the first by value and
the second and third by reference.
$f(x, y, z) = x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(10u32).add_mul(&Integer::from(3u32), &Integer::from(4u32)),
22
);
assert_eq!(
(-Integer::from(10u32).pow(12))
.add_mul(&Integer::from(0x10000), &-Integer::from(10u32).pow(12)),
-65537000000000000i64
);
type Output = Integer
source§impl<'a> AddMul<Integer, &'a Integer> for Integer
impl<'a> AddMul<Integer, &'a Integer> for Integer
source§fn add_mul(self, y: Integer, z: &'a Integer) -> Integer
fn add_mul(self, y: Integer, z: &'a Integer) -> Integer
Adds an Integer
and the product of two other Integer
s, taking the first two by value
and the third by reference.
$f(x, y, z) = x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(10u32).add_mul(Integer::from(3u32), &Integer::from(4u32)),
22
);
assert_eq!(
(-Integer::from(10u32).pow(12))
.add_mul(Integer::from(0x10000), &-Integer::from(10u32).pow(12)),
-65537000000000000i64
);
type Output = Integer
source§impl AddMul for Integer
impl AddMul for Integer
source§fn add_mul(self, y: Integer, z: Integer) -> Integer
fn add_mul(self, y: Integer, z: Integer) -> Integer
Adds an Integer
and the product of two other Integer
s, taking all three by value.
$f(x, y, z) = x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMul, Pow};
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(10u32).add_mul(Integer::from(3u32), Integer::from(4u32)),
22
);
assert_eq!(
(-Integer::from(10u32).pow(12))
.add_mul(Integer::from(0x10000), -Integer::from(10u32).pow(12)),
-65537000000000000i64
);
type Output = Integer
source§impl<'a> AddMulAssign<&'a Integer> for Integer
impl<'a> AddMulAssign<&'a Integer> for Integer
source§fn add_mul_assign(&mut self, y: &'a Integer, z: Integer)
fn add_mul_assign(&mut self, y: &'a Integer, z: Integer)
Adds the product of two other Integer
s to an Integer
in place, taking the first
Integer
on the right-hand side by reference and the second by value.
$x \gets x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::integer::Integer;
let mut x = Integer::from(10u32);
x.add_mul_assign(&Integer::from(3u32), Integer::from(4u32));
assert_eq!(x, 22);
let mut x = -Integer::from(10u32).pow(12);
x.add_mul_assign(&Integer::from(0x10000), -Integer::from(10u32).pow(12));
assert_eq!(x, -65537000000000000i64);
source§impl<'a, 'b> AddMulAssign<&'a Integer, &'b Integer> for Integer
impl<'a, 'b> AddMulAssign<&'a Integer, &'b Integer> for Integer
source§fn add_mul_assign(&mut self, y: &'a Integer, z: &'b Integer)
fn add_mul_assign(&mut self, y: &'a Integer, z: &'b Integer)
Adds the product of two other Integer
s to an Integer
in place, taking both
Integer
s on the right-hand side by reference.
$x \gets x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::integer::Integer;
let mut x = Integer::from(10u32);
x.add_mul_assign(&Integer::from(3u32), &Integer::from(4u32));
assert_eq!(x, 22);
let mut x = -Integer::from(10u32).pow(12);
x.add_mul_assign(&Integer::from(0x10000), &-Integer::from(10u32).pow(12));
assert_eq!(x, -65537000000000000i64);
source§impl<'a> AddMulAssign<Integer, &'a Integer> for Integer
impl<'a> AddMulAssign<Integer, &'a Integer> for Integer
source§fn add_mul_assign(&mut self, y: Integer, z: &'a Integer)
fn add_mul_assign(&mut self, y: Integer, z: &'a Integer)
Adds the product of two other Integer
s to an Integer
in place, taking the first
Integer
on the right-hand side by value and the second by reference.
$x \gets x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::integer::Integer;
let mut x = Integer::from(10u32);
x.add_mul_assign(Integer::from(3u32), &Integer::from(4u32));
assert_eq!(x, 22);
let mut x = -Integer::from(10u32).pow(12);
x.add_mul_assign(Integer::from(0x10000), &-Integer::from(10u32).pow(12));
assert_eq!(x, -65537000000000000i64);
source§impl AddMulAssign for Integer
impl AddMulAssign for Integer
source§fn add_mul_assign(&mut self, y: Integer, z: Integer)
fn add_mul_assign(&mut self, y: Integer, z: Integer)
Adds the product of two other Integer
s to an Integer
in place, taking both
Integer
s on the right-hand side by value.
$x \gets x + yz$.
§Worst-case complexity
$T(n, m) = O(m + n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, $n$ is max(y.significant_bits(), z.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::{AddMulAssign, Pow};
use malachite_nz::integer::Integer;
let mut x = Integer::from(10u32);
x.add_mul_assign(Integer::from(3u32), Integer::from(4u32));
assert_eq!(x, 22);
let mut x = -Integer::from(10u32).pow(12);
x.add_mul_assign(Integer::from(0x10000), -Integer::from(10u32).pow(12));
assert_eq!(x, -65537000000000000i64);
source§impl Binary for Integer
impl Binary for Integer
source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Converts an Integer
to a binary String
.
Using the #
format flag prepends "0b"
to the string.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToBinaryString;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.to_binary_string(), "0");
assert_eq!(Integer::from(123).to_binary_string(), "1111011");
assert_eq!(
Integer::from_str("1000000000000")
.unwrap()
.to_binary_string(),
"1110100011010100101001010001000000000000"
);
assert_eq!(format!("{:011b}", Integer::from(123)), "00001111011");
assert_eq!(Integer::from(-123).to_binary_string(), "-1111011");
assert_eq!(
Integer::from_str("-1000000000000")
.unwrap()
.to_binary_string(),
"-1110100011010100101001010001000000000000"
);
assert_eq!(format!("{:011b}", Integer::from(-123)), "-0001111011");
assert_eq!(format!("{:#b}", Integer::ZERO), "0b0");
assert_eq!(format!("{:#b}", Integer::from(123)), "0b1111011");
assert_eq!(
format!("{:#b}", Integer::from_str("1000000000000").unwrap()),
"0b1110100011010100101001010001000000000000"
);
assert_eq!(format!("{:#011b}", Integer::from(123)), "0b001111011");
assert_eq!(format!("{:#b}", Integer::from(-123)), "-0b1111011");
assert_eq!(
format!("{:#b}", Integer::from_str("-1000000000000").unwrap()),
"-0b1110100011010100101001010001000000000000"
);
assert_eq!(format!("{:#011b}", Integer::from(-123)), "-0b01111011");
source§impl<'a> BinomialCoefficient<&'a Integer> for Integer
impl<'a> BinomialCoefficient<&'a Integer> for Integer
source§fn binomial_coefficient(n: &'a Integer, k: &'a Integer) -> Integer
fn binomial_coefficient(n: &'a Integer, k: &'a Integer) -> Integer
Computes the binomial coefficient of two Integer
s, taking both by reference.
The second argument must be non-negative, but the first may be negative. If it is, the identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
$$ f(n, k) = \begin{cases} \binom{n}{k} & \text{if} \quad n \geq 0, \\ (-1)^k \binom{-n+k-1}{k} & \text{if} \quad n < 0. \end{cases} $$
§Worst-case complexity
TODO
§Panics
Panics if $k$ is negative.
§Examples
use malachite_base::num::arithmetic::traits::BinomialCoefficient;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::binomial_coefficient(&Integer::from(4), &Integer::from(0)),
1
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(4), &Integer::from(1)),
4
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(4), &Integer::from(2)),
6
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(4), &Integer::from(3)),
4
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(4), &Integer::from(4)),
1
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(10), &Integer::from(5)),
252
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(100), &Integer::from(50)).to_string(),
"100891344545564193334812497256"
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(0)),
1
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(1)),
-3
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(2)),
6
);
assert_eq!(
Integer::binomial_coefficient(&Integer::from(-3), &Integer::from(3)),
-10
);
source§impl BinomialCoefficient for Integer
impl BinomialCoefficient for Integer
source§fn binomial_coefficient(n: Integer, k: Integer) -> Integer
fn binomial_coefficient(n: Integer, k: Integer) -> Integer
Computes the binomial coefficient of two Integer
s, taking both by value.
The second argument must be non-negative, but the first may be negative. If it is, the identity $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ is used.
$$ f(n, k) = \begin{cases} \binom{n}{k} & \text{if} \quad n \geq 0, \\ (-1)^k \binom{-n+k-1}{k} & \text{if} \quad n < 0. \end{cases} $$
§Worst-case complexity
TODO
§Panics
Panics if $k$ is negative.
§Examples
use malachite_base::num::arithmetic::traits::BinomialCoefficient;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::binomial_coefficient(Integer::from(4), Integer::from(0)),
1
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(4), Integer::from(1)),
4
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(4), Integer::from(2)),
6
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(4), Integer::from(3)),
4
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(4), Integer::from(4)),
1
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(10), Integer::from(5)),
252
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(100), Integer::from(50)).to_string(),
"100891344545564193334812497256"
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(-3), Integer::from(0)),
1
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(-3), Integer::from(1)),
-3
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(-3), Integer::from(2)),
6
);
assert_eq!(
Integer::binomial_coefficient(Integer::from(-3), Integer::from(3)),
-10
);
source§impl BitAccess for Integer
impl BitAccess for Integer
Provides functions for accessing and modifying the $i$th bit of a Integer
, or the
coefficient of $2^i$ in its two’s complement binary expansion.
§Examples
use malachite_base::num::basic::traits::{NegativeOne, Zero};
use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x.assign_bit(2, true);
x.assign_bit(5, true);
x.assign_bit(6, true);
assert_eq!(x, 100);
x.assign_bit(2, false);
x.assign_bit(5, false);
x.assign_bit(6, false);
assert_eq!(x, 0);
let mut x = Integer::from(-0x100);
x.assign_bit(2, true);
x.assign_bit(5, true);
x.assign_bit(6, true);
assert_eq!(x, -156);
x.assign_bit(2, false);
x.assign_bit(5, false);
x.assign_bit(6, false);
assert_eq!(x, -256);
let mut x = Integer::ZERO;
x.flip_bit(10);
assert_eq!(x, 1024);
x.flip_bit(10);
assert_eq!(x, 0);
let mut x = Integer::NEGATIVE_ONE;
x.flip_bit(10);
assert_eq!(x, -1025);
x.flip_bit(10);
assert_eq!(x, -1);
source§fn get_bit(&self, index: u64) -> bool
fn get_bit(&self, index: u64) -> bool
Determines whether the $i$th bit of an Integer
, or the coefficient of $2^i$ in its two’s
complement binary expansion, is 0 or 1.
false
means 0 and true
means 1. Getting bits beyond the Integer
’s width is allowed;
those bits are false
if the Integer
is non-negative and true
if it is negative.
If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}; $$ but if $n < 0$, let $$ -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$.
$f(n, i) = (b_i = 1)$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(123).get_bit(2), false);
assert_eq!(Integer::from(123).get_bit(3), true);
assert_eq!(Integer::from(123).get_bit(100), false);
assert_eq!(Integer::from(-123).get_bit(0), true);
assert_eq!(Integer::from(-123).get_bit(1), false);
assert_eq!(Integer::from(-123).get_bit(100), true);
assert_eq!(Integer::from(10u32).pow(12).get_bit(12), true);
assert_eq!(Integer::from(10u32).pow(12).get_bit(100), false);
assert_eq!((-Integer::from(10u32).pow(12)).get_bit(12), true);
assert_eq!((-Integer::from(10u32).pow(12)).get_bit(100), true);
source§fn set_bit(&mut self, index: u64)
fn set_bit(&mut self, index: u64)
Sets the $i$th bit of an Integer
, or the coefficient of $2^i$ in its two’s complement
binary expansion, to 1.
If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}; $$ but if $n < 0$, let $$ -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$. $$ n \gets \begin{cases} n + 2^j & \text{if} \quad b_j = 0, \\ n & \text{otherwise}. \end{cases} $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is index
.
§Examples
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x.set_bit(2);
x.set_bit(5);
x.set_bit(6);
assert_eq!(x, 100);
let mut x = Integer::from(-0x100);
x.set_bit(2);
x.set_bit(5);
x.set_bit(6);
assert_eq!(x, -156);
source§fn clear_bit(&mut self, index: u64)
fn clear_bit(&mut self, index: u64)
Sets the $i$th bit of an Integer
, or the coefficient of $2^i$ in its binary expansion,
to 0.
If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}; $$ but if $n < 0$, let $$ -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$. $$ n \gets \begin{cases} n - 2^j & \text{if} \quad b_j = 1, \\ n & \text{otherwise}. \end{cases} $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is index
.
§Examples
use malachite_base::num::logic::traits::BitAccess;
use malachite_nz::integer::Integer;
let mut x = Integer::from(0x7f);
x.clear_bit(0);
x.clear_bit(1);
x.clear_bit(3);
x.clear_bit(4);
assert_eq!(x, 100);
let mut x = Integer::from(-156);
x.clear_bit(2);
x.clear_bit(5);
x.clear_bit(6);
assert_eq!(x, -256);
source§fn assign_bit(&mut self, index: u64, bit: bool)
fn assign_bit(&mut self, index: u64, bit: bool)
source§impl<'a, 'b> BitAnd<&'a Integer> for &'b Integer
impl<'a, 'b> BitAnd<&'a Integer> for &'b Integer
source§fn bitand(self, other: &'a Integer) -> Integer
fn bitand(self, other: &'a Integer) -> Integer
Takes the bitwise and of two Integer
s, taking both by reference.
$$ f(x, y) = x \wedge y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::from(-123) & &Integer::from(-456), -512);
assert_eq!(
&-Integer::from(10u32).pow(12) & &-(Integer::from(10u32).pow(12) + Integer::ONE),
-1000000004096i64
);
source§impl<'a> BitAnd<&'a Integer> for Integer
impl<'a> BitAnd<&'a Integer> for Integer
source§fn bitand(self, other: &'a Integer) -> Integer
fn bitand(self, other: &'a Integer) -> Integer
Takes the bitwise and of two Integer
s, taking the first by value and the second by
reference.
$$ f(x, y) = x \wedge y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is other.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123) & &Integer::from(-456), -512);
assert_eq!(
-Integer::from(10u32).pow(12) & &-(Integer::from(10u32).pow(12) + Integer::ONE),
-1000000004096i64
);
source§impl<'a> BitAnd<Integer> for &'a Integer
impl<'a> BitAnd<Integer> for &'a Integer
source§fn bitand(self, other: Integer) -> Integer
fn bitand(self, other: Integer) -> Integer
Takes the bitwise and of two Integer
s, taking the first by reference and the seocnd by
value.
$$ f(x, y) = x \wedge y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::from(-123) & Integer::from(-456), -512);
assert_eq!(
&-Integer::from(10u32).pow(12) & -(Integer::from(10u32).pow(12) + Integer::ONE),
-1000000004096i64
);
source§impl BitAnd for Integer
impl BitAnd for Integer
source§fn bitand(self, other: Integer) -> Integer
fn bitand(self, other: Integer) -> Integer
Takes the bitwise and of two Integer
s, taking both by value.
$$ f(x, y) = x \wedge y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123) & Integer::from(-456), -512);
assert_eq!(
-Integer::from(10u32).pow(12) & -(Integer::from(10u32).pow(12) + Integer::ONE),
-1000000004096i64
);
source§impl<'a> BitAndAssign<&'a Integer> for Integer
impl<'a> BitAndAssign<&'a Integer> for Integer
source§fn bitand_assign(&mut self, other: &'a Integer)
fn bitand_assign(&mut self, other: &'a Integer)
Bitwise-ands an Integer
with another Integer
in place, taking the Integer
on the
right-hand side by reference.
$$ x \gets x \wedge y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is other.significant_bits()
.
§Examples
use malachite_base::num::basic::traits::NegativeOne;
use malachite_nz::integer::Integer;
let mut x = Integer::NEGATIVE_ONE;
x &= &Integer::from(0x70ffffff);
x &= &Integer::from(0x7ff0_ffff);
x &= &Integer::from(0x7ffff0ff);
x &= &Integer::from(0x7ffffff0);
assert_eq!(x, 0x70f0f0f0);
source§impl BitAndAssign for Integer
impl BitAndAssign for Integer
source§fn bitand_assign(&mut self, other: Integer)
fn bitand_assign(&mut self, other: Integer)
Bitwise-ands an Integer
with another Integer
in place, taking the Integer
on the
right-hand side by value.
$$ x \gets x \wedge y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::basic::traits::NegativeOne;
use malachite_nz::integer::Integer;
let mut x = Integer::NEGATIVE_ONE;
x &= Integer::from(0x70ffffff);
x &= Integer::from(0x7ff0_ffff);
x &= Integer::from(0x7ffff0ff);
x &= Integer::from(0x7ffffff0);
assert_eq!(x, 0x70f0f0f0);
source§impl BitBlockAccess for Integer
impl BitBlockAccess for Integer
source§fn get_bits(&self, start: u64, end: u64) -> Natural
fn get_bits(&self, start: u64, end: u64) -> Natural
Extracts a block of adjacent two’s complement bits from an Integer
, taking the
Integer
by reference.
The first index is start
and last index is end - 1
.
Let $n$ be self
, and let $p$ and $q$ be start
and end
, respectively.
If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}; $$ but if $n < 0$, let $$ -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$. Then $$ f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), end)
.
§Panics
Panics if start > end
.
§Examples
use core::str::FromStr;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitBlockAccess;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
(-Natural::from(0xabcdef0112345678u64)).get_bits(16, 48),
Natural::from(0x10feedcbu32)
);
assert_eq!(
Integer::from(0xabcdef0112345678u64).get_bits(4, 16),
Natural::from(0x567u32)
);
assert_eq!(
(-Natural::from(0xabcdef0112345678u64)).get_bits(0, 100),
Natural::from_str("1267650600215849587758112418184").unwrap()
);
assert_eq!(
Integer::from(0xabcdef0112345678u64).get_bits(10, 10),
Natural::ZERO
);
source§fn get_bits_owned(self, start: u64, end: u64) -> Natural
fn get_bits_owned(self, start: u64, end: u64) -> Natural
Extracts a block of adjacent two’s complement bits from an Integer
, taking the
Integer
by value.
The first index is start
and last index is end - 1
.
Let $n$ be self
, and let $p$ and $q$ be start
and end
, respectively.
If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}; $$ but if $n < 0$, let $$ -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$. Then $$ f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), end)
.
§Panics
Panics if start > end
.
