1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::conversion::to_twos_complement_limbs::limbs_twos_complement_in_place;
use crate::integer::Integer;
use crate::natural::arithmetic::shr::limbs_slice_shr_in_place;
use crate::natural::Natural;
use crate::platform::{Limb, SignedLimb};
use alloc::vec::Vec;
use itertools::Itertools;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;
use malachite_base::num::conversion::traits::{ExactFrom, WrappingFrom};
use malachite_base::num::logic::traits::{BitConvertible, LowMask, NotAssign};

// Given the bits of a non-negative `Integer`, in ascending order, checks whether the most
// significant bit is `false`; if it isn't, appends an extra `false` bit. This way the `Integer`'s
// non-negativity is preserved in its bits.
//
// # Worst-case complexity
// Constant time and additional memory.
pub_test! {bits_to_twos_complement_bits_non_negative(bits: &mut Vec<bool>) {
    if !bits.is_empty() && *bits.last().unwrap() {
        // Sign-extend with an extra false bit to indicate a positive Integer
        bits.push(false);
    }
}}

// Given the bits of the absolute value of a negative `Integer`, in ascending order, converts the
// bits to two's complement. Returns whether there is a carry left over from the two's complement
// conversion process.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `bits.len()`.
pub_test! {bits_slice_to_twos_complement_bits_negative(bits: &mut [bool]) -> bool {
    let mut true_seen = false;
    for bit in &mut *bits {
        if true_seen {
            bit.not_assign();
        } else if *bit {
            true_seen = true;
        }
    }
    !true_seen
}}

// Given the bits of the absolute value of a negative `Integer`, in ascending order, converts the
// bits to two's complement and checks whether the most significant bit is `true`; if it isn't,
// appends an extra `true` bit. This way the `Integer`'s negativity is preserved in its bits. The
// bits cannot be empty or contain only `false`s.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `bits.len()`.
//
// # Panics
// Panics if `bits` contains only `false`s.
pub_test! {bits_vec_to_twos_complement_bits_negative(bits: &mut Vec<bool>) {
    assert!(!bits_slice_to_twos_complement_bits_negative(bits));
    if bits.last() == Some(&false) {
        // Sign-extend with an extra true bit to indicate a negative Integer
        bits.push(true);
    }
}}

fn from_bits_helper(mut limbs: Vec<Limb>, sign_bit: bool, last_width: u64) -> Integer {
    if sign_bit {
        if last_width != Limb::WIDTH {
            *limbs.last_mut().unwrap() |= !Limb::low_mask(last_width);
        }
        assert!(!limbs_twos_complement_in_place(&mut limbs));
    }
    Integer::from_sign_and_abs(!sign_bit, Natural::from_owned_limbs_asc(limbs))
}

impl BitConvertible for Integer {
    /// Returns a [`Vec`] containing the twos-complement bits of an [`Integer`] in ascending order:
    /// least- to most-significant.
    ///
    /// The most significant bit indicates the sign; if the bit is `false`, the [`Integer`] is
    /// positive, and if the bit is `true` it is negative. There are no trailing `false` bits if the
    /// [`Integer`] is positive or trailing `true` bits if the [`Integer`] is negative, except as
    /// necessary to include the correct sign bit. Zero is a special case: it contains no bits.
    ///
    /// This function is more efficient than [`to_bits_desc`](`Self::to_bits_desc`).
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert!(Integer::ZERO.to_bits_asc().is_empty());
    /// // 105 = 01101001b, with a leading false bit to indicate sign
    /// assert_eq!(
    ///     Integer::from(105).to_bits_asc(),
    ///     &[true, false, false, true, false, true, true, false]
    /// );
    /// // -105 = 10010111 in two's complement, with a leading true bit to indicate sign
    /// assert_eq!(
    ///     Integer::from(-105).to_bits_asc(),
    ///     &[true, true, true, false, true, false, false, true]
    /// );
    /// ```
    fn to_bits_asc(&self) -> Vec<bool> {
        let mut bits = self.abs.to_bits_asc();
        if self.sign {
            bits_to_twos_complement_bits_non_negative(&mut bits);
        } else {
            bits_vec_to_twos_complement_bits_negative(&mut bits);
        }
        bits
    }

    /// Returns a [`Vec`] containing the twos-complement bits of an [`Integer`] in descending order:
    /// most- to least-significant.
    ///
    /// The most significant bit indicates the sign; if the bit is `false`, the [`Integer`] is
    /// positive, and if the bit is `true` it is negative. There are no leading `false` bits if the
    /// [`Integer`] is positive or leading `true` bits if the [`Integer`] is negative, except as
    /// necessary to include the correct sign bit. Zero is a special case: it contains no bits.
    ///
    /// This is similar to how `BigInteger`s in Java are represented.
    ///
    /// This function is less efficient than [`to_bits_asc`](`Self::to_bits_asc`).
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert!(Integer::ZERO.to_bits_desc().is_empty());
    /// // 105 = 01101001b, with a leading false bit to indicate sign
    /// assert_eq!(
    ///     Integer::from(105).to_bits_desc(),
    ///     &[false, true, true, false, true, false, false, true]
    /// );
    /// // -105 = 10010111 in two's complement, with a leading true bit to indicate sign
    /// assert_eq!(
    ///     Integer::from(-105).to_bits_desc(),
    ///     &[true, false, false, true, false, true, true, true]
    /// );
    /// ```
    fn to_bits_desc(&self) -> Vec<bool> {
        let mut bits = self.to_bits_asc();
        bits.reverse();
        bits
    }

