1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use crate::integer::conversion::to_twos_complement_limbs::{
    limbs_twos_complement, limbs_twos_complement_in_place,
};
use crate::integer::Integer;
use crate::natural::Natural;
use crate::platform::Limb;
use alloc::vec::Vec;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::basic::traits::Zero;

impl Integer {
    /// Converts a slice of [limbs](crate#limbs) to an [`Integer`], in ascending order, so that less
    /// significant limbs have lower indices in the input slice.
    ///
    /// The limbs are in two's complement, and the most significant bit of the limbs indicates the
    /// sign; if the bit is zero, the [`Integer`] is non-negative, and if the bit is one it is
    /// negative. If the slice is empty, zero is returned.
    ///
    /// This function borrows a slice. If taking ownership of a [`Vec`] is possible instead,
    /// [`from_owned_twos_complement_limbs_asc`](`Self::from_owned_twos_complement_limbs_asc`) is
    /// more efficient.
    ///
    /// This function is more efficient than
    /// [`from_twos_complement_limbs_desc`](`Self::from_twos_complement_limbs_desc`).
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::integers::PrimitiveInt;
    /// use malachite_nz::integer::Integer;
    /// use malachite_nz::platform::Limb;
    ///
    /// if Limb::WIDTH == u32::WIDTH {
    ///     assert_eq!(Integer::from_twos_complement_limbs_asc(&[]), 0);
    ///     assert_eq!(Integer::from_twos_complement_limbs_asc(&[123]), 123);
    ///     assert_eq!(Integer::from_twos_complement_limbs_asc(&[4294967173]), -123);
    ///     // 10^12 = 232 * 2^32 + 3567587328
    ///     assert_eq!(
    ///         Integer::from_twos_complement_limbs_asc(&[3567587328, 232]),
    ///         1000000000000u64
    ///     );
    ///     assert_eq!(
    ///         Integer::from_twos_complement_limbs_asc(&[727379968, 4294967063]),
    ///         -1000000000000i64
    ///     );
    /// }
    /// ```
    pub fn from_twos_complement_limbs_asc(xs: &[Limb]) -> Integer {
        match xs {
            &[] => Integer::ZERO,
            &[.., last] if !last.get_highest_bit() => Integer::from(Natural::from_limbs_asc(xs)),
            xs => -Natural::from_owned_limbs_asc(limbs_twos_complement(xs)),
        }
    }

    /// Converts a slice of [limbs](crate#limbs) to an [`Integer`], in descending order, so that
    /// less significant limbs have higher indices in the input slice.
    ///
    /// The limbs are in two's complement, and the most significant bit of the limbs indicates the
    /// sign; if the bit is zero, the [`Integer`] is non-negative, and if the bit is one it is
    /// negative. If the slice is empty, zero is returned.
    ///
    /// This function borrows a slice. If taking ownership of a [`Vec`] is possible instead,
    /// [`from_owned_twos_complement_limbs_desc`](`Self::from_owned_twos_complement_limbs_desc`) is
    /// more efficient.
    ///
    /// This function is less efficient than
    /// [`from_twos_complement_limbs_asc`](`Self::from_twos_complement_limbs_asc`).
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::integers::PrimitiveInt;
    /// use malachite_nz::integer::Integer;
    /// use malachite_nz::platform::Limb;
    ///
    /// if Limb::WIDTH == u32::WIDTH {
    ///     assert_eq!(Integer::from_twos_complement_limbs_desc(&[]), 0);
    ///     assert_eq!(Integer::from_twos_complement_limbs_desc(&[123]), 123);
    ///     assert_eq!(Integer::from_twos_complement_limbs_desc(&[4294967173]), -123);
    ///     // 10^12 = 232 * 2^32 + 3567587328
    ///     assert_eq!(
    ///         Integer::from_twos_complement_limbs_desc(&[232, 3567587328]),
    ///         1000000000000u64
    ///     );
    ///     assert_eq!(
    ///         Integer::from_twos_complement_limbs_desc(&[4294967063, 727379968]),
    ///         -1000000000000i64
    ///     );
    /// }
    /// ```
    pub fn from_twos_complement_limbs_desc(xs: &[Limb]) -> Integer {
        Integer::from_owned_twos_complement_limbs_asc(xs.iter().cloned().rev().collect())
    }