§Examples
use core::str::FromStr;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitBlockAccess;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
(-Natural::from(0xabcdef0112345678u64)).get_bits_owned(16, 48),
Natural::from(0x10feedcbu32)
);
assert_eq!(
Integer::from(0xabcdef0112345678u64).get_bits_owned(4, 16),
Natural::from(0x567u32)
);
assert_eq!(
(-Natural::from(0xabcdef0112345678u64)).get_bits_owned(0, 100),
Natural::from_str("1267650600215849587758112418184").unwrap()
);
assert_eq!(
Integer::from(0xabcdef0112345678u64).get_bits_owned(10, 10),
Natural::ZERO
);
source§fn assign_bits(&mut self, start: u64, end: u64, bits: &Natural)
fn assign_bits(&mut self, start: u64, end: u64, bits: &Natural)
Replaces a block of adjacent two’s complement bits in an Integer
with other bits.
The least-significant end - start
bits of bits
are assigned to bits start
through `end
- 1
, inclusive, of
self`.
Let $n$ be self
and let $m$ be bits
, and let $p$ and $q$ be start
and end
,
respectively.
Let $$ m = \sum_{i=0}^k 2^{d_i}, $$ where for all $i$, $d_i\in \{0, 1\}$.
If $n \geq 0$, let $$ n = \sum_{i=0}^\infty 2^{b_i}; $$ but if $n < 0$, let $$ -n - 1 = \sum_{i=0}^\infty 2^{1 - b_i}, $$ where for all $i$, $b_i\in \{0, 1\}$. Then $$ n \gets \sum_{i=0}^\infty 2^{c_i}, $$ where $$ \{c_0, c_1, c_2, \ldots \} = \{b_0, b_1, b_2, \ldots, b_{p-1}, d_0, d_1, \ldots, d_{p-q-1}, b_q, b_{q+1}, \ldots \}. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), end)
, and
$m$ is self.significant_bits()
.
§Panics
Panics if start > end
.
§Examples
use malachite_base::num::logic::traits::BitBlockAccess;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
let mut n = Integer::from(123);
n.assign_bits(5, 7, &Natural::from(456u32));
assert_eq!(n.to_string(), "27");
let mut n = Integer::from(-123);
n.assign_bits(64, 128, &Natural::from(456u32));
assert_eq!(n.to_string(), "-340282366920938455033212565746503123067");
let mut n = Integer::from(-123);
n.assign_bits(80, 100, &Natural::from(456u32));
assert_eq!(n.to_string(), "-1267098121128665515963862483067");
type Bits = Natural
source§impl BitConvertible for Integer
impl BitConvertible for Integer
source§fn to_bits_asc(&self) -> Vec<bool>
fn to_bits_asc(&self) -> Vec<bool>
Returns a Vec
containing the twos-complement bits of an Integer
in ascending order:
least- to most-significant.
The most significant bit indicates the sign; if the bit is false
, the Integer
is
positive, and if the bit is true
it is negative. There are no trailing false
bits if the
Integer
is positive or trailing true
bits if the Integer
is negative, except as
necessary to include the correct sign bit. Zero is a special case: it contains no bits.
This function is more efficient than to_bits_desc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitConvertible;
use malachite_nz::integer::Integer;
assert!(Integer::ZERO.to_bits_asc().is_empty());
// 105 = 01101001b, with a leading false bit to indicate sign
assert_eq!(
Integer::from(105).to_bits_asc(),
&[true, false, false, true, false, true, true, false]
);
// -105 = 10010111 in two's complement, with a leading true bit to indicate sign
assert_eq!(
Integer::from(-105).to_bits_asc(),
&[true, true, true, false, true, false, false, true]
);
source§fn to_bits_desc(&self) -> Vec<bool>
fn to_bits_desc(&self) -> Vec<bool>
Returns a Vec
containing the twos-complement bits of an Integer
in descending order:
most- to least-significant.
The most significant bit indicates the sign; if the bit is false
, the Integer
is
positive, and if the bit is true
it is negative. There are no leading false
bits if the
Integer
is positive or leading true
bits if the Integer
is negative, except as
necessary to include the correct sign bit. Zero is a special case: it contains no bits.
This is similar to how BigInteger
s in Java are represented.
This function is less efficient than to_bits_asc
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitConvertible;
use malachite_nz::integer::Integer;
assert!(Integer::ZERO.to_bits_desc().is_empty());
// 105 = 01101001b, with a leading false bit to indicate sign
assert_eq!(
Integer::from(105).to_bits_desc(),
&[false, true, true, false, true, false, false, true]
);
// -105 = 10010111 in two's complement, with a leading true bit to indicate sign
assert_eq!(
Integer::from(-105).to_bits_desc(),
&[true, false, false, true, false, true, true, true]
);
source§fn from_bits_asc<I: Iterator<Item = bool>>(xs: I) -> Integer
fn from_bits_asc<I: Iterator<Item = bool>>(xs: I) -> Integer
Converts an iterator of twos-complement bits into an Integer
. The bits should be in
ascending order (least- to most-significant).
Let $k$ be bits.count()
. If $k = 0$ or $b_{k-1}$ is false
, then
$$
f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^i [b_i],
$$
where braces denote the Iverson bracket, which converts a bit to 0 or 1.
If $b_{k-1}$ is true
, then
$$
f((b_i)_ {i=0}^{k-1}) = \left ( \sum_{i=0}^{k-1}2^i [b_i] \right ) - 2^k.
$$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is xs.count()
.
§Examples
use core::iter::empty;
use malachite_base::num::logic::traits::BitConvertible;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from_bits_asc(empty()), 0);
// 105 = 1101001b
assert_eq!(
Integer::from_bits_asc(
[true, false, false, true, false, true, true, false]
.iter()
.cloned()
),
105
);
// -105 = 10010111 in two's complement, with a leading true bit to indicate sign
assert_eq!(
Integer::from_bits_asc(
[true, true, true, false, true, false, false, true]
.iter()
.cloned()
),
-105
);
source§fn from_bits_desc<I: Iterator<Item = bool>>(xs: I) -> Integer
fn from_bits_desc<I: Iterator<Item = bool>>(xs: I) -> Integer
Converts an iterator of twos-complement bits into an Integer
. The bits should be in
descending order (most- to least-significant).
If bits
is empty or $b_0$ is false
, then
$$
f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^{k-i-1} [b_i],
$$
where braces denote the Iverson bracket, which converts a bit to 0 or 1.
If $b_0$ is true
, then
$$
f((b_i)_ {i=0}^{k-1}) = \left ( \sum_{i=0}^{k-1}2^{k-i-1} [b_i] \right ) - 2^k.
$$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is xs.count()
.
§Examples
use core::iter::empty;
use malachite_base::num::logic::traits::BitConvertible;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from_bits_desc(empty()), 0);
// 105 = 1101001b
assert_eq!(
Integer::from_bits_desc(
[false, true, true, false, true, false, false, true]
.iter()
.cloned()
),
105
);
// -105 = 10010111 in two's complement, with a leading true bit to indicate sign
assert_eq!(
Integer::from_bits_desc(
[true, false, false, true, false, true, true, true]
.iter()
.cloned()
),
-105
);
source§impl<'a> BitIterable for &'a Integer
impl<'a> BitIterable for &'a Integer
source§fn bits(self) -> IntegerBitIterator<'a> ⓘ
fn bits(self) -> IntegerBitIterator<'a> ⓘ
Returns a double-ended iterator over the bits of an Integer
.
The forward order is ascending, so that less significant bits appear first. There are no trailing false bits going forward, or leading falses going backward, except for possibly a most-significant sign-extension bit.
If it’s necessary to get a Vec
of all the bits, consider using
to_bits_asc
or
to_bits_desc
instead.
§Worst-case complexity
Constant time and additional memory.
§Examples
use itertools::Itertools;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::logic::traits::BitIterable;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.bits().next(), None);
// 105 = 01101001b, with a leading false bit to indicate sign
assert_eq!(
Integer::from(105).bits().collect_vec(),
&[true, false, false, true, false, true, true, false]
);
// -105 = 10010111 in two's complement, with a leading true bit to indicate sign
assert_eq!(
Integer::from(-105).bits().collect_vec(),
&[true, true, true, false, true, false, false, true]
);
assert_eq!(Integer::ZERO.bits().next_back(), None);
// 105 = 01101001b, with a leading false bit to indicate sign
assert_eq!(
Integer::from(105).bits().rev().collect_vec(),
&[false, true, true, false, true, false, false, true]
);
// -105 = 10010111 in two's complement, with a leading true bit to indicate sign
assert_eq!(
Integer::from(-105).bits().rev().collect_vec(),
&[true, false, false, true, false, true, true, true]
);
type BitIterator = IntegerBitIterator<'a>
source§impl<'a, 'b> BitOr<&'a Integer> for &'b Integer
impl<'a, 'b> BitOr<&'a Integer> for &'b Integer
source§fn bitor(self, other: &'a Integer) -> Integer
fn bitor(self, other: &'a Integer) -> Integer
Takes the bitwise or of two Integer
s, taking both by reference.
$$ f(x, y) = x \vee y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::from(-123) | &Integer::from(-456), -67);
assert_eq!(
&-Integer::from(10u32).pow(12) | &-(Integer::from(10u32).pow(12) + Integer::ONE),
-999999995905i64
);
source§impl<'a> BitOr<&'a Integer> for Integer
impl<'a> BitOr<&'a Integer> for Integer
source§fn bitor(self, other: &'a Integer) -> Integer
fn bitor(self, other: &'a Integer) -> Integer
Takes the bitwise or of two Integer
s, taking the first by value and the second by
reference.
$$ f(x, y) = x \vee y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is other.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123) | &Integer::from(-456), -67);
assert_eq!(
-Integer::from(10u32).pow(12) | &-(Integer::from(10u32).pow(12) + Integer::ONE),
-999999995905i64
);
source§impl<'a> BitOr<Integer> for &'a Integer
impl<'a> BitOr<Integer> for &'a Integer
source§fn bitor(self, other: Integer) -> Integer
fn bitor(self, other: Integer) -> Integer
Takes the bitwise or of two Integer
s, taking the first by reference and the second by
value.
$$ f(x, y) = x \vee y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::from(-123) | Integer::from(-456), -67);
assert_eq!(
&-Integer::from(10u32).pow(12) | -(Integer::from(10u32).pow(12) + Integer::ONE),
-999999995905i64
);
source§impl BitOr for Integer
impl BitOr for Integer
source§fn bitor(self, other: Integer) -> Integer
fn bitor(self, other: Integer) -> Integer
Takes the bitwise or of two Integer
s, taking both by value.
$$ f(x, y) = x \vee y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123) | Integer::from(-456), -67);
assert_eq!(
-Integer::from(10u32).pow(12) | -(Integer::from(10u32).pow(12) + Integer::ONE),
-999999995905i64
);
source§impl<'a> BitOrAssign<&'a Integer> for Integer
impl<'a> BitOrAssign<&'a Integer> for Integer
source§fn bitor_assign(&mut self, other: &'a Integer)
fn bitor_assign(&mut self, other: &'a Integer)
Bitwise-ors an Integer
with another Integer
in place, taking the Integer
on the
right-hand side by reference.
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is other.significant_bits()
.
§Examples
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x |= &Integer::from(0x0000000f);
x |= &Integer::from(0x00000f00);
x |= &Integer::from(0x000f_0000);
x |= &Integer::from(0x0f000000);
assert_eq!(x, 0x0f0f_0f0f);
source§impl BitOrAssign for Integer
impl BitOrAssign for Integer
source§fn bitor_assign(&mut self, other: Integer)
fn bitor_assign(&mut self, other: Integer)
Bitwise-ors an Integer
with another Integer
in place, taking the Integer
on the
right-hand side by value.
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
let mut x = Integer::ZERO;
x |= Integer::from(0x0000000f);
x |= Integer::from(0x00000f00);
x |= Integer::from(0x000f_0000);
x |= Integer::from(0x0f000000);
assert_eq!(x, 0x0f0f_0f0f);
source§impl<'a> BitScan for &'a Integer
impl<'a> BitScan for &'a Integer
source§fn index_of_next_false_bit(self, starting_index: u64) -> Option<u64>
fn index_of_next_false_bit(self, starting_index: u64) -> Option<u64>
Given an Integer
and a starting index, searches the Integer
for the smallest index
of a false
bit that is greater than or equal to the starting index.
If the [Integer]
is negative, and the starting index is too large and there are no more
false
bits above it, None
is returned.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::logic::traits::BitScan;
use malachite_nz::integer::Integer;
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(0),
Some(0)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(20),
Some(20)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(31),
Some(31)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(32),
Some(34)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(33),
Some(34)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(34),
Some(34)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(35),
None
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_false_bit(100),
None
);
source§fn index_of_next_true_bit(self, starting_index: u64) -> Option<u64>
fn index_of_next_true_bit(self, starting_index: u64) -> Option<u64>
Given an Integer
and a starting index, searches the Integer
for the smallest index
of a true
bit that is greater than or equal to the starting index.
If the Integer
is non-negative, and the starting index is too large and there are no
more true
bits above it, None
is returned.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use malachite_base::num::logic::traits::BitScan;
use malachite_nz::integer::Integer;
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(0),
Some(32)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(20),
Some(32)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(31),
Some(32)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(32),
Some(32)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(33),
Some(33)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(34),
Some(35)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(35),
Some(35)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(36),
Some(36)
);
assert_eq!(
(-Integer::from(0x500000000u64)).index_of_next_true_bit(100),
Some(100)
);
source§impl<'a, 'b> BitXor<&'a Integer> for &'b Integer
impl<'a, 'b> BitXor<&'a Integer> for &'b Integer
source§fn bitxor(self, other: &'a Integer) -> Integer
fn bitxor(self, other: &'a Integer) -> Integer
Takes the bitwise xor of two Integer
s, taking both by reference.
$$ f(x, y) = x \oplus y. $$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::from(-123) ^ &Integer::from(-456), 445);
assert_eq!(
&-Integer::from(10u32).pow(12) ^ &-(Integer::from(10u32).pow(12) + Integer::ONE),
8191
);
source§impl<'a> BitXor<&'a Integer> for Integer
impl<'a> BitXor<&'a Integer> for Integer
source§fn bitxor(self, other: &'a Integer) -> Integer
fn bitxor(self, other: &'a Integer) -> Integer
Takes the bitwise xor of two Integer
s, taking the first by value and the second by
reference.
$$ f(x, y) = x \oplus y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is other.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123) ^ &Integer::from(-456), 445);
assert_eq!(
-Integer::from(10u32).pow(12) ^ &-(Integer::from(10u32).pow(12) + Integer::ONE),
8191
);
source§impl<'a> BitXor<Integer> for &'a Integer
impl<'a> BitXor<Integer> for &'a Integer
source§fn bitxor(self, other: Integer) -> Integer
fn bitxor(self, other: Integer) -> Integer
Takes the bitwise xor of two Integer
s, taking the first by reference and the second by
value.
$$ f(x, y) = x \oplus y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is self.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(&Integer::from(-123) ^ Integer::from(-456), 445);
assert_eq!(
&-Integer::from(10u32).pow(12) ^ -(Integer::from(10u32).pow(12) + Integer::ONE),
8191
);
source§impl BitXor for Integer
impl BitXor for Integer
source§fn bitxor(self, other: Integer) -> Integer
fn bitxor(self, other: Integer) -> Integer
Takes the bitwise xor of two Integer
s, taking both by value.
$$ f(x, y) = x \oplus y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::basic::traits::One;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123) ^ Integer::from(-456), 445);
assert_eq!(
-Integer::from(10u32).pow(12) ^ -(Integer::from(10u32).pow(12) + Integer::ONE),
8191
);
source§impl<'a> BitXorAssign<&'a Integer> for Integer
impl<'a> BitXorAssign<&'a Integer> for Integer
source§fn bitxor_assign(&mut self, other: &'a Integer)
fn bitxor_assign(&mut self, other: &'a Integer)
Bitwise-xors an Integer
with another Integer
in place, taking the Integer
on the
right-hand side by reference.
$$ x \gets x \oplus y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(m) = O(m)$
where $T$ is time, $M$ is additional memory, $n$ is max(self.significant_bits(), other.significant_bits())
, and $m$ is other.significant_bits()
.