    /// Converts an iterator of twos-complement bits into an [`Integer`]. The bits should be in
    /// ascending order (least- to most-significant).
    ///
    /// Let $k$ be `bits.count()`. If $k = 0$ or $b_{k-1}$ is `false`, then
    /// $$
    /// f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^i \[b_i\],
    /// $$
    /// where braces denote the Iverson bracket, which converts a bit to 0 or 1.
    ///
    /// If $b_{k-1}$ is `true`, then
    /// $$
    /// f((b_i)_ {i=0}^{k-1}) = \left ( \sum_{i=0}^{k-1}2^i \[b_i\] \right ) - 2^k.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.count()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_nz::integer::Integer;
    /// use core::iter::empty;
    ///
    /// assert_eq!(Integer::from_bits_asc(empty()), 0);
    /// // 105 = 1101001b
    /// assert_eq!(
    ///     Integer::from_bits_asc(
    ///         [true, false, false, true, false, true, true, false].iter().cloned()
    ///     ),
    ///     105
    /// );
    /// // -105 = 10010111 in two's complement, with a leading true bit to indicate sign
    /// assert_eq!(
    ///     Integer::from_bits_asc(
    ///         [true, true, true, false, true, false, false, true].iter().cloned()
    ///     ),
    ///     -105
    /// );
    /// ```
    fn from_bits_asc<I: Iterator<Item = bool>>(xs: I) -> Integer {
        let mut limbs = Vec::new();
        let mut last_width = 0;
        let mut last_bit = false;
        for chunk in &xs.chunks(usize::exact_from(Limb::WIDTH)) {
            let mut limb = 0;
            let mut i = 0;
            let mut mask = 1;
            for bit in chunk {
                if bit {
                    limb |= mask;
                }
                mask <<= 1;
                i += 1;
                last_bit = bit;
            }
            last_width = i;
            limbs.push(limb);
        }
        from_bits_helper(limbs, last_bit, last_width)
    }

    /// Converts an iterator of twos-complement bits into an [`Integer`]. The bits should be in
    /// descending order (most- to least-significant).
    ///
    /// If `bits` is empty or $b_0$ is `false`, then
    /// $$
    /// f((b_i)_ {i=0}^{k-1}) = \sum_{i=0}^{k-1}2^{k-i-1} \[b_i\],
    /// $$
    /// where braces denote the Iverson bracket, which converts a bit to 0 or 1.
    ///
    /// If $b_0$ is `true`, then
    /// $$
    /// f((b_i)_ {i=0}^{k-1}) = \left ( \sum_{i=0}^{k-1}2^{k-i-1} \[b_i\] \right ) - 2^k.
    /// $$
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.count()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitConvertible;
    /// use malachite_nz::integer::Integer;
    /// use core::iter::empty;
    ///
    /// assert_eq!(Integer::from_bits_desc(empty()), 0);
    /// // 105 = 1101001b
    /// assert_eq!(
    ///     Integer::from_bits_desc(
    ///         [false, true, true, false, true, false, false, true].iter().cloned()
    ///     ),
    ///     105
    /// );
    /// // -105 = 10010111 in two's complement, with a leading true bit to indicate sign
    /// assert_eq!(
    ///     Integer::from_bits_desc(
    ///         [true, false, false, true, false, true, true, true].iter().cloned()
    ///     ),
    ///     -105
    /// );
    /// ```
    fn from_bits_desc<I: Iterator<Item = bool>>(xs: I) -> Integer {
        let mut limbs = Vec::new();
        let mut last_width = 0;
        let mut first_bit = false;
        let mut first = true;
        for chunk in &xs.chunks(usize::exact_from(Limb::WIDTH)) {
            let mut limb = 0;
            let mut i = 0;
            for bit in chunk {
                if first {
                    first_bit = bit;
                    first = false;
                }
                limb <<= 1;
                if bit {
                    limb |= 1;
                }
                i += 1;
            }
            last_width = i;
            limbs.push(limb);
        }
        match limbs.len() {
            0 => Integer::ZERO,
            1 => {
                if first_bit {
                    if last_width != Limb::WIDTH {
                        limbs[0] |= !Limb::low_mask(last_width);
                    }
                    Integer::from(SignedLimb::wrapping_from(limbs[0]))
                } else {
                    Integer::from(limbs[0])
                }
            }
            _ => {
                limbs.reverse();
                if last_width != Limb::WIDTH {
                    let smallest_limb = limbs[0];
                    limbs[0] = 0;
                    limbs_slice_shr_in_place(&mut limbs, Limb::WIDTH - last_width);
                    limbs[0] |= smallest_limb;
                }
                from_bits_helper(limbs, first_bit, last_width)
            }
        }
    }
}