    /// Converts a slice of [limbs](crate#limbs) to an [`Integer`], in ascending order, so that less
    /// significant limbs have lower indices in the input slice.
    ///
    /// The limbs are in two's complement, and the most significant bit of the limbs indicates the
    /// sign; if the bit is zero, the [`Integer`] is non-negative, and if the bit is one it is
    /// negative. If the slice is empty, zero is returned.
    ///
    /// This function takes ownership of a [`Vec`]. If it's necessary to borrow a slice instead, use
    /// [`from_twos_complement_limbs_asc`](`Self::from_twos_complement_limbs_asc`)
    ///
    /// This function is more efficient than
    /// [`from_owned_twos_complement_limbs_desc`](`Self::from_owned_twos_complement_limbs_desc`).
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::integers::PrimitiveInt;
    /// use malachite_nz::integer::Integer;
    /// use malachite_nz::platform::Limb;
    ///
    /// if Limb::WIDTH == u32::WIDTH {
    ///     assert_eq!(Integer::from_owned_twos_complement_limbs_asc(vec![]), 0);
    ///     assert_eq!(Integer::from_owned_twos_complement_limbs_asc(vec![123]), 123);
    ///     assert_eq!(Integer::from_owned_twos_complement_limbs_asc(vec![4294967173]), -123);
    ///     // 10^12 = 232 * 2^32 + 3567587328
    ///     assert_eq!(
    ///         Integer::from_owned_twos_complement_limbs_asc(vec![3567587328, 232]),
    ///         1000000000000i64
    ///     );
    ///     assert_eq!(
    ///         Integer::from_owned_twos_complement_limbs_asc(vec![727379968, 4294967063]),
    ///         -1000000000000i64
    ///     );
    /// }
    /// ```
    pub fn from_owned_twos_complement_limbs_asc(mut xs: Vec<Limb>) -> Integer {
        match *xs.as_slice() {
            [] => Integer::ZERO,
            [.., last] if !last.get_highest_bit() => {
                Integer::from(Natural::from_owned_limbs_asc(xs))
            }
            _ => {
                assert!(!limbs_twos_complement_in_place(&mut xs));
                -Natural::from_owned_limbs_asc(xs)
            }
        }
    }

    /// Converts a slice of [limbs](crate#limbs) to an [`Integer`], in descending order, so that
    /// less significant limbs have higher indices in the input slice.
    ///
    /// The limbs are in two's complement, and the most significant bit of the limbs indicates the
    /// sign; if the bit is zero, the [`Integer`] is non-negative, and if the bit is one it is
    /// negative. If the slice is empty, zero is returned.
    ///
    /// This function takes ownership of a [`Vec`]. If it's necessary to borrow a slice instead, use
    /// [`from_twos_complement_limbs_desc`](`Self::from_twos_complement_limbs_desc`).
    ///
    /// This function is less efficient than
    /// [`from_owned_twos_complement_limbs_asc`](`Self::from_owned_twos_complement_limbs_asc`).
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::basic::integers::PrimitiveInt;
    /// use malachite_nz::integer::Integer;
    /// use malachite_nz::platform::Limb;
    ///
    /// if Limb::WIDTH == u32::WIDTH {
    ///     assert_eq!(Integer::from_owned_twos_complement_limbs_desc(vec![]), 0);
    ///     assert_eq!(Integer::from_owned_twos_complement_limbs_desc(vec![123]), 123);
    ///     assert_eq!(Integer::from_owned_twos_complement_limbs_desc(vec![4294967173]), -123);
    ///     // 10^12 = 232 * 2^32 + 3567587328
    ///     assert_eq!(
    ///         Integer::from_owned_twos_complement_limbs_desc(vec![232, 3567587328]),
    ///         1000000000000i64
    ///     );
    ///     assert_eq!(
    ///         Integer::from_owned_twos_complement_limbs_desc(vec![4294967063, 727379968]),
    ///         -1000000000000i64
    ///     );
    /// }
    /// ```
    pub fn from_owned_twos_complement_limbs_desc(mut xs: Vec<Limb>) -> Integer {
        xs.reverse();
        Integer::from_owned_twos_complement_limbs_asc(xs)
    }
}