§Examples
use malachite_nz::integer::Integer;
let mut x = Integer::from(u32::MAX);
x ^= &Integer::from(0x0000000f);
x ^= &Integer::from(0x00000f00);
x ^= &Integer::from(0x000f_0000);
x ^= &Integer::from(0x0f000000);
assert_eq!(x, 0xf0f0_f0f0u32);
source§impl BitXorAssign for Integer
impl BitXorAssign for Integer
source§fn bitxor_assign(&mut self, other: Integer)
fn bitxor_assign(&mut self, other: Integer)
Bitwise-xors an Integer
with another Integer
in place, taking the Integer
on the
right-hand side by value.
$$ x \gets x \oplus y. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_nz::integer::Integer;
let mut x = Integer::from(u32::MAX);
x ^= Integer::from(0x0000000f);
x ^= Integer::from(0x00000f00);
x ^= Integer::from(0x000f_0000);
x ^= Integer::from(0x0f000000);
assert_eq!(x, 0xf0f0_f0f0u32);
source§impl<'a> CeilingDivAssignMod<&'a Integer> for Integer
impl<'a> CeilingDivAssignMod<&'a Integer> for Integer
source§fn ceiling_div_assign_mod(&mut self, other: &'a Integer) -> Integer
fn ceiling_div_assign_mod(&mut self, other: &'a Integer) -> Integer
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by reference and returning the remainder. The quotient is rounded towards
positive infinity and the remainder has the opposite sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lceil\frac{x}{y} \right \rceil, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingDivAssignMod;
use malachite_nz::integer::Integer;
// 3 * 10 + -7 = 23
let mut x = Integer::from(23);
assert_eq!(x.ceiling_div_assign_mod(&Integer::from(10)), -7);
assert_eq!(x, 3);
// -2 * -10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.ceiling_div_assign_mod(&Integer::from(-10)), 3);
assert_eq!(x, -2);
// -2 * 10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.ceiling_div_assign_mod(&Integer::from(10)), -3);
assert_eq!(x, -2);
// 3 * -10 + 7 = -23
let mut x = Integer::from(-23);
assert_eq!(x.ceiling_div_assign_mod(&Integer::from(-10)), 7);
assert_eq!(x, 3);
type ModOutput = Integer
source§impl CeilingDivAssignMod for Integer
impl CeilingDivAssignMod for Integer
source§fn ceiling_div_assign_mod(&mut self, other: Integer) -> Integer
fn ceiling_div_assign_mod(&mut self, other: Integer) -> Integer
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by value and returning the remainder. The quotient is rounded towards
positive infinity and the remainder has the opposite sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lceil\frac{x}{y} \right \rceil, $$ $$ x \gets \left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingDivAssignMod;
use malachite_nz::integer::Integer;
// 3 * 10 + -7 = 23
let mut x = Integer::from(23);
assert_eq!(x.ceiling_div_assign_mod(Integer::from(10)), -7);
assert_eq!(x, 3);
// -2 * -10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.ceiling_div_assign_mod(Integer::from(-10)), 3);
assert_eq!(x, -2);
// -2 * 10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.ceiling_div_assign_mod(Integer::from(10)), -3);
assert_eq!(x, -2);
// 3 * -10 + 7 = -23
let mut x = Integer::from(-23);
assert_eq!(x.ceiling_div_assign_mod(Integer::from(-10)), 7);
assert_eq!(x, 3);
type ModOutput = Integer
source§impl<'a, 'b> CeilingDivMod<&'b Integer> for &'a Integer
impl<'a, 'b> CeilingDivMod<&'b Integer> for &'a Integer
source§fn ceiling_div_mod(self, other: &'b Integer) -> (Integer, Integer)
fn ceiling_div_mod(self, other: &'b Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both by reference and returning the
quotient and remainder. The quotient is rounded towards positive infinity and the remainder
has the opposite sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space x - y\left \lceil \frac{x}{y} \right \rceil \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingDivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 3 * 10 + -7 = 23
assert_eq!(
(&Integer::from(23))
.ceiling_div_mod(&Integer::from(10))
.to_debug_string(),
"(3, -7)"
);
// -2 * -10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.ceiling_div_mod(&Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.ceiling_div_mod(&Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 3 * -10 + 7 = -23
assert_eq!(
(&Integer::from(-23))
.ceiling_div_mod(&Integer::from(-10))
.to_debug_string(),
"(3, 7)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl<'a> CeilingDivMod<&'a Integer> for Integer
impl<'a> CeilingDivMod<&'a Integer> for Integer
source§fn ceiling_div_mod(self, other: &'a Integer) -> (Integer, Integer)
fn ceiling_div_mod(self, other: &'a Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both the first by value and the second
by reference and returning the quotient and remainder. The quotient is rounded towards
positive infinity and the remainder has the opposite sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space x - y\left \lceil \frac{x}{y} \right \rceil \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingDivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 3 * 10 + -7 = 23
assert_eq!(
Integer::from(23)
.ceiling_div_mod(&Integer::from(10))
.to_debug_string(),
"(3, -7)"
);
// -2 * -10 + 3 = 23
assert_eq!(
Integer::from(23)
.ceiling_div_mod(&Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
Integer::from(-23)
.ceiling_div_mod(&Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 3 * -10 + 7 = -23
assert_eq!(
Integer::from(-23)
.ceiling_div_mod(&Integer::from(-10))
.to_debug_string(),
"(3, 7)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl<'a> CeilingDivMod<Integer> for &'a Integer
impl<'a> CeilingDivMod<Integer> for &'a Integer
source§fn ceiling_div_mod(self, other: Integer) -> (Integer, Integer)
fn ceiling_div_mod(self, other: Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking the first by reference and the second
by value and returning the quotient and remainder. The quotient is rounded towards positive
infinity and the remainder has the opposite sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space x - y\left \lceil \frac{x}{y} \right \rceil \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingDivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 3 * 10 + -7 = 23
assert_eq!(
(&Integer::from(23))
.ceiling_div_mod(Integer::from(10))
.to_debug_string(),
"(3, -7)"
);
// -2 * -10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.ceiling_div_mod(Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.ceiling_div_mod(Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 3 * -10 + 7 = -23
assert_eq!(
(&Integer::from(-23))
.ceiling_div_mod(Integer::from(-10))
.to_debug_string(),
"(3, 7)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl CeilingDivMod for Integer
impl CeilingDivMod for Integer
source§fn ceiling_div_mod(self, other: Integer) -> (Integer, Integer)
fn ceiling_div_mod(self, other: Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both by value and returning the
quotient and remainder. The quotient is rounded towards positive infinity and the remainder
has the opposite sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lceil \frac{x}{y} \right \rceil, \space x - y\left \lceil \frac{x}{y} \right \rceil \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingDivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 3 * 10 + -7 = 23
assert_eq!(
Integer::from(23)
.ceiling_div_mod(Integer::from(10))
.to_debug_string(),
"(3, -7)"
);
// -2 * -10 + 3 = 23
assert_eq!(
Integer::from(23)
.ceiling_div_mod(Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
Integer::from(-23)
.ceiling_div_mod(Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 3 * -10 + 7 = -23
assert_eq!(
Integer::from(-23)
.ceiling_div_mod(Integer::from(-10))
.to_debug_string(),
"(3, 7)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl<'a, 'b> CeilingMod<&'b Integer> for &'a Integer
impl<'a, 'b> CeilingMod<&'b Integer> for &'a Integer
source§fn ceiling_mod(self, other: &'b Integer) -> Integer
fn ceiling_mod(self, other: &'b Integer) -> Integer
Divides an Integer
by another Integer
, taking both by reference and returning just
the remainder. The remainder has the opposite sign as the second Integer
.
If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingMod;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!((&Integer::from(23)).ceiling_mod(&Integer::from(10)), -7);
// -3 * -10 + -7 = 23
assert_eq!((&Integer::from(23)).ceiling_mod(&Integer::from(-10)), 3);
// -3 * 10 + 7 = -23
assert_eq!((&Integer::from(-23)).ceiling_mod(&Integer::from(10)), -3);
// 2 * -10 + -3 = -23
assert_eq!((&Integer::from(-23)).ceiling_mod(&Integer::from(-10)), 7);
type Output = Integer
source§impl<'a> CeilingMod<&'a Integer> for Integer
impl<'a> CeilingMod<&'a Integer> for Integer
source§fn ceiling_mod(self, other: &'a Integer) -> Integer
fn ceiling_mod(self, other: &'a Integer) -> Integer
Divides an Integer
by another Integer
, taking the first by value and the second by
reference and returning just the remainder. The remainder has the opposite sign as the
second Integer
.
If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingMod;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(Integer::from(23).ceiling_mod(&Integer::from(10)), -7);
// -3 * -10 + -7 = 23
assert_eq!(Integer::from(23).ceiling_mod(&Integer::from(-10)), 3);
// -3 * 10 + 7 = -23
assert_eq!(Integer::from(-23).ceiling_mod(&Integer::from(10)), -3);
// 2 * -10 + -3 = -23
assert_eq!(Integer::from(-23).ceiling_mod(&Integer::from(-10)), 7);
type Output = Integer
source§impl<'a> CeilingMod<Integer> for &'a Integer
impl<'a> CeilingMod<Integer> for &'a Integer
source§fn ceiling_mod(self, other: Integer) -> Integer
fn ceiling_mod(self, other: Integer) -> Integer
Divides an Integer
by another Integer
, taking the first by reference and the second
by value and returning just the remainder. The remainder has the opposite sign as the second
Integer
.
If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingMod;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!((&Integer::from(23)).ceiling_mod(Integer::from(10)), -7);
// -3 * -10 + -7 = 23
assert_eq!((&Integer::from(23)).ceiling_mod(Integer::from(-10)), 3);
// -3 * 10 + 7 = -23
assert_eq!((&Integer::from(-23)).ceiling_mod(Integer::from(10)), -3);
// 2 * -10 + -3 = -23
assert_eq!((&Integer::from(-23)).ceiling_mod(Integer::from(-10)), 7);
type Output = Integer
source§impl CeilingMod for Integer
impl CeilingMod for Integer
source§fn ceiling_mod(self, other: Integer) -> Integer
fn ceiling_mod(self, other: Integer) -> Integer
Divides an Integer
by another Integer
, taking both by value and returning just the
remainder. The remainder has the opposite sign as the second Integer
.
If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lceil \frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingMod;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(Integer::from(23).ceiling_mod(Integer::from(10)), -7);
// -3 * -10 + -7 = 23
assert_eq!(Integer::from(23).ceiling_mod(Integer::from(-10)), 3);
// -3 * 10 + 7 = -23
assert_eq!(Integer::from(-23).ceiling_mod(Integer::from(10)), -3);
// 2 * -10 + -3 = -23
assert_eq!(Integer::from(-23).ceiling_mod(Integer::from(-10)), 7);
type Output = Integer
source§impl<'a> CeilingModAssign<&'a Integer> for Integer
impl<'a> CeilingModAssign<&'a Integer> for Integer
source§fn ceiling_mod_assign(&mut self, other: &'a Integer)
fn ceiling_mod_assign(&mut self, other: &'a Integer)
Divides an Integer
by another Integer
, taking the Integer
on the right-hand side
by reference and replacing the first number by the remainder. The remainder has the opposite
sign as the second number.
If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ x \gets x - y\left \lceil\frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingModAssign;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
x.ceiling_mod_assign(&Integer::from(10));
assert_eq!(x, -7);
// -3 * -10 + -7 = 23
let mut x = Integer::from(23);
x.ceiling_mod_assign(&Integer::from(-10));
assert_eq!(x, 3);
// -3 * 10 + 7 = -23
let mut x = Integer::from(-23);
x.ceiling_mod_assign(&Integer::from(10));
assert_eq!(x, -3);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
x.ceiling_mod_assign(&Integer::from(-10));
assert_eq!(x, 7);
source§impl CeilingModAssign for Integer
impl CeilingModAssign for Integer
source§fn ceiling_mod_assign(&mut self, other: Integer)
fn ceiling_mod_assign(&mut self, other: Integer)
Divides an Integer
by another Integer
, taking the Integer
on the right-hand side
by value and replacing the first number by the remainder. The remainder has the opposite
sign as the second number.
If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ x \gets x - y\left \lceil\frac{x}{y} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CeilingModAssign;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
x.ceiling_mod_assign(Integer::from(10));
assert_eq!(x, -7);
// -3 * -10 + -7 = 23
let mut x = Integer::from(23);
x.ceiling_mod_assign(Integer::from(-10));
assert_eq!(x, 3);
// -3 * 10 + 7 = -23
let mut x = Integer::from(-23);
x.ceiling_mod_assign(Integer::from(10));
assert_eq!(x, -3);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
x.ceiling_mod_assign(Integer::from(-10));
assert_eq!(x, 7);
source§impl<'a> CeilingModPowerOf2 for &'a Integer
impl<'a> CeilingModPowerOf2 for &'a Integer
source§fn ceiling_mod_power_of_2(self, pow: u64) -> Integer
fn ceiling_mod_power_of_2(self, pow: u64) -> Integer
Divides an Integer
by $2^k$, taking it by reference and returning just the remainder.
The remainder is non-positive.
If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq -r < 2^k$.
$$ f(x, y) = x - 2^k\left \lceil \frac{x}{2^k} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is pow
.
§Examples
use malachite_base::num::arithmetic::traits::CeilingModPowerOf2;
use malachite_nz::integer::Integer;
// 2 * 2^8 + -252 = 260
assert_eq!((&Integer::from(260)).ceiling_mod_power_of_2(8), -252);
// -100 * 2^4 + -11 = -1611
assert_eq!((&Integer::from(-1611)).ceiling_mod_power_of_2(4), -11);
type Output = Integer
source§impl CeilingModPowerOf2 for Integer
impl CeilingModPowerOf2 for Integer
source§fn ceiling_mod_power_of_2(self, pow: u64) -> Integer
fn ceiling_mod_power_of_2(self, pow: u64) -> Integer
Divides an Integer
by $2^k$, taking it by value and returning just the remainder. The
remainder is non-positive.
If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq -r < 2^k$.
$$ f(x, y) = x - 2^k\left \lceil \frac{x}{2^k} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is pow
.
§Examples
use malachite_base::num::arithmetic::traits::CeilingModPowerOf2;
use malachite_nz::integer::Integer;
// 2 * 2^8 + -252 = 260
assert_eq!(Integer::from(260).ceiling_mod_power_of_2(8), -252);
// -100 * 2^4 + -11 = -1611
assert_eq!(Integer::from(-1611).ceiling_mod_power_of_2(4), -11);
type Output = Integer
source§impl CeilingModPowerOf2Assign for Integer
impl CeilingModPowerOf2Assign for Integer
source§fn ceiling_mod_power_of_2_assign(&mut self, pow: u64)
fn ceiling_mod_power_of_2_assign(&mut self, pow: u64)
Divides an Integer
by $2^k$, replacing the Integer
by the remainder. The remainder
is non-positive.
If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0 \leq -r < 2^k$.
$$ x \gets x - 2^k\left \lceil\frac{x}{2^k} \right \rceil. $$
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is pow
.
§Examples
use malachite_base::num::arithmetic::traits::CeilingModPowerOf2Assign;
use malachite_nz::integer::Integer;
// 2 * 2^8 + -252 = 260
let mut x = Integer::from(260);
x.ceiling_mod_power_of_2_assign(8);
assert_eq!(x, -252);
// -100 * 2^4 + -11 = -1611
let mut x = Integer::from(-1611);
x.ceiling_mod_power_of_2_assign(4);
assert_eq!(x, -11);
source§impl<'a> CeilingRoot<u64> for &'a Integer
impl<'a> CeilingRoot<u64> for &'a Integer
source§fn ceiling_root(self, exp: u64) -> Integer
fn ceiling_root(self, exp: u64) -> Integer
Returns the ceiling of the $n$th root of an Integer
, taking the Integer
by
reference.
$f(x, n) = \lceil\sqrt[n]{x}\rceil$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CeilingRoot;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(999).ceiling_root(3), 10);
assert_eq!(Integer::from(1000).ceiling_root(3), 10);
assert_eq!(Integer::from(1001).ceiling_root(3), 11);
assert_eq!(Integer::from(100000000000i64).ceiling_root(5), 159);
assert_eq!(Integer::from(-100000000000i64).ceiling_root(5), -158);
type Output = Integer
source§impl CeilingRoot<u64> for Integer
impl CeilingRoot<u64> for Integer
source§fn ceiling_root(self, exp: u64) -> Integer
fn ceiling_root(self, exp: u64) -> Integer
Returns the ceiling of the $n$th root of an Integer
, taking the Integer
by value.
$f(x, n) = \lceil\sqrt[n]{x}\rceil$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CeilingRoot;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(999).ceiling_root(3), 10);
assert_eq!(Integer::from(1000).ceiling_root(3), 10);
assert_eq!(Integer::from(1001).ceiling_root(3), 11);
assert_eq!(Integer::from(100000000000i64).ceiling_root(5), 159);
assert_eq!(Integer::from(-100000000000i64).ceiling_root(5), -158);
type Output = Integer
source§impl CeilingRootAssign<u64> for Integer
impl CeilingRootAssign<u64> for Integer
source§fn ceiling_root_assign(&mut self, exp: u64)
fn ceiling_root_assign(&mut self, exp: u64)
Replaces an Integer
with the ceiling of its $n$th root.
$x \gets \lceil\sqrt[n]{x}\rceil$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CeilingRootAssign;
use malachite_nz::integer::Integer;
let mut x = Integer::from(999);
x.ceiling_root_assign(3);
assert_eq!(x, 10);
let mut x = Integer::from(1000);
x.ceiling_root_assign(3);
assert_eq!(x, 10);
let mut x = Integer::from(1001);
x.ceiling_root_assign(3);
assert_eq!(x, 11);
let mut x = Integer::from(100000000000i64);
x.ceiling_root_assign(5);
assert_eq!(x, 159);
let mut x = Integer::from(-100000000000i64);
x.ceiling_root_assign(5);
assert_eq!(x, -158);
source§impl<'a> CeilingSqrt for &'a Integer
impl<'a> CeilingSqrt for &'a Integer
source§fn ceiling_sqrt(self) -> Integer
fn ceiling_sqrt(self) -> Integer
Returns the ceiling of the square root of an Integer
, taking it by reference.
$f(x) = \lceil\sqrt{x}\rceil$.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CeilingSqrt;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(99).ceiling_sqrt(), 10);
assert_eq!(Integer::from(100).ceiling_sqrt(), 10);
assert_eq!(Integer::from(101).ceiling_sqrt(), 11);
assert_eq!(Integer::from(1000000000).ceiling_sqrt(), 31623);
assert_eq!(Integer::from(10000000000u64).ceiling_sqrt(), 100000);
type Output = Integer
source§impl CeilingSqrt for Integer
impl CeilingSqrt for Integer
source§fn ceiling_sqrt(self) -> Integer
fn ceiling_sqrt(self) -> Integer
Returns the ceiling of the square root of an Integer
, taking it by value.
$f(x) = \lceil\sqrt{x}\rceil$.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CeilingSqrt;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(99).ceiling_sqrt(), 10);
assert_eq!(Integer::from(100).ceiling_sqrt(), 10);
assert_eq!(Integer::from(101).ceiling_sqrt(), 11);
assert_eq!(Integer::from(1000000000).ceiling_sqrt(), 31623);
assert_eq!(Integer::from(10000000000u64).ceiling_sqrt(), 100000);
type Output = Integer
source§impl CeilingSqrtAssign for Integer
impl CeilingSqrtAssign for Integer
source§fn ceiling_sqrt_assign(&mut self)
fn ceiling_sqrt_assign(&mut self)
Replaces an Integer
with the ceiling of its square root.
