1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::Integer;
use malachite_base::num::arithmetic::traits::DivisibleBy;

impl DivisibleBy<Integer> for Integer {
    /// Returns whether an [`Integer`] is divisible by another [`Integer`]; in other words, whether
    /// the first is a multiple of the second. Both [`Integer`]s are taken by value.
    ///
    /// This means that zero is divisible by any [`Integer`], including zero; but a nonzero
    /// [`Integer`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    /// use core::str::FromStr;
    ///
    /// assert_eq!(Integer::ZERO.divisible_by(Integer::ZERO), true);
    /// assert_eq!(Integer::from(-100).divisible_by(Integer::from(-3)), false);
    /// assert_eq!(Integer::from(102).divisible_by(Integer::from(-3)), true);
    /// assert_eq!(
    ///     Integer::from_str("-1000000000000000000000000").unwrap()
    ///             .divisible_by(Integer::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(self, other: Integer) -> bool {
        self.abs.divisible_by(other.abs)
    }
}

impl<'a> DivisibleBy<&'a Integer> for Integer {
    /// Returns whether an [`Integer`] is divisible by another [`Integer`]; in other words, whether
    /// the first is a multiple of the second. The first [`Integer`] is taken by value and the
    /// second by reference.
    ///
    /// This means that zero is divisible by any [`Integer`], including zero; but a nonzero
    /// [`Integer`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    /// use core::str::FromStr;
    ///
    /// assert_eq!(Integer::ZERO.divisible_by(&Integer::ZERO), true);
    /// assert_eq!(Integer::from(-100).divisible_by(&Integer::from(-3)), false);
    /// assert_eq!(Integer::from(102).divisible_by(&Integer::from(-3)), true);
    /// assert_eq!(
    ///     Integer::from_str("-1000000000000000000000000").unwrap()
    ///             .divisible_by(&Integer::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(self, other: &'a Integer) -> bool {
        self.abs.divisible_by(&other.abs)
    }
}

impl<'a> DivisibleBy<Integer> for &'a Integer {
    /// Returns whether an [`Integer`] is divisible by another [`Integer`]; in other words, whether
    /// the first is a multiple of the second. The first [`Integer`] is taken by reference and the
    /// second by value.
    ///
    /// This means that zero is divisible by any [`Integer`], including zero; but a nonzero
    /// [`Integer`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    /// use core::str::FromStr;
    ///
    /// assert_eq!((&Integer::ZERO).divisible_by(Integer::ZERO), true);
    /// assert_eq!((&Integer::from(-100)).divisible_by(Integer::from(-3)), false);
    /// assert_eq!((&Integer::from(102)).divisible_by(Integer::from(-3)), true);
    /// assert_eq!(
    ///     (&Integer::from_str("-1000000000000000000000000").unwrap())
    ///             .divisible_by(Integer::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(self, other: Integer) -> bool {
        (&self.abs).divisible_by(other.abs)
    }
}

impl<'a, 'b> DivisibleBy<&'b Integer> for &'a Integer {
    /// Returns whether an [`Integer`] is divisible by another [`Integer`]; in other words, whether
    /// the first is a multiple of the second. Both [`Integer`]s are taken by reference.
    ///
    /// This means that zero is divisible by any [`Integer`], including zero; but a nonzero
    /// [`Integer`] is never divisible by zero.
    ///
    /// It's more efficient to use this function than to compute the remainder and check whether
    /// it's zero.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n \log n \log \log n)$
    ///
    /// $M(n) = O(n \log n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::DivisibleBy;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    /// use core::str::FromStr;
    ///
    /// assert_eq!((&Integer::ZERO).divisible_by(&Integer::ZERO), true);
    /// assert_eq!((&Integer::from(-100)).divisible_by(&Integer::from(-3)), false);
    /// assert_eq!((&Integer::from(102)).divisible_by(&Integer::from(-3)), true);
    /// assert_eq!(
    ///     (&Integer::from_str("-1000000000000000000000000").unwrap())
    ///             .divisible_by(&Integer::from_str("1000000000000").unwrap()),
    ///     true
    /// );
    /// ```
    fn divisible_by(self, other: &'b Integer) -> bool {
        (&self.abs).divisible_by(&other.abs)
    }
}