$x \gets \lceil\sqrt{x}\rceil$.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CeilingSqrtAssign;
use malachite_nz::integer::Integer;
let mut x = Integer::from(99u8);
x.ceiling_sqrt_assign();
assert_eq!(x, 10);
let mut x = Integer::from(100);
x.ceiling_sqrt_assign();
assert_eq!(x, 10);
let mut x = Integer::from(101);
x.ceiling_sqrt_assign();
assert_eq!(x, 11);
let mut x = Integer::from(1000000000);
x.ceiling_sqrt_assign();
assert_eq!(x, 31623);
let mut x = Integer::from(10000000000u64);
x.ceiling_sqrt_assign();
assert_eq!(x, 100000);
source§impl<'a, 'b> CheckedDiv<&'b Integer> for &'a Integer
impl<'a, 'b> CheckedDiv<&'b Integer> for &'a Integer
source§fn checked_div(self, other: &'b Integer) -> Option<Integer>
fn checked_div(self, other: &'b Integer) -> Option<Integer>
Divides an Integer
by another Integer
, taking both by reference. The quotient is
rounded towards negative infinity. The quotient and remainder (which is not computed)
satisfy $x = qy + r$ and $0 \leq r < y$. Returns None
when the second Integer
is zero,
Some
otherwise.
$$ f(x, y) = \begin{cases} \operatorname{Some}\left ( \left \lfloor \frac{x}{y} \right \rfloor \right ) & \text{if} \quad y \neq 0 \\ \text{None} & \text{otherwise} \end{cases} $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CheckedDiv;
use malachite_base::num::basic::traits::{One, Zero};
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// -2 * -10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.checked_div(&Integer::from(-10))
.to_debug_string(),
"Some(-2)"
);
assert_eq!((&Integer::ONE).checked_div(&Integer::ZERO), None);
type Output = Integer
source§impl<'a> CheckedDiv<&'a Integer> for Integer
impl<'a> CheckedDiv<&'a Integer> for Integer
source§fn checked_div(self, other: &'a Integer) -> Option<Integer>
fn checked_div(self, other: &'a Integer) -> Option<Integer>
Divides an Integer
by another Integer
, taking the first by value and the second by
reference. The quotient is rounded towards negative infinity. The quotient and remainder
(which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$. Returns None
when the
second Integer
is zero, Some
otherwise.
$$ f(x, y) = \begin{cases} \operatorname{Some}\left ( \left \lfloor \frac{x}{y} \right \rfloor \right ) & \text{if} \quad y \neq 0 \\ \text{None} & \text{otherwise} \end{cases} $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CheckedDiv;
use malachite_base::num::basic::traits::{One, Zero};
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// -2 * -10 + 3 = 23
assert_eq!(
Integer::from(23)
.checked_div(&Integer::from(-10))
.to_debug_string(),
"Some(-2)"
);
assert_eq!(Integer::ONE.checked_div(&Integer::ZERO), None);
type Output = Integer
source§impl<'a> CheckedDiv<Integer> for &'a Integer
impl<'a> CheckedDiv<Integer> for &'a Integer
source§fn checked_div(self, other: Integer) -> Option<Integer>
fn checked_div(self, other: Integer) -> Option<Integer>
Divides an Integer
by another Integer
, taking the first by reference and the second
by value. The quotient is rounded towards negative infinity. The quotient and remainder
(which is not computed) satisfy $x = qy + r$ and $0 \leq r < y$. Returns None
when the
second Integer
is zero, Some
otherwise.
$$ f(x, y) = \begin{cases} \operatorname{Some}\left ( \left \lfloor \frac{x}{y} \right \rfloor \right ) & \text{if} \quad y \neq 0 \\ \text{None} & \text{otherwise} \end{cases} $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CheckedDiv;
use malachite_base::num::basic::traits::{One, Zero};
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// -2 * -10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.checked_div(Integer::from(-10))
.to_debug_string(),
"Some(-2)"
);
assert_eq!((&Integer::ONE).checked_div(Integer::ZERO), None);
type Output = Integer
source§impl CheckedDiv for Integer
impl CheckedDiv for Integer
source§fn checked_div(self, other: Integer) -> Option<Integer>
fn checked_div(self, other: Integer) -> Option<Integer>
Divides an Integer
by another Integer
, taking both by value. The quotient is rounded
towards negative infinity. The quotient and remainder (which is not computed) satisfy $x =
qy + r$ and $0 \leq r < y$. Returns None
when the second Integer
is zero, Some
otherwise.
$$ f(x, y) = \begin{cases} \operatorname{Some}\left ( \left \lfloor \frac{x}{y} \right \rfloor \right ) & \text{if} \quad y \neq 0 \\ \text{None} & \text{otherwise} \end{cases} $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::CheckedDiv;
use malachite_base::num::basic::traits::{One, Zero};
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// -2 * -10 + 3 = 23
assert_eq!(
Integer::from(23)
.checked_div(Integer::from(-10))
.to_debug_string(),
"Some(-2)"
);
assert_eq!(Integer::ONE.checked_div(Integer::ZERO), None);
type Output = Integer
source§impl<'a, 'b> CheckedHammingDistance<&'a Integer> for &'b Integer
impl<'a, 'b> CheckedHammingDistance<&'a Integer> for &'b Integer
source§fn checked_hamming_distance(self, other: &Integer) -> Option<u64>
fn checked_hamming_distance(self, other: &Integer) -> Option<u64>
Determines the Hamming distance between two Integer
s.
The two Integer
s have infinitely many leading zeros or infinitely many leading ones,
depending on their signs. If they are both non-negative or both negative, the Hamming
distance is finite. If one is non-negative and the other is negative, the Hamming distance
is infinite, so None
is returned.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::logic::traits::CheckedHammingDistance;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(123).checked_hamming_distance(&Integer::from(123)),
Some(0)
);
// 105 = 1101001b, 123 = 1111011
assert_eq!(
Integer::from(-105).checked_hamming_distance(&Integer::from(-123)),
Some(2)
);
assert_eq!(
Integer::from(-105).checked_hamming_distance(&Integer::from(123)),
None
);
source§impl<'a> CheckedRoot<u64> for &'a Integer
impl<'a> CheckedRoot<u64> for &'a Integer
source§fn checked_root(self, exp: u64) -> Option<Integer>
fn checked_root(self, exp: u64) -> Option<Integer>
Returns the the $n$th root of an Integer
, or None
if the Integer
is not a perfect
$n$th power. The Integer
is taken by reference.
$$ f(x, n) = \begin{cases} \operatorname{Some}(sqrt[n]{x}) & \text{if} \quad \sqrt[n]{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CheckedRoot;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(999)).checked_root(3).to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(1000)).checked_root(3).to_debug_string(),
"Some(10)"
);
assert_eq!(
(&Integer::from(1001)).checked_root(3).to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(100000000000i64))
.checked_root(5)
.to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(-100000000000i64))
.checked_root(5)
.to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(10000000000i64))
.checked_root(5)
.to_debug_string(),
"Some(100)"
);
assert_eq!(
(&Integer::from(-10000000000i64))
.checked_root(5)
.to_debug_string(),
"Some(-100)"
);
type Output = Integer
source§impl CheckedRoot<u64> for Integer
impl CheckedRoot<u64> for Integer
source§fn checked_root(self, exp: u64) -> Option<Integer>
fn checked_root(self, exp: u64) -> Option<Integer>
Returns the the $n$th root of an Integer
, or None
if the Integer
is not a perfect
$n$th power. The Integer
is taken by value.
$$ f(x, n) = \begin{cases} \operatorname{Some}(sqrt[n]{x}) & \text{if} \quad \sqrt[n]{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CheckedRoot;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(999).checked_root(3).to_debug_string(), "None");
assert_eq!(
Integer::from(1000).checked_root(3).to_debug_string(),
"Some(10)"
);
assert_eq!(
Integer::from(1001).checked_root(3).to_debug_string(),
"None"
);
assert_eq!(
Integer::from(100000000000i64)
.checked_root(5)
.to_debug_string(),
"None"
);
assert_eq!(
Integer::from(-100000000000i64)
.checked_root(5)
.to_debug_string(),
"None"
);
assert_eq!(
Integer::from(10000000000i64)
.checked_root(5)
.to_debug_string(),
"Some(100)"
);
assert_eq!(
Integer::from(-10000000000i64)
.checked_root(5)
.to_debug_string(),
"Some(-100)"
);
type Output = Integer
source§impl<'a> CheckedSqrt for &'a Integer
impl<'a> CheckedSqrt for &'a Integer
source§fn checked_sqrt(self) -> Option<Integer>
fn checked_sqrt(self) -> Option<Integer>
Returns the the square root of an Integer
, or None
if it is not a perfect square. The
Integer
is taken by reference.
$$ f(x) = \begin{cases} \operatorname{Some}(\sqrt{x}) & \text{if} \quad \sqrt{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CheckedSqrt;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(99u8)).checked_sqrt().to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(100u8)).checked_sqrt().to_debug_string(),
"Some(10)"
);
assert_eq!(
(&Integer::from(101u8)).checked_sqrt().to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(1000000000u32))
.checked_sqrt()
.to_debug_string(),
"None"
);
assert_eq!(
(&Integer::from(10000000000u64))
.checked_sqrt()
.to_debug_string(),
"Some(100000)"
);
type Output = Integer
source§impl CheckedSqrt for Integer
impl CheckedSqrt for Integer
source§fn checked_sqrt(self) -> Option<Integer>
fn checked_sqrt(self) -> Option<Integer>
Returns the the square root of an Integer
, or None
if it is not a perfect square. The
Integer
is taken by value.
$$ f(x) = \begin{cases} \operatorname{Some}(\sqrt{x}) & \text{if} \quad \sqrt{x} \in \Z, \\ \operatorname{None} & \textrm{otherwise}. \end{cases} $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::CheckedSqrt;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(99u8).checked_sqrt().to_debug_string(), "None");
assert_eq!(
Integer::from(100u8).checked_sqrt().to_debug_string(),
"Some(10)"
);
assert_eq!(
Integer::from(101u8).checked_sqrt().to_debug_string(),
"None"
);
assert_eq!(
Integer::from(1000000000u32)
.checked_sqrt()
.to_debug_string(),
"None"
);
assert_eq!(
Integer::from(10000000000u64)
.checked_sqrt()
.to_debug_string(),
"Some(100000)"
);
type Output = Integer
source§impl<'a> ConvertibleFrom<&'a Integer> for Natural
impl<'a> ConvertibleFrom<&'a Integer> for Natural
source§fn convertible_from(value: &'a Integer) -> bool
fn convertible_from(value: &'a Integer) -> bool
Determines whether an Integer
can be converted to a Natural
(when the Integer
is
non-negative). Takes the Integer
by reference.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Natural::convertible_from(&Integer::from(123)), true);
assert_eq!(Natural::convertible_from(&Integer::from(-123)), false);
assert_eq!(
Natural::convertible_from(&Integer::from(10u32).pow(12)),
true
);
assert_eq!(
Natural::convertible_from(&-Integer::from(10u32).pow(12)),
false
);
source§impl<'a> ConvertibleFrom<&'a Integer> for f32
impl<'a> ConvertibleFrom<&'a Integer> for f32
source§impl<'a> ConvertibleFrom<&'a Integer> for f64
impl<'a> ConvertibleFrom<&'a Integer> for f64
source§impl<'a> ConvertibleFrom<&'a Integer> for i128
impl<'a> ConvertibleFrom<&'a Integer> for i128
source§impl<'a> ConvertibleFrom<&'a Integer> for i16
impl<'a> ConvertibleFrom<&'a Integer> for i16
source§impl<'a> ConvertibleFrom<&'a Integer> for i32
impl<'a> ConvertibleFrom<&'a Integer> for i32
source§impl<'a> ConvertibleFrom<&'a Integer> for i64
impl<'a> ConvertibleFrom<&'a Integer> for i64
source§impl<'a> ConvertibleFrom<&'a Integer> for i8
impl<'a> ConvertibleFrom<&'a Integer> for i8
source§impl<'a> ConvertibleFrom<&'a Integer> for isize
impl<'a> ConvertibleFrom<&'a Integer> for isize
source§impl<'a> ConvertibleFrom<&'a Integer> for u128
impl<'a> ConvertibleFrom<&'a Integer> for u128
source§impl<'a> ConvertibleFrom<&'a Integer> for u16
impl<'a> ConvertibleFrom<&'a Integer> for u16
source§impl<'a> ConvertibleFrom<&'a Integer> for u32
impl<'a> ConvertibleFrom<&'a Integer> for u32
source§impl<'a> ConvertibleFrom<&'a Integer> for u64
impl<'a> ConvertibleFrom<&'a Integer> for u64
source§impl<'a> ConvertibleFrom<&'a Integer> for u8
impl<'a> ConvertibleFrom<&'a Integer> for u8
source§impl<'a> ConvertibleFrom<&'a Integer> for usize
impl<'a> ConvertibleFrom<&'a Integer> for usize
source§impl ConvertibleFrom<Integer> for Natural
impl ConvertibleFrom<Integer> for Natural
source§fn convertible_from(value: Integer) -> bool
fn convertible_from(value: Integer) -> bool
Determines whether an Integer
can be converted to a Natural
(when the Integer
is
non-negative). Takes the Integer
by value.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_base::num::conversion::traits::ConvertibleFrom;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Natural::convertible_from(Integer::from(123)), true);
assert_eq!(Natural::convertible_from(Integer::from(-123)), false);
assert_eq!(
Natural::convertible_from(Integer::from(10u32).pow(12)),
true
);
assert_eq!(
Natural::convertible_from(-Integer::from(10u32).pow(12)),
false
);
source§impl ConvertibleFrom<f32> for Integer
impl ConvertibleFrom<f32> for Integer
source§impl ConvertibleFrom<f64> for Integer
impl ConvertibleFrom<f64> for Integer
source§impl Debug for Integer
impl Debug for Integer
source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Converts an Integer
to a String
.
This is the same as the Display::fmt
implementation.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::basic::traits::Zero;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.to_debug_string(), "0");
assert_eq!(Integer::from(123).to_debug_string(), "123");
assert_eq!(
Integer::from_str("1000000000000")
.unwrap()
.to_debug_string(),
"1000000000000"
);
assert_eq!(format!("{:05?}", Integer::from(123)), "00123");
assert_eq!(Integer::from(-123).to_debug_string(), "-123");
assert_eq!(
Integer::from_str("-1000000000000")
.unwrap()
.to_debug_string(),
"-1000000000000"
);
assert_eq!(format!("{:05?}", Integer::from(-123)), "-0123");
source§impl Display for Integer
impl Display for Integer
source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Converts an Integer
to a String
.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.to_string(), "0");
assert_eq!(Integer::from(123).to_string(), "123");
assert_eq!(
Integer::from_str("1000000000000").unwrap().to_string(),
"1000000000000"
);
assert_eq!(format!("{:05}", Integer::from(123)), "00123");
assert_eq!(Integer::from(-123).to_string(), "-123");
assert_eq!(
Integer::from_str("-1000000000000").unwrap().to_string(),
"-1000000000000"
);
assert_eq!(format!("{:05}", Integer::from(-123)), "-0123");
source§impl<'a, 'b> Div<&'b Integer> for &'a Integer
impl<'a, 'b> Div<&'b Integer> for &'a Integer
source§fn div(self, other: &'b Integer) -> Integer
fn div(self, other: &'b Integer) -> Integer
Divides an Integer
by another Integer
, taking both by reference. The quotient is
rounded towards zero. The quotient and remainder (which is not computed) satisfy $x = qy +
r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(&Integer::from(23) / &Integer::from(10), 2);
// -2 * -10 + 3 = 23
assert_eq!(&Integer::from(23) / &Integer::from(-10), -2);
// -2 * 10 + -3 = -23
assert_eq!(&Integer::from(-23) / &Integer::from(10), -2);
// 2 * -10 + -3 = -23
assert_eq!(&Integer::from(-23) / &Integer::from(-10), 2);
source§impl<'a> Div<&'a Integer> for Integer
impl<'a> Div<&'a Integer> for Integer
source§fn div(self, other: &'a Integer) -> Integer
fn div(self, other: &'a Integer) -> Integer
Divides an Integer
by another Integer
, taking the first by value and the second by
reference. The quotient is rounded towards zero. The quotient and remainder (which is not
computed) satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(Integer::from(23) / &Integer::from(10), 2);
// -2 * -10 + 3 = 23
assert_eq!(Integer::from(23) / &Integer::from(-10), -2);
// -2 * 10 + -3 = -23
assert_eq!(Integer::from(-23) / &Integer::from(10), -2);
// 2 * -10 + -3 = -23
assert_eq!(Integer::from(-23) / &Integer::from(-10), 2);
source§impl<'a> Div<Integer> for &'a Integer
impl<'a> Div<Integer> for &'a Integer
source§fn div(self, other: Integer) -> Integer
fn div(self, other: Integer) -> Integer
Divides an Integer
by another Integer
, taking the first by reference and the second
by value. The quotient is rounded towards zero. The quotient and remainder (which is not
computed) satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(&Integer::from(23) / Integer::from(10), 2);
// -2 * -10 + 3 = 23
assert_eq!(&Integer::from(23) / Integer::from(-10), -2);
// -2 * 10 + -3 = -23
assert_eq!(&Integer::from(-23) / Integer::from(10), -2);
// 2 * -10 + -3 = -23
assert_eq!(&Integer::from(-23) / Integer::from(-10), 2);
source§impl Div for Integer
impl Div for Integer
source§fn div(self, other: Integer) -> Integer
fn div(self, other: Integer) -> Integer
Divides an Integer
by another Integer
, taking both by value. The quotient is rounded
towards zero. The quotient and remainder (which is not computed) satisfy $x = qy + r$ and $0
\leq |r| < |y|$.
$$ f(x, y) = \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(Integer::from(23) / Integer::from(10), 2);
// -2 * -10 + 3 = 23
assert_eq!(Integer::from(23) / Integer::from(-10), -2);
// -2 * 10 + -3 = -23
assert_eq!(Integer::from(-23) / Integer::from(10), -2);
// 2 * -10 + -3 = -23
assert_eq!(Integer::from(-23) / Integer::from(-10), 2);
source§impl<'a> DivAssign<&'a Integer> for Integer
impl<'a> DivAssign<&'a Integer> for Integer
source§fn div_assign(&mut self, other: &'a Integer)
fn div_assign(&mut self, other: &'a Integer)
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by reference. The quotient is rounded towards zero. The quotient and
remainder (which is not computed) satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ x \gets \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
x /= &Integer::from(10);
assert_eq!(x, 2);
// -2 * -10 + 3 = 23
let mut x = Integer::from(23);
x /= &Integer::from(-10);
assert_eq!(x, -2);
// -2 * 10 + -3 = -23
let mut x = Integer::from(-23);
x /= &Integer::from(10);
assert_eq!(x, -2);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
x /= &Integer::from(-10);
assert_eq!(x, 2);
source§impl DivAssign for Integer
impl DivAssign for Integer
source§fn div_assign(&mut self, other: Integer)
fn div_assign(&mut self, other: Integer)
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by value. The quotient is rounded towards zero. The quotient and remainder
(which is not computed) satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ x \gets \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
x /= Integer::from(10);
assert_eq!(x, 2);
// -2 * -10 + 3 = 23
let mut x = Integer::from(23);
x /= Integer::from(-10);
assert_eq!(x, -2);
// -2 * 10 + -3 = -23
let mut x = Integer::from(-23);
x /= Integer::from(10);
assert_eq!(x, -2);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
x /= Integer::from(-10);
assert_eq!(x, 2);
source§impl<'a> DivAssignMod<&'a Integer> for Integer
impl<'a> DivAssignMod<&'a Integer> for Integer
source§fn div_assign_mod(&mut self, other: &'a Integer) -> Integer
fn div_assign_mod(&mut self, other: &'a Integer) -> Integer
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by reference and returning the remainder. The quotient is rounded towards
negative infinity, and the remainder has the same sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor, $$ $$ x \gets \left \lfloor \frac{x}{y} \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivAssignMod;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_mod(&Integer::from(10)), 3);
assert_eq!(x, 2);
// -3 * -10 + -7 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_mod(&Integer::from(-10)), -7);
assert_eq!(x, -3);
// -3 * 10 + 7 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_mod(&Integer::from(10)), 7);
assert_eq!(x, -3);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_mod(&Integer::from(-10)), -3);
assert_eq!(x, 2);
type ModOutput = Integer
source§impl DivAssignMod for Integer
impl DivAssignMod for Integer
source§fn div_assign_mod(&mut self, other: Integer) -> Integer
fn div_assign_mod(&mut self, other: Integer) -> Integer
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by value and returning the remainder. The quotient is rounded towards
negative infinity, and the remainder has the same sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y\left \lfloor \frac{x}{y} \right \rfloor, $$ $$ x \gets \left \lfloor \frac{x}{y} \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivAssignMod;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_mod(Integer::from(10)), 3);
assert_eq!(x, 2);
// -3 * -10 + -7 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_mod(Integer::from(-10)), -7);
assert_eq!(x, -3);
// -3 * 10 + 7 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_mod(Integer::from(10)), 7);
assert_eq!(x, -3);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_mod(Integer::from(-10)), -3);
assert_eq!(x, 2);
type ModOutput = Integer
source§impl<'a> DivAssignRem<&'a Integer> for Integer
impl<'a> DivAssignRem<&'a Integer> for Integer
source§fn div_assign_rem(&mut self, other: &'a Integer) -> Integer
fn div_assign_rem(&mut self, other: &'a Integer) -> Integer
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by reference and returning the remainder. The quotient is rounded towards
zero and the remainder has the same sign as the first Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor, $$ $$ x \gets \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivAssignRem;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_rem(&Integer::from(10)), 3);
assert_eq!(x, 2);
// -2 * -10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_rem(&Integer::from(-10)), 3);
assert_eq!(x, -2);
// -2 * 10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_rem(&Integer::from(10)), -3);
assert_eq!(x, -2);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_rem(&Integer::from(-10)), -3);
assert_eq!(x, 2);
type RemOutput = Integer
source§impl DivAssignRem for Integer
impl DivAssignRem for Integer
source§fn div_assign_rem(&mut self, other: Integer) -> Integer
fn div_assign_rem(&mut self, other: Integer) -> Integer
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by value and returning the remainder. The quotient is rounded towards zero
and the remainder has the same sign as the first Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = x - y \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor, $$ $$ x \gets \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor. $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivAssignRem;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_rem(Integer::from(10)), 3);
assert_eq!(x, 2);
// -2 * -10 + 3 = 23
let mut x = Integer::from(23);
assert_eq!(x.div_assign_rem(Integer::from(-10)), 3);
assert_eq!(x, -2);
// -2 * 10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_rem(Integer::from(10)), -3);
assert_eq!(x, -2);
// 2 * -10 + -3 = -23
let mut x = Integer::from(-23);
assert_eq!(x.div_assign_rem(Integer::from(-10)), -3);
assert_eq!(x, 2);
type RemOutput = Integer
source§impl<'a, 'b> DivExact<&'b Integer> for &'a Integer
impl<'a, 'b> DivExact<&'b Integer> for &'a Integer
source§fn div_exact(self, other: &'b Integer) -> Integer
fn div_exact(self, other: &'b Integer) -> Integer
Divides an Integer
by another Integer
, taking both by reference. The first
Integer
must be exactly divisible by the second. If it isn’t, this function may panic or
return a meaningless result.
$$ f(x, y) = \frac{x}{y}. $$
If you are unsure whether the division will be exact, use &self / &other
instead. If
you’re unsure and you want to know, use (&self).div_mod(&other)
and check whether the
remainder is zero. If you want a function that panics if the division is not exact, use
(&self).div_round(&other, Exact)
.
§Panics
Panics if other
is zero. May panic if self
is not divisible by other
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::integer::Integer;
// -123 * 456 = -56088
assert_eq!(
(&Integer::from(-56088)).div_exact(&Integer::from(456)),
-123
);
// -123456789000 * -987654321000 = 121932631112635269000000
assert_eq!(
(&Integer::from_str("121932631112635269000000").unwrap())
.div_exact(&Integer::from_str("-987654321000").unwrap()),
-123456789000i64
);
type Output = Integer
source§impl<'a> DivExact<&'a Integer> for Integer
impl<'a> DivExact<&'a Integer> for Integer
source§fn div_exact(self, other: &'a Integer) -> Integer
fn div_exact(self, other: &'a Integer) -> Integer
Divides an Integer
by another Integer
, taking the first by value and the second by
reference. The first Integer
must be exactly divisible by the second. If it isn’t, this
function may panic or return a meaningless result.
$$ f(x, y) = \frac{x}{y}. $$
If you are unsure whether the division will be exact, use self / &other
instead. If you’re
unsure and you want to know, use self.div_mod(&other)
and check whether the remainder is
zero. If you want a function that panics if the division is not exact, use
self.div_round(&other, Exact)
.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero. May panic if self
is not divisible by other
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::integer::Integer;
// -123 * 456 = -56088
assert_eq!(Integer::from(-56088).div_exact(&Integer::from(456)), -123);
// -123456789000 * -987654321000 = 121932631112635269000000
assert_eq!(
Integer::from_str("121932631112635269000000")
.unwrap()
.div_exact(&Integer::from_str("-987654321000").unwrap()),
-123456789000i64
);
type Output = Integer
source§impl<'a> DivExact<Integer> for &'a Integer
impl<'a> DivExact<Integer> for &'a Integer
source§fn div_exact(self, other: Integer) -> Integer
fn div_exact(self, other: Integer) -> Integer
Divides an Integer
by another Integer
, taking the first by reference and the second
by value. The first Integer
must be exactly divisible by the second. If it isn’t, this
function may panic or return a meaningless result.
$$ f(x, y) = \frac{x}{y}. $$
If you are unsure whether the division will be exact, use &self / other
instead. If you’re
unsure and you want to know, use self.div_mod(other)
and check whether the remainder is
zero. If you want a function that panics if the division is not exact, use
(&self).div_round(other, Exact)
.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero. May panic if self
is not divisible by other
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::integer::Integer;
// -123 * 456 = -56088
assert_eq!((&Integer::from(-56088)).div_exact(Integer::from(456)), -123);
// -123456789000 * -987654321000 = 121932631112635269000000
assert_eq!(
(&Integer::from_str("121932631112635269000000").unwrap())
.div_exact(Integer::from_str("-987654321000").unwrap()),
-123456789000i64
);
type Output = Integer
source§impl DivExact for Integer
impl DivExact for Integer
source§fn div_exact(self, other: Integer) -> Integer
fn div_exact(self, other: Integer) -> Integer
Divides an Integer
by another Integer
, taking both by value. The first Integer
must be exactly divisible by the second. If it isn’t, this function may panic or return a
meaningless result.
$$ f(x, y) = \frac{x}{y}. $$
If you are unsure whether the division will be exact, use self / other
instead. If you’re
unsure and you want to know, use self.div_mod(other)
and check whether the remainder is
zero. If you want a function that panics if the division is not exact, use
self.div_round(other, Exact)
.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero. May panic if self
is not divisible by other
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivExact;
use malachite_nz::integer::Integer;
// -123 * 456 = -56088
assert_eq!(Integer::from(-56088).div_exact(Integer::from(456)), -123);
// -123456789000 * -987654321000 = 121932631112635269000000
assert_eq!(
Integer::from_str("121932631112635269000000")
.unwrap()
.div_exact(Integer::from_str("-987654321000").unwrap()),
-123456789000i64
);
type Output = Integer
source§impl<'a> DivExactAssign<&'a Integer> for Integer
impl<'a> DivExactAssign<&'a Integer> for Integer
source§fn div_exact_assign(&mut self, other: &'a Integer)
fn div_exact_assign(&mut self, other: &'a Integer)
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by reference. The first Integer
must be exactly divisible by the second.
If it isn’t, this function may panic or return a meaningless result.
$$ x \gets \frac{x}{y}. $$
If you are unsure whether the division will be exact, use self /= &other
instead. If
you’re unsure and you want to know, use self.div_assign_mod(&other)
and check whether the
remainder is zero. If you want a function that panics if the division is not exact, use
self.div_round_assign(&other, Exact)
.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero. May panic if self
is not divisible by other
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivExactAssign;
use malachite_nz::integer::Integer;
// -123 * 456 = -56088
let mut x = Integer::from(-56088);
x.div_exact_assign(&Integer::from(456));
assert_eq!(x, -123);
// -123456789000 * -987654321000 = 121932631112635269000000
let mut x = Integer::from_str("121932631112635269000000").unwrap();
x.div_exact_assign(&Integer::from_str("-987654321000").unwrap());
assert_eq!(x, -123456789000i64);
source§impl DivExactAssign for Integer
impl DivExactAssign for Integer
source§fn div_exact_assign(&mut self, other: Integer)
fn div_exact_assign(&mut self, other: Integer)
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by value. The first Integer
must be exactly divisible by the second. If
it isn’t, this function may panic or return a meaningless result.
$$ x \gets \frac{x}{y}. $$
If you are unsure whether the division will be exact, use self /= other
instead. If you’re
unsure and you want to know, use self.div_assign_mod(other)
and check whether the
remainder is zero. If you want a function that panics if the division is not exact, use
self.div_round_assign(other, Exact)
.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero. May panic if self
is not divisible by other
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivExactAssign;
use malachite_nz::integer::Integer;
// -123 * 456 = -56088
let mut x = Integer::from(-56088);
x.div_exact_assign(Integer::from(456));
assert_eq!(x, -123);
// -123456789000 * -987654321000 = 121932631112635269000000
let mut x = Integer::from_str("121932631112635269000000").unwrap();
x.div_exact_assign(Integer::from_str("-987654321000").unwrap());
assert_eq!(x, -123456789000i64);
source§impl<'a, 'b> DivMod<&'b Integer> for &'a Integer
impl<'a, 'b> DivMod<&'b Integer> for &'a Integer
source§fn div_mod(self, other: &'b Integer) -> (Integer, Integer)
fn div_mod(self, other: &'b Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both by reference and returning the
quotient and remainder. The quotient is rounded towards negative infinity, and the remainder
has the same sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.div_mod(&Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -3 * -10 + -7 = 23
assert_eq!(
(&Integer::from(23))
.div_mod(&Integer::from(-10))
.to_debug_string(),
"(-3, -7)"
);
// -3 * 10 + 7 = -23
assert_eq!(
(&Integer::from(-23))
.div_mod(&Integer::from(10))
.to_debug_string(),
"(-3, 7)"
);
// 2 * -10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.div_mod(&Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl<'a> DivMod<&'a Integer> for Integer
impl<'a> DivMod<&'a Integer> for Integer
source§fn div_mod(self, other: &'a Integer) -> (Integer, Integer)
fn div_mod(self, other: &'a Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking the first by value and the second by
reference and returning the quotient and remainder. The quotient is rounded towards negative
infinity, and the remainder has the same sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
Integer::from(23)
.div_mod(&Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -3 * -10 + -7 = 23
assert_eq!(
Integer::from(23)
.div_mod(&Integer::from(-10))
.to_debug_string(),
"(-3, -7)"
);
// -3 * 10 + 7 = -23
assert_eq!(
Integer::from(-23)
.div_mod(&Integer::from(10))
.to_debug_string(),
"(-3, 7)"
);
// 2 * -10 + -3 = -23
assert_eq!(
Integer::from(-23)
.div_mod(&Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl<'a> DivMod<Integer> for &'a Integer
impl<'a> DivMod<Integer> for &'a Integer
source§fn div_mod(self, other: Integer) -> (Integer, Integer)
fn div_mod(self, other: Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking the first by reference and the second
by value and returning the quotient and remainder. The quotient is rounded towards negative
infinity, and the remainder has the same sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.div_mod(Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -3 * -10 + -7 = 23
assert_eq!(
(&Integer::from(23))
.div_mod(Integer::from(-10))
.to_debug_string(),
"(-3, -7)"
);
// -3 * 10 + 7 = -23
assert_eq!(
(&Integer::from(-23))
.div_mod(Integer::from(10))
.to_debug_string(),
"(-3, 7)"
);
// 2 * -10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.div_mod(Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl DivMod for Integer
impl DivMod for Integer
source§fn div_mod(self, other: Integer) -> (Integer, Integer)
fn div_mod(self, other: Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both by value and returning the
quotient and remainder. The quotient is rounded towards negative infinity, and the remainder
has the same sign as the second Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \left \lfloor \frac{x}{y} \right \rfloor, \space x - y\left \lfloor \frac{x}{y} \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivMod;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
Integer::from(23)
.div_mod(Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -3 * -10 + -7 = 23
assert_eq!(
Integer::from(23)
.div_mod(Integer::from(-10))
.to_debug_string(),
"(-3, -7)"
);
// -3 * 10 + 7 = -23
assert_eq!(
Integer::from(-23)
.div_mod(Integer::from(10))
.to_debug_string(),
"(-3, 7)"
);
// 2 * -10 + -3 = -23
assert_eq!(
Integer::from(-23)
.div_mod(Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type ModOutput = Integer
source§impl<'a, 'b> DivRem<&'b Integer> for &'a Integer
impl<'a, 'b> DivRem<&'b Integer> for &'a Integer
source§fn div_rem(self, other: &'b Integer) -> (Integer, Integer)
fn div_rem(self, other: &'b Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both by reference and returning the
quotient and remainder. The quotient is rounded towards zero and the remainder has the same
sign as the first Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor, \space x - y \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.div_rem(&Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -2 * -10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.div_rem(&Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.div_rem(&Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 2 * -10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.div_rem(&Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type RemOutput = Integer
source§impl<'a> DivRem<&'a Integer> for Integer
impl<'a> DivRem<&'a Integer> for Integer
source§fn div_rem(self, other: &'a Integer) -> (Integer, Integer)
fn div_rem(self, other: &'a Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking the first by value and the second by
reference and returning the quotient and remainder. The quotient is rounded towards zero and
the remainder has the same sign as the first Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor, \space x - y \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
Integer::from(23)
.div_rem(&Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -2 * -10 + 3 = 23
assert_eq!(
Integer::from(23)
.div_rem(&Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
Integer::from(-23)
.div_rem(&Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 2 * -10 + -3 = -23
assert_eq!(
Integer::from(-23)
.div_rem(&Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type RemOutput = Integer
source§impl<'a> DivRem<Integer> for &'a Integer
impl<'a> DivRem<Integer> for &'a Integer
source§fn div_rem(self, other: Integer) -> (Integer, Integer)
fn div_rem(self, other: Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking the first by reference and the second
by value and returning the quotient and remainder. The quotient is rounded towards zero and
the remainder has the same sign as the first Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor, \space x - y \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.div_rem(Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -2 * -10 + 3 = 23
assert_eq!(
(&Integer::from(23))
.div_rem(Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.div_rem(Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 2 * -10 + -3 = -23
assert_eq!(
(&Integer::from(-23))
.div_rem(Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type RemOutput = Integer
source§impl DivRem for Integer
impl DivRem for Integer
source§fn div_rem(self, other: Integer) -> (Integer, Integer)
fn div_rem(self, other: Integer) -> (Integer, Integer)
Divides an Integer
by another Integer
, taking both by value and returning the
quotient and remainder. The quotient is rounded towards zero and the remainder has the same
sign as the first Integer
.
The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
$$ f(x, y) = \left ( \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor, \space x - y \operatorname{sgn}(xy) \left \lfloor \left | \frac{x}{y} \right | \right \rfloor \right ). $$
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero.
§Examples
use malachite_base::num::arithmetic::traits::DivRem;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
// 2 * 10 + 3 = 23
assert_eq!(
Integer::from(23)
.div_rem(Integer::from(10))
.to_debug_string(),
"(2, 3)"
);
// -2 * -10 + 3 = 23
assert_eq!(
Integer::from(23)
.div_rem(Integer::from(-10))
.to_debug_string(),
"(-2, 3)"
);
// -2 * 10 + -3 = -23
assert_eq!(
Integer::from(-23)
.div_rem(Integer::from(10))
.to_debug_string(),
"(-2, -3)"
);
// 2 * -10 + -3 = -23
assert_eq!(
Integer::from(-23)
.div_rem(Integer::from(-10))
.to_debug_string(),
"(2, -3)"
);
type DivOutput = Integer
type RemOutput = Integer
source§impl<'a, 'b> DivRound<&'b Integer> for &'a Integer
impl<'a, 'b> DivRound<&'b Integer> for &'a Integer
source§fn div_round(self, other: &'b Integer, rm: RoundingMode) -> (Integer, Ordering)
fn div_round(self, other: &'b Integer, rm: RoundingMode) -> (Integer, Ordering)
Divides an Integer
by another Integer
, taking both by reference and rounding
according to a specified rounding mode. An Ordering
is also returned, indicating whether
the returned value is less than, equal to, or greater than the exact value.
Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of
the pair, without the Ordering
:
$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$
$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$
$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$
$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$
$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$
$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.
Then $f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero, or if rm
is Exact
but self
is not divisible by other
.
§Examples
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(4), Down),
(Integer::from(-2), Greater)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(&Integer::from(3), Floor),
(Integer::from(-333333333334i64), Less)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(4), Up),
(Integer::from(-3), Less)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(&Integer::from(3), Ceiling),
(Integer::from(-333333333333i64), Greater)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(5), Exact),
(Integer::from(-2), Equal)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(3), Nearest),
(Integer::from(-3), Greater)
);
assert_eq!(
(&Integer::from(-20)).div_round(&Integer::from(3), Nearest),
(Integer::from(-7), Less)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(4), Nearest),
(Integer::from(-2), Greater)
);
assert_eq!(
(&Integer::from(-14)).div_round(&Integer::from(4), Nearest),
(Integer::from(-4), Less)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(-4), Down),
(Integer::from(2), Less)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(&Integer::from(-3), Floor),
(Integer::from(333333333333i64), Less)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(-4), Up),
(Integer::from(3), Greater)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(&Integer::from(-3), Ceiling),
(Integer::from(333333333334i64), Greater)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(-5), Exact),
(Integer::from(2), Equal)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(-3), Nearest),
(Integer::from(3), Less)
);
assert_eq!(
(&Integer::from(-20)).div_round(&Integer::from(-3), Nearest),
(Integer::from(7), Greater)
);
assert_eq!(
(&Integer::from(-10)).div_round(&Integer::from(-4), Nearest),
(Integer::from(2), Less)
);
assert_eq!(
(&Integer::from(-14)).div_round(&Integer::from(-4), Nearest),
(Integer::from(4), Greater)
);
type Output = Integer
source§impl<'a> DivRound<&'a Integer> for Integer
impl<'a> DivRound<&'a Integer> for Integer
source§fn div_round(self, other: &'a Integer, rm: RoundingMode) -> (Integer, Ordering)
fn div_round(self, other: &'a Integer, rm: RoundingMode) -> (Integer, Ordering)
Divides an Integer
by another Integer
, taking the first by value and the second by
reference and rounding according to a specified rounding mode. An Ordering
is also
returned, indicating whether the returned value is less than, equal to, or greater than the
exact value.
Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of
the pair, without the Ordering
:
$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$
$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$
$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$
$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$
$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$
$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.
Then $f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero, or if rm
is Exact
but self
is not divisible by other
.
§Examples
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(-10).div_round(&Integer::from(4), Down),
(Integer::from(-2), Greater)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(&Integer::from(3), Floor),
(Integer::from(-333333333334i64), Less)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(4), Up),
(Integer::from(-3), Less)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(&Integer::from(3), Ceiling),
(Integer::from(-333333333333i64), Greater)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(5), Exact),
(Integer::from(-2), Equal)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(3), Nearest),
(Integer::from(-3), Greater)
);
assert_eq!(
Integer::from(-20).div_round(&Integer::from(3), Nearest),
(Integer::from(-7), Less)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(4), Nearest),
(Integer::from(-2), Greater)
);
assert_eq!(
Integer::from(-14).div_round(&Integer::from(4), Nearest),
(Integer::from(-4), Less)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(-4), Down),
(Integer::from(2), Less)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(&Integer::from(-3), Floor),
(Integer::from(333333333333i64), Less)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(-4), Up),
(Integer::from(3), Greater)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(&Integer::from(-3), Ceiling),
(Integer::from(333333333334i64), Greater)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(-5), Exact),
(Integer::from(2), Equal)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(-3), Nearest),
(Integer::from(3), Less)
);
assert_eq!(
Integer::from(-20).div_round(&Integer::from(-3), Nearest),
(Integer::from(7), Greater)
);
assert_eq!(
Integer::from(-10).div_round(&Integer::from(-4), Nearest),
(Integer::from(2), Less)
);
assert_eq!(
Integer::from(-14).div_round(&Integer::from(-4), Nearest),
(Integer::from(4), Greater)
);
type Output = Integer
source§impl<'a> DivRound<Integer> for &'a Integer
impl<'a> DivRound<Integer> for &'a Integer
source§fn div_round(self, other: Integer, rm: RoundingMode) -> (Integer, Ordering)
fn div_round(self, other: Integer, rm: RoundingMode) -> (Integer, Ordering)
Divides an Integer
by another Integer
, taking the first by reference and the second
by value and rounding according to a specified rounding mode. An Ordering
is also
returned, indicating whether the returned value is less than, equal to, or greater than the
exact value.
Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of
the pair, without the Ordering
:
$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$
$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$
$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$
$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$
$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$
$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.
Then $f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero, or if rm
is Exact
but self
is not divisible by other
.
§Examples
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(4), Down),
(Integer::from(-2), Greater)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(Integer::from(3), Floor),
(Integer::from(-333333333334i64), Less)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(4), Up),
(Integer::from(-3), Less)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(Integer::from(3), Ceiling),
(Integer::from(-333333333333i64), Greater)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(5), Exact),
(Integer::from(-2), Equal)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(3), Nearest),
(Integer::from(-3), Greater)
);
assert_eq!(
(&Integer::from(-20)).div_round(Integer::from(3), Nearest),
(Integer::from(-7), Less)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(4), Nearest),
(Integer::from(-2), Greater)
);
assert_eq!(
(&Integer::from(-14)).div_round(Integer::from(4), Nearest),
(Integer::from(-4), Less)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(-4), Down),
(Integer::from(2), Less)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(Integer::from(-3), Floor),
(Integer::from(333333333333i64), Less)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(-4), Up),
(Integer::from(3), Greater)
);
assert_eq!(
(&-Integer::from(10u32).pow(12)).div_round(Integer::from(-3), Ceiling),
(Integer::from(333333333334i64), Greater)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(-5), Exact),
(Integer::from(2), Equal)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(-3), Nearest),
(Integer::from(3), Less)
);
assert_eq!(
(&Integer::from(-20)).div_round(Integer::from(-3), Nearest),
(Integer::from(7), Greater)
);
assert_eq!(
(&Integer::from(-10)).div_round(Integer::from(-4), Nearest),
(Integer::from(2), Less)
);
assert_eq!(
(&Integer::from(-14)).div_round(Integer::from(-4), Nearest),
(Integer::from(4), Greater)
);
type Output = Integer
source§impl DivRound for Integer
impl DivRound for Integer
source§fn div_round(self, other: Integer, rm: RoundingMode) -> (Integer, Ordering)
fn div_round(self, other: Integer, rm: RoundingMode) -> (Integer, Ordering)
Divides an Integer
by another Integer
, taking both by value and rounding according
to a specified rounding mode. An Ordering
is also returned, indicating whether the
returned value is less than, equal to, or greater than the exact value.
Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of
the pair, without the Ordering
:
$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$
$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$
$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$
$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$
$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$
$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.
Then $f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero, or if rm
is Exact
but self
is not divisible by other
.
§Examples
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{DivRound, Pow};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(-10).div_round(Integer::from(4), Down),
(Integer::from(-2), Greater)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(Integer::from(3), Floor),
(Integer::from(-333333333334i64), Less)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(4), Up),
(Integer::from(-3), Less)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(Integer::from(3), Ceiling),
(Integer::from(-333333333333i64), Greater)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(5), Exact),
(Integer::from(-2), Equal)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(3), Nearest),
(Integer::from(-3), Greater)
);
assert_eq!(
Integer::from(-20).div_round(Integer::from(3), Nearest),
(Integer::from(-7), Less)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(4), Nearest),
(Integer::from(-2), Greater)
);
assert_eq!(
Integer::from(-14).div_round(Integer::from(4), Nearest),
(Integer::from(-4), Less)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(-4), Down),
(Integer::from(2), Less)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(Integer::from(-3), Floor),
(Integer::from(333333333333i64), Less)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(-4), Up),
(Integer::from(3), Greater)
);
assert_eq!(
(-Integer::from(10u32).pow(12)).div_round(Integer::from(-3), Ceiling),
(Integer::from(333333333334i64), Greater)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(-5), Exact),
(Integer::from(2), Equal)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(-3), Nearest),
(Integer::from(3), Less)
);
assert_eq!(
Integer::from(-20).div_round(Integer::from(-3), Nearest),
(Integer::from(7), Greater)
);
assert_eq!(
Integer::from(-10).div_round(Integer::from(-4), Nearest),
(Integer::from(2), Less)
);
assert_eq!(
Integer::from(-14).div_round(Integer::from(-4), Nearest),
(Integer::from(4), Greater)
);
type Output = Integer
source§impl<'a> DivRoundAssign<&'a Integer> for Integer
impl<'a> DivRoundAssign<&'a Integer> for Integer
source§fn div_round_assign(&mut self, other: &'a Integer, rm: RoundingMode) -> Ordering
fn div_round_assign(&mut self, other: &'a Integer, rm: RoundingMode) -> Ordering
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by reference and rounding according to a specified rounding mode. An
Ordering
is returned, indicating whether the assigned value is less than, equal to, or
greater than the exact value.
See the DivRound
documentation for details.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero, or if rm
is Exact
but self
is not divisible by other
.
§Examples
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{DivRoundAssign, Pow};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(4), Down), Greater);
assert_eq!(n, -2);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(&Integer::from(3), Floor), Less);
assert_eq!(n, -333333333334i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(4), Up), Less);
assert_eq!(n, -3);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(&Integer::from(3), Ceiling), Greater);
assert_eq!(n, -333333333333i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(5), Exact), Equal);
assert_eq!(n, -2);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(3), Nearest), Greater);
assert_eq!(n, -3);
let mut n = Integer::from(-20);
assert_eq!(n.div_round_assign(&Integer::from(3), Nearest), Less);
assert_eq!(n, -7);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(4), Nearest), Greater);
assert_eq!(n, -2);
let mut n = Integer::from(-14);
assert_eq!(n.div_round_assign(&Integer::from(4), Nearest), Less);
assert_eq!(n, -4);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(-4), Down), Less);
assert_eq!(n, 2);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(&Integer::from(-3), Floor), Less);
assert_eq!(n, 333333333333i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(-4), Up), Greater);
assert_eq!(n, 3);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(&Integer::from(-3), Ceiling), Greater);
assert_eq!(n, 333333333334i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(-5), Exact), Equal);
assert_eq!(n, 2);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(-3), Nearest), Less);
assert_eq!(n, 3);
let mut n = Integer::from(-20);
assert_eq!(n.div_round_assign(&Integer::from(-3), Nearest), Greater);
assert_eq!(n, 7);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(&Integer::from(-4), Nearest), Less);
assert_eq!(n, 2);
let mut n = Integer::from(-14);
assert_eq!(n.div_round_assign(&Integer::from(-4), Nearest), Greater);
assert_eq!(n, 4);
source§impl DivRoundAssign for Integer
impl DivRoundAssign for Integer
source§fn div_round_assign(&mut self, other: Integer, rm: RoundingMode) -> Ordering
fn div_round_assign(&mut self, other: Integer, rm: RoundingMode) -> Ordering
Divides an Integer
by another Integer
in place, taking the Integer
on the
right-hand side by value and rounding according to a specified rounding mode. An
Ordering
is returned, indicating whether the assigned value is less than, equal to, or
greater than the exact value.
See the DivRound
documentation for details.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if other
is zero, or if rm
is Exact
but self
is not divisible by other
.
§Examples
use core::cmp::Ordering::*;
use malachite_base::num::arithmetic::traits::{DivRoundAssign, Pow};
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(4), Down), Greater);
assert_eq!(n, -2);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(Integer::from(3), Floor), Less);
assert_eq!(n, -333333333334i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(4), Up), Less);
assert_eq!(n, -3);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(Integer::from(3), Ceiling), Greater);
assert_eq!(n, -333333333333i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(5), Exact), Equal);
assert_eq!(n, -2);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(3), Nearest), Greater);
assert_eq!(n, -3);
let mut n = Integer::from(-20);
assert_eq!(n.div_round_assign(Integer::from(3), Nearest), Less);
assert_eq!(n, -7);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(4), Nearest), Greater);
assert_eq!(n, -2);
let mut n = Integer::from(-14);
assert_eq!(n.div_round_assign(Integer::from(4), Nearest), Less);
assert_eq!(n, -4);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(-4), Down), Less);
assert_eq!(n, 2);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(Integer::from(-3), Floor), Less);
assert_eq!(n, 333333333333i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(-4), Up), Greater);
assert_eq!(n, 3);
let mut n = -Integer::from(10u32).pow(12);
assert_eq!(n.div_round_assign(Integer::from(-3), Ceiling), Greater);
assert_eq!(n, 333333333334i64);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(-5), Exact), Equal);
assert_eq!(n, 2);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(-3), Nearest), Less);
assert_eq!(n, 3);
let mut n = Integer::from(-20);
assert_eq!(n.div_round_assign(Integer::from(-3), Nearest), Greater);
assert_eq!(n, 7);
let mut n = Integer::from(-10);
assert_eq!(n.div_round_assign(Integer::from(-4), Nearest), Less);
assert_eq!(n, 2);
let mut n = Integer::from(-14);
assert_eq!(n.div_round_assign(Integer::from(-4), Nearest), Greater);
assert_eq!(n, 4);
source§impl<'a, 'b> DivisibleBy<&'b Integer> for &'a Integer
impl<'a, 'b> DivisibleBy<&'b Integer> for &'a Integer
source§fn divisible_by(self, other: &'b Integer) -> bool
fn divisible_by(self, other: &'b Integer) -> bool
Returns whether an Integer
is divisible by another Integer
; in other words, whether
the first is a multiple of the second. Both Integer
s are taken by reference.
This means that zero is divisible by any Integer
, including zero; but a nonzero
Integer
is never divisible by zero.
It’s more efficient to use this function than to compute the remainder and check whether it’s zero.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::ZERO).divisible_by(&Integer::ZERO), true);
assert_eq!(
(&Integer::from(-100)).divisible_by(&Integer::from(-3)),
false
);
assert_eq!((&Integer::from(102)).divisible_by(&Integer::from(-3)), true);
assert_eq!(
(&Integer::from_str("-1000000000000000000000000").unwrap())
.divisible_by(&Integer::from_str("1000000000000").unwrap()),
true
);
source§impl<'a> DivisibleBy<&'a Integer> for Integer
impl<'a> DivisibleBy<&'a Integer> for Integer
source§fn divisible_by(self, other: &'a Integer) -> bool
fn divisible_by(self, other: &'a Integer) -> bool
Returns whether an Integer
is divisible by another Integer
; in other words, whether
the first is a multiple of the second. The first Integer
is taken by value and the
second by reference.
This means that zero is divisible by any Integer
, including zero; but a nonzero
Integer
is never divisible by zero.
It’s more efficient to use this function than to compute the remainder and check whether it’s zero.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.divisible_by(&Integer::ZERO), true);
assert_eq!(Integer::from(-100).divisible_by(&Integer::from(-3)), false);
assert_eq!(Integer::from(102).divisible_by(&Integer::from(-3)), true);
assert_eq!(
Integer::from_str("-1000000000000000000000000")
.unwrap()
.divisible_by(&Integer::from_str("1000000000000").unwrap()),
true
);
source§impl<'a> DivisibleBy<Integer> for &'a Integer
impl<'a> DivisibleBy<Integer> for &'a Integer
source§fn divisible_by(self, other: Integer) -> bool
fn divisible_by(self, other: Integer) -> bool
Returns whether an Integer
is divisible by another Integer
; in other words, whether
the first is a multiple of the second. The first Integer
is taken by reference and the
second by value.
This means that zero is divisible by any Integer
, including zero; but a nonzero
Integer
is never divisible by zero.
It’s more efficient to use this function than to compute the remainder and check whether it’s zero.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::ZERO).divisible_by(Integer::ZERO), true);
assert_eq!(
(&Integer::from(-100)).divisible_by(Integer::from(-3)),
false
);
assert_eq!((&Integer::from(102)).divisible_by(Integer::from(-3)), true);
assert_eq!(
(&Integer::from_str("-1000000000000000000000000").unwrap())
.divisible_by(Integer::from_str("1000000000000").unwrap()),
true
);
source§impl DivisibleBy for Integer
impl DivisibleBy for Integer
source§fn divisible_by(self, other: Integer) -> bool
fn divisible_by(self, other: Integer) -> bool
Returns whether an Integer
is divisible by another Integer
; in other words, whether
the first is a multiple of the second. Both Integer
s are taken by value.
This means that zero is divisible by any Integer
, including zero; but a nonzero
Integer
is never divisible by zero.
It’s more efficient to use this function than to compute the remainder and check whether it’s zero.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::DivisibleBy;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.divisible_by(Integer::ZERO), true);
assert_eq!(Integer::from(-100).divisible_by(Integer::from(-3)), false);
assert_eq!(Integer::from(102).divisible_by(Integer::from(-3)), true);
assert_eq!(
Integer::from_str("-1000000000000000000000000")
.unwrap()
.divisible_by(Integer::from_str("1000000000000").unwrap()),
true
);
source§impl<'a> DivisibleByPowerOf2 for &'a Integer
impl<'a> DivisibleByPowerOf2 for &'a Integer
source§fn divisible_by_power_of_2(self, pow: u64) -> bool
fn divisible_by_power_of_2(self, pow: u64) -> bool
Returns whether an Integer
is divisible by $2^k$.
$f(x, k) = (2^k|x)$.
$f(x, k) = (\exists n \in \N : \ x = n2^k)$.
If self
is 0, the result is always true; otherwise, it is equivalent to
self.trailing_zeros().unwrap() <= pow
, but more efficient.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is min(pow, self.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::{DivisibleByPowerOf2, Pow};
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.divisible_by_power_of_2(100), true);
assert_eq!(Integer::from(-100).divisible_by_power_of_2(2), true);
assert_eq!(Integer::from(100u32).divisible_by_power_of_2(3), false);
assert_eq!(
(-Integer::from(10u32).pow(12)).divisible_by_power_of_2(12),
true
);
assert_eq!(
(-Integer::from(10u32).pow(12)).divisible_by_power_of_2(13),
false
);
source§impl EqAbs<Integer> for Natural
impl EqAbs<Integer> for Natural
source§fn eq_abs(&self, other: &Integer) -> bool
fn eq_abs(&self, other: &Integer) -> bool
Determines whether the absolute values of an Integer
and a Natural
are equal.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::comparison::traits::EqAbs;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Natural::from(122u32).eq_abs(&Integer::from(-123)), false);
assert_eq!(Natural::from(124u32).eq_abs(&Integer::from(-123)), false);
assert_eq!(Natural::from(123u32).eq_abs(&Integer::from(123)), true);
assert_eq!(Natural::from(123u32).eq_abs(&Integer::from(-123)), true);
source§impl EqAbs<Natural> for Integer
impl EqAbs<Natural> for Integer
source§fn eq_abs(&self, other: &Natural) -> bool
fn eq_abs(&self, other: &Natural) -> bool
Determines whether the absolute values of an Integer
and a Natural
are equal.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::comparison::traits::EqAbs;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Integer::from(-123).eq_abs(&Natural::from(122u32)), false);
assert_eq!(Integer::from(-123).eq_abs(&Natural::from(124u32)), false);
assert_eq!(Integer::from(123).eq_abs(&Natural::from(123u32)), true);
assert_eq!(Integer::from(-123).eq_abs(&Natural::from(123u32)), true);
source§impl EqAbs for Integer
impl EqAbs for Integer
source§fn eq_abs(&self, other: &Integer) -> bool
fn eq_abs(&self, other: &Integer) -> bool
Determines whether the absolute values of two Integer
s are equal.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is min(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::comparison::traits::EqAbs;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(-123).eq_abs(&Integer::from(-122)), false);
assert_eq!(Integer::from(-123).eq_abs(&Integer::from(-124)), false);
assert_eq!(Integer::from(123).eq_abs(&Integer::from(123)), true);
assert_eq!(Integer::from(123).eq_abs(&Integer::from(-123)), true);
assert_eq!(Integer::from(-123).eq_abs(&Integer::from(123)), true);
assert_eq!(Integer::from(-123).eq_abs(&Integer::from(-123)), true);
source§impl<'a, 'b, 'c> EqMod<&'b Integer, &'c Natural> for &'a Integer
impl<'a, 'b, 'c> EqMod<&'b Integer, &'c Natural> for &'a Integer
source§fn eq_mod(self, other: &'b Integer, m: &'c Natural) -> bool
fn eq_mod(self, other: &'b Integer, m: &'c Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. All three numbers are taken by reference.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
(&Integer::from(123)).eq_mod(&Integer::from(223), &Natural::from(100u32)),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
&Integer::from_str("-999999012346").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
&Integer::from_str("2000000987655").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a, 'b> EqMod<&'a Integer, &'b Natural> for Integer
impl<'a, 'b> EqMod<&'a Integer, &'b Natural> for Integer
source§fn eq_mod(self, other: &'a Integer, m: &'b Natural) -> bool
fn eq_mod(self, other: &'a Integer, m: &'b Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. The first number is taken by value and the second and third by reference.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
Integer::from(123).eq_mod(&Integer::from(223), &Natural::from(100u32)),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
&Integer::from_str("-999999012346").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
&Integer::from_str("2000000987655").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a, 'b> EqMod<&'b Integer, Natural> for &'a Integer
impl<'a, 'b> EqMod<&'b Integer, Natural> for &'a Integer
source§fn eq_mod(self, other: &'b Integer, m: Natural) -> bool
fn eq_mod(self, other: &'b Integer, m: Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. The first two numbers are taken by reference and the third by value.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
(&Integer::from(123)).eq_mod(&Integer::from(223), Natural::from(100u32)),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
&Integer::from_str("-999999012346").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
&Integer::from_str("2000000987655").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a> EqMod<&'a Integer, Natural> for Integer
impl<'a> EqMod<&'a Integer, Natural> for Integer
source§fn eq_mod(self, other: &'a Integer, m: Natural) -> bool
fn eq_mod(self, other: &'a Integer, m: Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. The first and third numbers are taken by value and the second by reference.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
Integer::from(123).eq_mod(&Integer::from(223), Natural::from(100u32)),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
&Integer::from_str("-999999012346").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
&Integer::from_str("2000000987655").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a, 'b> EqMod<Integer, &'b Natural> for &'a Integer
impl<'a, 'b> EqMod<Integer, &'b Natural> for &'a Integer
source§fn eq_mod(self, other: Integer, m: &'b Natural) -> bool
fn eq_mod(self, other: Integer, m: &'b Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. The first and third numbers are taken by reference and the third by value.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
(&Integer::from(123)).eq_mod(Integer::from(223), &Natural::from(100u32)),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
Integer::from_str("-999999012346").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
Integer::from_str("2000000987655").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a> EqMod<Integer, &'a Natural> for Integer
impl<'a> EqMod<Integer, &'a Natural> for Integer
source§fn eq_mod(self, other: Integer, m: &'a Natural) -> bool
fn eq_mod(self, other: Integer, m: &'a Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. The first two numbers are taken by value and the third by reference.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
Integer::from(123).eq_mod(Integer::from(223), &Natural::from(100u32)),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
Integer::from_str("-999999012346").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
Integer::from_str("2000000987655").unwrap(),
&Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a> EqMod<Integer, Natural> for &'a Integer
impl<'a> EqMod<Integer, Natural> for &'a Integer
source§fn eq_mod(self, other: Integer, m: Natural) -> bool
fn eq_mod(self, other: Integer, m: Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. The first number is taken by reference and the second and third by value.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
(&Integer::from(123)).eq_mod(Integer::from(223), Natural::from(100u32)),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
Integer::from_str("-999999012346").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
(&Integer::from_str("1000000987654").unwrap()).eq_mod(
Integer::from_str("2000000987655").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl EqMod<Integer, Natural> for Integer
impl EqMod<Integer, Natural> for Integer
source§fn eq_mod(self, other: Integer, m: Natural) -> bool
fn eq_mod(self, other: Integer, m: Natural) -> bool
Returns whether an Integer
is equivalent to another Integer
modulo a Natural
;
that is, whether the difference between the two Integer
s is a multiple of the
Natural
. All three numbers are taken by value.
Two Integer
s are equal to each other modulo 0 iff they are equal.
$f(x, y, m) = (x \equiv y \mod m)$.
$f(x, y, m) = (\exists k \in \Z : x - y = km)$.
§Worst-case complexity
$T(n) = O(n \log n \log \log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use core::str::FromStr;
use malachite_base::num::arithmetic::traits::EqMod;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(
Integer::from(123).eq_mod(Integer::from(223), Natural::from(100u32)),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
Integer::from_str("-999999012346").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
true
);
assert_eq!(
Integer::from_str("1000000987654").unwrap().eq_mod(
Integer::from_str("2000000987655").unwrap(),
Natural::from_str("1000000000000").unwrap()
),
false
);
source§impl<'a, 'b> EqModPowerOf2<&'b Integer> for &'a Integer
impl<'a, 'b> EqModPowerOf2<&'b Integer> for &'a Integer
source§fn eq_mod_power_of_2(self, other: &'b Integer, pow: u64) -> bool
fn eq_mod_power_of_2(self, other: &'b Integer, pow: u64) -> bool
Returns whether one Integer
is equal to another modulo $2^k$; that is, whether their $k$
least-significant bits (in two’s complement) are equal.
$f(x, y, k) = (x \equiv y \mod 2^k)$.
$f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is min(pow, self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::EqModPowerOf2;
use malachite_base::num::basic::traits::Zero;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::ZERO.eq_mod_power_of_2(&Integer::from(-256), 8),
true
);
assert_eq!(
Integer::from(-0b1101).eq_mod_power_of_2(&Integer::from(0b11011), 3),
true
);
assert_eq!(
Integer::from(-0b1101).eq_mod_power_of_2(&Integer::from(0b11011), 4),
false
);
source§impl<'a, 'b> ExtendedGcd<&'a Integer> for &'b Integer
impl<'a, 'b> ExtendedGcd<&'a Integer> for &'b Integer
source§fn extended_gcd(self, other: &'a Integer) -> (Natural, Integer, Integer)
fn extended_gcd(self, other: &'a Integer) -> (Natural, Integer, Integer)
Computes the GCD (greatest common divisor) of two Integer
s $a$ and $b$, and also the
coefficients $x$ and $y$ in Bézout’s identity $ax+by=\gcd(a,b)$. Both Integer
s are
taken by reference.
The are infinitely many $x$, $y$ that satisfy the identity for any $a$, $b$, so the full specification is more detailed:
- $f(0, 0) = (0, 0, 0)$.
- $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
- $f(a, ak) = (-a, -1, 0)$ if $a < 0$ and $k \neq 1$.
- $f(bk, b) = (b, 0, 1)$ if $b > 0$.
- $f(bk, b) = (-b, 0, -1)$ if $b < 0$.
- $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(|a|, |b|)$, where $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$, and $y \leq \lfloor a/g \rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::ExtendedGcd;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(3))
.extended_gcd(&Integer::from(5))
.to_debug_string(),
"(1, 2, -1)"
);
assert_eq!(
(&Integer::from(240))
.extended_gcd(&Integer::from(46))
.to_debug_string(),
"(2, -9, 47)"
);
assert_eq!(
(&Integer::from(-111))
.extended_gcd(&Integer::from(300))
.to_debug_string(),
"(3, 27, 10)"
);
type Gcd = Natural
type Cofactor = Integer
source§impl<'a> ExtendedGcd<&'a Integer> for Integer
impl<'a> ExtendedGcd<&'a Integer> for Integer
source§fn extended_gcd(self, other: &'a Integer) -> (Natural, Integer, Integer)
fn extended_gcd(self, other: &'a Integer) -> (Natural, Integer, Integer)
Computes the GCD (greatest common divisor) of two Integer
s $a$ and $b$, and also the
coefficients $x$ and $y$ in Bézout’s identity $ax+by=\gcd(a,b)$. The first Integer
is
taken by value and the second by reference.
The are infinitely many $x$, $y$ that satisfy the identity for any $a$, $b$, so the full specification is more detailed:
- $f(0, 0) = (0, 0, 0)$.
- $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
- $f(a, ak) = (-a, -1, 0)$ if $a < 0$ and $k \neq 1$.
- $f(bk, b) = (b, 0, 1)$ if $b > 0$.
- $f(bk, b) = (-b, 0, -1)$ if $b < 0$.
- $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(|a|, |b|)$, where $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$, and $y \leq \lfloor a/g \rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::ExtendedGcd;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(3)
.extended_gcd(&Integer::from(5))
.to_debug_string(),
"(1, 2, -1)"
);
assert_eq!(
Integer::from(240)
.extended_gcd(&Integer::from(46))
.to_debug_string(),
"(2, -9, 47)"
);
assert_eq!(
Integer::from(-111)
.extended_gcd(&Integer::from(300))
.to_debug_string(),
"(3, 27, 10)"
);
type Gcd = Natural
type Cofactor = Integer
source§impl<'a> ExtendedGcd<Integer> for &'a Integer
impl<'a> ExtendedGcd<Integer> for &'a Integer
source§fn extended_gcd(self, other: Integer) -> (Natural, Integer, Integer)
fn extended_gcd(self, other: Integer) -> (Natural, Integer, Integer)
Computes the GCD (greatest common divisor) of two Integer
s $a$ and $b$, and also the
coefficients $x$ and $y$ in Bézout’s identity $ax+by=\gcd(a,b)$. The first Integer
is
taken by reference and the second by value.
The are infinitely many $x$, $y$ that satisfy the identity for any $a$, $b$, so the full specification is more detailed:
- $f(0, 0) = (0, 0, 0)$.
- $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
- $f(a, ak) = (-a, -1, 0)$ if $a < 0$ and $k \neq 1$.
- $f(bk, b) = (b, 0, 1)$ if $b > 0$.
- $f(bk, b) = (-b, 0, -1)$ if $b < 0$.
- $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(|a|, |b|)$, where $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$, and $y \leq \lfloor a/g \rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::ExtendedGcd;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(
(&Integer::from(3))
.extended_gcd(Integer::from(5))
.to_debug_string(),
"(1, 2, -1)"
);
assert_eq!(
(&Integer::from(240))
.extended_gcd(Integer::from(46))
.to_debug_string(),
"(2, -9, 47)"
);
assert_eq!(
(&Integer::from(-111))
.extended_gcd(Integer::from(300))
.to_debug_string(),
"(3, 27, 10)"
);
type Gcd = Natural
type Cofactor = Integer
source§impl ExtendedGcd for Integer
impl ExtendedGcd for Integer
source§fn extended_gcd(self, other: Integer) -> (Natural, Integer, Integer)
fn extended_gcd(self, other: Integer) -> (Natural, Integer, Integer)
Computes the GCD (greatest common divisor) of two Integer
s $a$ and $b$, and also the
coefficients $x$ and $y$ in Bézout’s identity $ax+by=\gcd(a,b)$. Both Integer
s are
taken by value.
The are infinitely many $x$, $y$ that satisfy the identity for any $a$, $b$, so the full specification is more detailed:
- $f(0, 0) = (0, 0, 0)$.
- $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
- $f(a, ak) = (-a, -1, 0)$ if $a < 0$ and $k \neq 1$.
- $f(bk, b) = (b, 0, 1)$ if $b > 0$.
- $f(bk, b) = (-b, 0, -1)$ if $b < 0$.
- $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(|a|, |b|)$, where $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$, and $y \leq \lfloor a/g \rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::ExtendedGcd;
use malachite_base::strings::ToDebugString;
use malachite_nz::integer::Integer;
assert_eq!(
Integer::from(3)
.extended_gcd(Integer::from(5))
.to_debug_string(),
"(1, 2, -1)"
);
assert_eq!(
Integer::from(240)
.extended_gcd(Integer::from(46))
.to_debug_string(),
"(2, -9, 47)"
);
assert_eq!(
Integer::from(-111)
.extended_gcd(Integer::from(300))
.to_debug_string(),
"(3, 27, 10)"
);
type Gcd = Natural
type Cofactor = Integer
source§impl<'a> FloorRoot<u64> for &'a Integer
impl<'a> FloorRoot<u64> for &'a Integer
source§fn floor_root(self, exp: u64) -> Integer
fn floor_root(self, exp: u64) -> Integer
Returns the floor of the $n$th root of an Integer
, taking the Integer
by reference.
$f(x, n) = \lfloor\sqrt[n]{x}\rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::FloorRoot;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(999)).floor_root(3), 9);
assert_eq!((&Integer::from(1000)).floor_root(3), 10);
assert_eq!((&Integer::from(1001)).floor_root(3), 10);
assert_eq!((&Integer::from(100000000000i64)).floor_root(5), 158);
assert_eq!((&Integer::from(-100000000000i64)).floor_root(5), -159);
type Output = Integer
source§impl FloorRoot<u64> for Integer
impl FloorRoot<u64> for Integer
source§fn floor_root(self, exp: u64) -> Integer
fn floor_root(self, exp: u64) -> Integer
Returns the floor of the $n$th root of an Integer
, taking the Integer
by value.
$f(x, n) = \lfloor\sqrt[n]{x}\rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::FloorRoot;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(999).floor_root(3), 9);
assert_eq!(Integer::from(1000).floor_root(3), 10);
assert_eq!(Integer::from(1001).floor_root(3), 10);
assert_eq!(Integer::from(100000000000i64).floor_root(5), 158);
assert_eq!(Integer::from(-100000000000i64).floor_root(5), -159);
type Output = Integer
source§impl FloorRootAssign<u64> for Integer
impl FloorRootAssign<u64> for Integer
source§fn floor_root_assign(&mut self, exp: u64)
fn floor_root_assign(&mut self, exp: u64)
Replaces an Integer
with the floor of its $n$th root.
$x \gets \lfloor\sqrt[n]{x}\rfloor$.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if exp
is zero, or if exp
is even and self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::FloorRootAssign;
use malachite_nz::integer::Integer;
let mut x = Integer::from(999);
x.floor_root_assign(3);
assert_eq!(x, 9);
let mut x = Integer::from(1000);
x.floor_root_assign(3);
assert_eq!(x, 10);
let mut x = Integer::from(1001);
x.floor_root_assign(3);
assert_eq!(x, 10);
let mut x = Integer::from(100000000000i64);
x.floor_root_assign(5);
assert_eq!(x, 158);
let mut x = Integer::from(-100000000000i64);
x.floor_root_assign(5);
assert_eq!(x, -159);
source§impl<'a> FloorSqrt for &'a Integer
impl<'a> FloorSqrt for &'a Integer
source§fn floor_sqrt(self) -> Integer
fn floor_sqrt(self) -> Integer
Returns the floor of the square root of an Integer
, taking it by reference.
$f(x) = \lfloor\sqrt{x}\rfloor$.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::FloorSqrt;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(99)).floor_sqrt(), 9);
assert_eq!((&Integer::from(100)).floor_sqrt(), 10);
assert_eq!((&Integer::from(101)).floor_sqrt(), 10);
assert_eq!((&Integer::from(1000000000)).floor_sqrt(), 31622);
assert_eq!((&Integer::from(10000000000u64)).floor_sqrt(), 100000);
type Output = Integer
source§impl FloorSqrt for Integer
impl FloorSqrt for Integer
source§fn floor_sqrt(self) -> Integer
fn floor_sqrt(self) -> Integer
Returns the floor of the square root of an Integer
, taking it by value.
$f(x) = \lfloor\sqrt{x}\rfloor$.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::FloorSqrt;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(99).floor_sqrt(), 9);
assert_eq!(Integer::from(100).floor_sqrt(), 10);
assert_eq!(Integer::from(101).floor_sqrt(), 10);
assert_eq!(Integer::from(1000000000).floor_sqrt(), 31622);
assert_eq!(Integer::from(10000000000u64).floor_sqrt(), 100000);
type Output = Integer
source§impl FloorSqrtAssign for Integer
impl FloorSqrtAssign for Integer
source§fn floor_sqrt_assign(&mut self)
fn floor_sqrt_assign(&mut self)
Replaces an Integer
with the floor of its square root.
$x \gets \lfloor\sqrt{x}\rfloor$.
§Worst-case complexity
$T(n) = O(n \log n \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is self.significant_bits()
.
§Panics
Panics if self
is negative.
§Examples
use malachite_base::num::arithmetic::traits::FloorSqrtAssign;
use malachite_nz::integer::Integer;
let mut x = Integer::from(99);
x.floor_sqrt_assign();
assert_eq!(x, 9);
let mut x = Integer::from(100);
x.floor_sqrt_assign();
assert_eq!(x, 10);
let mut x = Integer::from(101);
x.floor_sqrt_assign();
assert_eq!(x, 10);
let mut x = Integer::from(1000000000);
x.floor_sqrt_assign();
assert_eq!(x, 31622);
let mut x = Integer::from(10000000000u64);
x.floor_sqrt_assign();
assert_eq!(x, 100000);
source§impl<'a> From<&'a Natural> for Integer
impl<'a> From<&'a Natural> for Integer
source§fn from(value: &'a Natural) -> Integer
fn from(value: &'a Natural) -> Integer
Converts a Natural
to an Integer
, taking the Natural
by reference.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is value.significant_bits()
.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Integer::from(&Natural::from(123u32)), 123);
assert_eq!(
Integer::from(&Natural::from(10u32).pow(12)),
1000000000000u64
);
source§impl From<Natural> for Integer
impl From<Natural> for Integer
source§fn from(value: Natural) -> Integer
fn from(value: Natural) -> Integer
Converts a Natural
to an Integer
, taking the Natural
by value.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::arithmetic::traits::Pow;
use malachite_nz::integer::Integer;
use malachite_nz::natural::Natural;
assert_eq!(Integer::from(Natural::from(123u32)), 123);
assert_eq!(
Integer::from(Natural::from(10u32).pow(12)),
1000000000000u64
);
source§impl From<bool> for Integer
impl From<bool> for Integer
source§fn from(b: bool) -> Integer
fn from(b: bool) -> Integer
Converts a bool
to 0 or 1.
This function is known as the Iverson bracket.
$$ f(P) = [P] = \begin{cases} 1 & \text{if} \quad P, \\ 0 & \text{otherwise}. \end{cases} $$
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(false), 0);
assert_eq!(Integer::from(true), 1);
source§impl FromSciString for Integer
impl FromSciString for Integer
source§fn from_sci_string_with_options(
s: &str,
options: FromSciStringOptions,
) -> Option<Integer>
fn from_sci_string_with_options( s: &str, options: FromSciStringOptions, ) -> Option<Integer>
Converts a string, possibly in scientfic notation, to an Integer
.
Use FromSciStringOptions
to specify the base (from 2 to 36, inclusive) and the rounding
mode, in case rounding is necessary because the string represents a non-integer.
If the base is greater than 10, the higher digits are represented by the letters 'a'
through 'z'
or 'A'
through 'Z'
; the case doesn’t matter and doesn’t need to be
consistent.
Exponents are allowed, and are indicated using the character 'e'
or 'E'
. If the base is
15 or greater, an ambiguity arises where it may not be clear whether 'e'
is a digit or an
exponent indicator. To resolve this ambiguity, always use a '+'
or '-'
sign after the
exponent indicator when the base is 15 or greater.
The exponent itself is always parsed using base 10.
Decimal (or other-base) points are allowed. These are most useful in conjunction with
exponents, but they may be used on their own. If the string represents a non-integer, the
rounding mode specified in options
is used to round to an integer.
If the string is unparseable, None
is returned. None
is also returned if the rounding
mode in options is Exact
, but rounding is necessary.
§Worst-case complexity
$T(n, m) = O(m^n n \log m (\log n + \log\log m))$
$M(n, m) = O(m^n n \log m)$
where $T$ is time, $M$ is additional memory, $n$ is s.len()
, and $m$ is options.base
.
§Examples
use malachite_base::num::conversion::string::options::FromSciStringOptions;
use malachite_base::num::conversion::traits::FromSciString;
use malachite_base::rounding_modes::RoundingMode::*;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from_sci_string("123").unwrap(), 123);
assert_eq!(Integer::from_sci_string("123.5").unwrap(), 124);
assert_eq!(Integer::from_sci_string("-123.5").unwrap(), -124);
assert_eq!(Integer::from_sci_string("1.23e10").unwrap(), 12300000000i64);
let mut options = FromSciStringOptions::default();
assert_eq!(
Integer::from_sci_string_with_options("123.5", options).unwrap(),
124
);
options.set_rounding_mode(Floor);
assert_eq!(
Integer::from_sci_string_with_options("123.5", options).unwrap(),
123
);
options = FromSciStringOptions::default();
options.set_base(16);
assert_eq!(
Integer::from_sci_string_with_options("ff", options).unwrap(),
255
);
source§fn from_sci_string(s: &str) -> Option<Self>
fn from_sci_string(s: &str) -> Option<Self>
&str
, possibly in scientific notation, to a number, using the default
FromSciStringOptions
.source§impl FromStr for Integer
impl FromStr for Integer
source§fn from_str(s: &str) -> Result<Integer, ()>
fn from_str(s: &str) -> Result<Integer, ()>
Converts an string to an Integer
.
If the string does not represent a valid Integer
, an Err
is returned. To be valid, the
string must be nonempty and only contain the char
s '0'
through '9'
, with an optional
leading '-'
. Leading zeros are allowed, as is the string "-0"
. The string "-"
is not.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is s.len()
.
§Examples
use core::str::FromStr;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from_str("123456").unwrap(), 123456);
assert_eq!(Integer::from_str("00123456").unwrap(), 123456);
assert_eq!(Integer::from_str("0").unwrap(), 0);
assert_eq!(Integer::from_str("-123456").unwrap(), -123456);
assert_eq!(Integer::from_str("-00123456").unwrap(), -123456);
assert_eq!(Integer::from_str("-0").unwrap(), 0);
assert!(Integer::from_str("").is_err());
assert!(Integer::from_str("a").is_err());
source§impl FromStringBase for Integer
impl FromStringBase for Integer
source§fn from_string_base(base: u8, s: &str) -> Option<Integer>
fn from_string_base(base: u8, s: &str) -> Option<Integer>
Converts an string, in a specified base, to an Integer
.
If the string does not represent a valid Integer
, an Err
is returned. To be valid, the
string must be nonempty and only contain the char
s '0'
through '9'
, 'a'
through
'z'
, and 'A'
through 'Z'
, with an optional leading '-'
; and only characters that
represent digits smaller than the base are allowed. Leading zeros are allowed, as is the
string "-0"
. The string "-"
is not.
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is s.len()
.
§Panics
Panics if base
is less than 2 or greater than 36.
§Examples
use malachite_base::num::conversion::traits::FromStringBase;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from_string_base(10, "123456").unwrap(), 123456);
assert_eq!(Integer::from_string_base(10, "00123456").unwrap(), 123456);
assert_eq!(Integer::from_string_base(16, "0").unwrap(), 0);
assert_eq!(
Integer::from_string_base(16, "deadbeef").unwrap(),
3735928559i64
);
assert_eq!(
Integer::from_string_base(16, "deAdBeEf").unwrap(),
3735928559i64
);
assert_eq!(Integer::from_string_base(10, "-123456").unwrap(), -123456);
assert_eq!(Integer::from_string_base(10, "-00123456").unwrap(), -123456);
assert_eq!(Integer::from_string_base(16, "-0").unwrap(), 0);
assert_eq!(
Integer::from_string_base(16, "-deadbeef").unwrap(),
-3735928559i64
);
assert_eq!(
Integer::from_string_base(16, "-deAdBeEf").unwrap(),
-3735928559i64
);
assert!(Integer::from_string_base(10, "").is_none());
assert!(Integer::from_string_base(10, "a").is_none());
assert!(Integer::from_string_base(2, "2").is_none());
assert!(Integer::from_string_base(2, "-2").is_none());
source§impl<'a> IsInteger for &'a Integer
impl<'a> IsInteger for &'a Integer
source§fn is_integer(self) -> bool
fn is_integer(self) -> bool
Determines whether an Integer
is an integer. It always returns true
.
$f(x) = \textrm{true}$.
§Worst-case complexity
Constant time and additional memory.
§Examples
use malachite_base::num::basic::traits::{NegativeOne, One, Zero};
use malachite_base::num::conversion::traits::IsInteger;
use malachite_nz::integer::Integer;
assert_eq!(Integer::ZERO.is_integer(), true);
assert_eq!(Integer::ONE.is_integer(), true);
assert_eq!(Integer::from(100).is_integer(), true);
assert_eq!(Integer::NEGATIVE_ONE.is_integer(), true);
assert_eq!(Integer::from(-100).is_integer(), true);
source§impl<'a, 'b> JacobiSymbol<&'a Integer> for &'b Integer
impl<'a, 'b> JacobiSymbol<&'a Integer> for &'b Integer
source§fn jacobi_symbol(self, other: &'a Integer) -> i8
fn jacobi_symbol(self, other: &'a Integer) -> i8
Computes the Jacobi symbol of two Integer
s, taking both by reference.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if self
is negative or if other
is even.
§Examples
use malachite_base::num::arithmetic::traits::JacobiSymbol;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(10)).jacobi_symbol(&Integer::from(5)), 0);
assert_eq!((&Integer::from(7)).jacobi_symbol(&Integer::from(5)), -1);
assert_eq!((&Integer::from(11)).jacobi_symbol(&Integer::from(5)), 1);
assert_eq!((&Integer::from(11)).jacobi_symbol(&Integer::from(9)), 1);
assert_eq!((&Integer::from(-7)).jacobi_symbol(&Integer::from(5)), -1);
assert_eq!((&Integer::from(-11)).jacobi_symbol(&Integer::from(5)), 1);
assert_eq!((&Integer::from(-11)).jacobi_symbol(&Integer::from(9)), 1);
source§impl<'a> JacobiSymbol<&'a Integer> for Integer
impl<'a> JacobiSymbol<&'a Integer> for Integer
source§fn jacobi_symbol(self, other: &'a Integer) -> i8
fn jacobi_symbol(self, other: &'a Integer) -> i8
Computes the Jacobi symbol of two Integer
s, taking the first by value and the second by
reference.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if self
is negative or if other
is even.
§Examples
use malachite_base::num::arithmetic::traits::JacobiSymbol;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(10).jacobi_symbol(&Integer::from(5)), 0);
assert_eq!(Integer::from(7).jacobi_symbol(&Integer::from(5)), -1);
assert_eq!(Integer::from(11).jacobi_symbol(&Integer::from(5)), 1);
assert_eq!(Integer::from(11).jacobi_symbol(&Integer::from(9)), 1);
assert_eq!(Integer::from(-7).jacobi_symbol(&Integer::from(5)), -1);
assert_eq!(Integer::from(-11).jacobi_symbol(&Integer::from(5)), 1);
assert_eq!(Integer::from(-11).jacobi_symbol(&Integer::from(9)), 1);
source§impl<'a> JacobiSymbol<Integer> for &'a Integer
impl<'a> JacobiSymbol<Integer> for &'a Integer
source§fn jacobi_symbol(self, other: Integer) -> i8
fn jacobi_symbol(self, other: Integer) -> i8
Computes the Jacobi symbol of two Integer
s, taking the first by reference and the second
by value.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if self
is negative or if other
is even.
§Examples
use malachite_base::num::arithmetic::traits::JacobiSymbol;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(10)).jacobi_symbol(Integer::from(5)), 0);
assert_eq!((&Integer::from(7)).jacobi_symbol(Integer::from(5)), -1);
assert_eq!((&Integer::from(11)).jacobi_symbol(Integer::from(5)), 1);
assert_eq!((&Integer::from(11)).jacobi_symbol(Integer::from(9)), 1);
assert_eq!((&Integer::from(-7)).jacobi_symbol(Integer::from(5)), -1);
assert_eq!((&Integer::from(-11)).jacobi_symbol(Integer::from(5)), 1);
assert_eq!((&Integer::from(-11)).jacobi_symbol(Integer::from(9)), 1);
source§impl JacobiSymbol for Integer
impl JacobiSymbol for Integer
source§fn jacobi_symbol(self, other: Integer) -> i8
fn jacobi_symbol(self, other: Integer) -> i8
Computes the Jacobi symbol of two Integer
s, taking both by value.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if self
is negative or if other
is even.
§Examples
use malachite_base::num::arithmetic::traits::JacobiSymbol;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(10).jacobi_symbol(Integer::from(5)), 0);
assert_eq!(Integer::from(7).jacobi_symbol(Integer::from(5)), -1);
assert_eq!(Integer::from(11).jacobi_symbol(Integer::from(5)), 1);
assert_eq!(Integer::from(11).jacobi_symbol(Integer::from(9)), 1);
assert_eq!(Integer::from(-7).jacobi_symbol(Integer::from(5)), -1);
assert_eq!(Integer::from(-11).jacobi_symbol(Integer::from(5)), 1);
assert_eq!(Integer::from(-11).jacobi_symbol(Integer::from(9)), 1);
source§impl<'a, 'b> KroneckerSymbol<&'a Integer> for &'b Integer
impl<'a, 'b> KroneckerSymbol<&'a Integer> for &'b Integer
source§fn kronecker_symbol(self, other: &'a Integer) -> i8
fn kronecker_symbol(self, other: &'a Integer) -> i8
Computes the Kronecker symbol of two Integer
s, taking both by reference.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::KroneckerSymbol;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(10)).kronecker_symbol(&Integer::from(5)), 0);
assert_eq!((&Integer::from(7)).kronecker_symbol(&Integer::from(5)), -1);
assert_eq!((&Integer::from(11)).kronecker_symbol(&Integer::from(5)), 1);
assert_eq!((&Integer::from(11)).kronecker_symbol(&Integer::from(9)), 1);
assert_eq!((&Integer::from(11)).kronecker_symbol(&Integer::from(8)), -1);
assert_eq!((&Integer::from(-7)).kronecker_symbol(&Integer::from(5)), -1);
assert_eq!((&Integer::from(-11)).kronecker_symbol(&Integer::from(5)), 1);
assert_eq!((&Integer::from(-11)).kronecker_symbol(&Integer::from(9)), 1);
assert_eq!(
(&Integer::from(-11)).kronecker_symbol(&Integer::from(8)),
-1
);
assert_eq!(
(&Integer::from(-11)).kronecker_symbol(&Integer::from(-8)),
1
);
source§impl<'a> KroneckerSymbol<&'a Integer> for Integer
impl<'a> KroneckerSymbol<&'a Integer> for Integer
source§fn kronecker_symbol(self, other: &'a Integer) -> i8
fn kronecker_symbol(self, other: &'a Integer) -> i8
Computes the Kronecker symbol of two Integer
s, taking the first by value and the second
by reference.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::KroneckerSymbol;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(10).kronecker_symbol(&Integer::from(5)), 0);
assert_eq!(Integer::from(7).kronecker_symbol(&Integer::from(5)), -1);
assert_eq!(Integer::from(11).kronecker_symbol(&Integer::from(5)), 1);
assert_eq!(Integer::from(11).kronecker_symbol(&Integer::from(9)), 1);
assert_eq!(Integer::from(11).kronecker_symbol(&Integer::from(8)), -1);
assert_eq!(Integer::from(-7).kronecker_symbol(&Integer::from(5)), -1);
assert_eq!(Integer::from(-11).kronecker_symbol(&Integer::from(5)), 1);
assert_eq!(Integer::from(-11).kronecker_symbol(&Integer::from(9)), 1);
assert_eq!(Integer::from(-11).kronecker_symbol(&Integer::from(8)), -1);
assert_eq!(Integer::from(-11).kronecker_symbol(&Integer::from(-8)), 1);
source§impl<'a> KroneckerSymbol<Integer> for &'a Integer
impl<'a> KroneckerSymbol<Integer> for &'a Integer
source§fn kronecker_symbol(self, other: Integer) -> i8
fn kronecker_symbol(self, other: Integer) -> i8
Computes the Kronecker symbol of two Integer
s, taking the first by reference and the
second value.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::KroneckerSymbol;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(10)).kronecker_symbol(Integer::from(5)), 0);
assert_eq!((&Integer::from(7)).kronecker_symbol(Integer::from(5)), -1);
assert_eq!((&Integer::from(11)).kronecker_symbol(Integer::from(5)), 1);
assert_eq!((&Integer::from(11)).kronecker_symbol(Integer::from(9)), 1);
assert_eq!((&Integer::from(11)).kronecker_symbol(Integer::from(8)), -1);
assert_eq!((&Integer::from(-7)).kronecker_symbol(Integer::from(5)), -1);
assert_eq!((&Integer::from(-11)).kronecker_symbol(Integer::from(5)), 1);
assert_eq!((&Integer::from(-11)).kronecker_symbol(Integer::from(9)), 1);
assert_eq!((&Integer::from(-11)).kronecker_symbol(Integer::from(8)), -1);
assert_eq!((&Integer::from(-11)).kronecker_symbol(Integer::from(-8)), 1);
source§impl KroneckerSymbol for Integer
impl KroneckerSymbol for Integer
source§fn kronecker_symbol(self, other: Integer) -> i8
fn kronecker_symbol(self, other: Integer) -> i8
Computes the Kronecker symbol of two Integer
s, taking both by value.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Examples
use malachite_base::num::arithmetic::traits::KroneckerSymbol;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(10).kronecker_symbol(Integer::from(5)), 0);
assert_eq!(Integer::from(7).kronecker_symbol(Integer::from(5)), -1);
assert_eq!(Integer::from(11).kronecker_symbol(Integer::from(5)), 1);
assert_eq!(Integer::from(11).kronecker_symbol(Integer::from(9)), 1);
assert_eq!(Integer::from(11).kronecker_symbol(Integer::from(8)), -1);
assert_eq!(Integer::from(-7).kronecker_symbol(Integer::from(5)), -1);
assert_eq!(Integer::from(-11).kronecker_symbol(Integer::from(5)), 1);
assert_eq!(Integer::from(-11).kronecker_symbol(Integer::from(9)), 1);
assert_eq!(Integer::from(-11).kronecker_symbol(Integer::from(8)), -1);
assert_eq!(Integer::from(-11).kronecker_symbol(Integer::from(-8)), 1);
source§impl<'a, 'b> LegendreSymbol<&'a Integer> for &'b Integer
impl<'a, 'b> LegendreSymbol<&'a Integer> for &'b Integer
source§fn legendre_symbol(self, other: &'a Integer) -> i8
fn legendre_symbol(self, other: &'a Integer) -> i8
Computes the Legendre symbol of two Integer
s, taking both by reference.
This implementation is identical to that of JacobiSymbol
, since there is no
computational benefit to requiring that the denominator be prime.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if self
is negative or if other
is even.
§Examples
use malachite_base::num::arithmetic::traits::LegendreSymbol;
use malachite_nz::integer::Integer;
assert_eq!((&Integer::from(10)).legendre_symbol(&Integer::from(5)), 0);
assert_eq!((&Integer::from(7)).legendre_symbol(&Integer::from(5)), -1);
assert_eq!((&Integer::from(11)).legendre_symbol(&Integer::from(5)), 1);
assert_eq!((&Integer::from(-7)).legendre_symbol(&Integer::from(5)), -1);
assert_eq!((&Integer::from(-11)).legendre_symbol(&Integer::from(5)), 1);
source§impl<'a> LegendreSymbol<&'a Integer> for Integer
impl<'a> LegendreSymbol<&'a Integer> for Integer
source§fn legendre_symbol(self, other: &'a Integer) -> i8
fn legendre_symbol(self, other: &'a Integer) -> i8
Computes the Legendre symbol of two Integer
s, taking the first by value and the second
by reference.
This implementation is identical to that of JacobiSymbol
, since there is no
computational benefit to requiring that the denominator be prime.
$$ f(x, y) = \left ( \frac{x}{y} \right ). $$
§Worst-case complexity
$T(n) = O(n (\log n)^2 \log\log n)$
$M(n) = O(n \log n)$
where $T$ is time, $M$ is additional memory, and $n$ is max(self.significant_bits(), other.significant_bits())
.
§Panics
Panics if self
is negative or if other
is even.
§Examples
use malachite_base::num::arithmetic::traits::LegendreSymbol;
use malachite_nz::integer::Integer;
assert_eq!(Integer::from(10).legendre_symbol(&Integer::from(5)), 0);
assert_eq!(Integer::from(7).legendre_symbol(&Integer::from(5)), -1);
assert_eq!(Integer::from(11).legendre_symbol(&Integer::from(5)), 1);
assert_eq!(Integer::from(-7).legendre_symbol(&Integer::from(5)), -1);
assert_eq!(Integer::from(-11).legendre_symbol(&Integer::from(5)), 1);