1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 2001, 2002, 2013 Free Software Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::integer::Integer;
use crate::natural::arithmetic::divisible_by_power_of_2::limbs_divisible_by_power_of_2;
use crate::natural::InnerNatural::{Large, Small};
use crate::natural::Natural;
use crate::platform::Limb;
use core::cmp::Ordering;
use malachite_base::num::arithmetic::traits::EqModPowerOf2;
use malachite_base::num::basic::integers::PrimitiveInt;
use malachite_base::num::conversion::traits::ExactFrom;

// Interpreting a slice of `Limb`s as the limbs (in ascending order) of a `Natural`, returns whether
// the negative of the `Natural` is equivalent to a limb mod two to the power of `pow`; that is,
// whether the `pow` least-significant bits of the negative of the `Natural` and the limb are equal.
//
// This function assumes that `limbs` has length at least 2 and the last (most significant) limb is
// nonzero.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
pub_test! {limbs_eq_mod_power_of_2_neg_limb(xs: &[Limb], y: Limb, pow: u64) -> bool {
    if y == 0 {
        return limbs_divisible_by_power_of_2(xs, pow);
    }
    let i = usize::exact_from(pow >> Limb::LOG_WIDTH);
    match i.cmp(&xs.len()) {
        Ordering::Greater => false,
        Ordering::Equal => {
            if pow & Limb::WIDTH_MASK == 0 {
                // Check whether the sum of X and y is 0 mod B ^ xs.len().
                let mut carry = y;
                for &x in xs {
                    let sum = x.wrapping_add(carry);
                    if sum != 0 {
                        return false;
                    }
                    carry = 1;
                }
                true
            } else {
                false
            }
        }
        Ordering::Less => {
            if i == 0 {
                xs[0].eq_mod_power_of_2(y.wrapping_neg(), pow)
            } else {
                xs[0] == y.wrapping_neg()
                    && xs[1..i].iter().all(|&x| x == Limb::MAX)
                    && xs[i].eq_mod_power_of_2(Limb::MAX, pow & Limb::WIDTH_MASK)
            }
        }
    }
}}

fn limbs_eq_mod_power_of_2_neg_pos_greater(xs: &[Limb], ys: &[Limb], pow: u64) -> bool {
    let xs_len = xs.len();
    let i = usize::exact_from(pow >> Limb::LOG_WIDTH);
    let small_pow = pow & Limb::WIDTH_MASK;
    if i > xs_len || i == xs_len && small_pow != 0 {
        false
    } else {
        let ys_len = ys.len();
        let mut y_nonzero_seen = false;
        for j in 0..i {
            let y = if j >= ys_len {
                Limb::MAX
            } else if y_nonzero_seen {
                !ys[j]
            } else if ys[j] == 0 {
                0
            } else {
                y_nonzero_seen = true;
                ys[j].wrapping_neg()
            };
            if xs[j] != y {
                return false;
            }
        }
        if small_pow == 0 {
            true
        } else {
            // i < xs_len
            let y = if i >= ys_len {
                Limb::MAX
            } else if y_nonzero_seen {
                !ys[i]
            } else {
                ys[i].wrapping_neg()
            };
            xs[i].eq_mod_power_of_2(y, small_pow)
        }
    }
}

// Interpreting two slices of `Limb`s as the limbs (in ascending order) of two `Natural`s, returns
// whether the first `Natural` and the negative of the second natural (equivalently, the negative of
// the first `Natural` and the second `Natural`) are equivalent mod two to the power of `pow`; that
// is, whether their `pow` least-significant bits are equal.
//
// This function assumes that neither slice is empty and their last elements are nonzero.
//
// # Worst-case complexity
// $T(n) = O(n)$
//
// $M(n) = O(1)$
//
// where $T$ is time, $M$ is additional memory, and $n$ is `max(xs.len(), ys.len())`.
//
// This is equivalent to `mpz_congruent_2exp_p` from `mpz/cong_2exp.c`, GMP 6.2.1, where `a` is
// negative and `c` is positive.
pub_test! {limbs_eq_mod_power_of_2_neg_pos(xs: &[Limb], ys: &[Limb], pow: u64) -> bool {
    if xs.len() >= ys.len() {
        limbs_eq_mod_power_of_2_neg_pos_greater(xs, ys, pow)
    } else {
        limbs_eq_mod_power_of_2_neg_pos_greater(ys, xs, pow)
    }
}}

impl Natural {
    fn eq_mod_power_of_2_neg_limb(&self, other: Limb, pow: u64) -> bool {
        match *self {
            Natural(Small(ref small)) => {
                pow <= Limb::WIDTH && small.wrapping_neg().eq_mod_power_of_2(other, pow)
            }
            Natural(Large(ref limbs)) => limbs_eq_mod_power_of_2_neg_limb(limbs, other, pow),
        }
    }

    fn eq_mod_power_of_2_neg_pos(&self, other: &Natural, pow: u64) -> bool {
        match (self, other) {
            (_, &Natural(Small(y))) => self.eq_mod_power_of_2_neg_limb(y, pow),
            (&Natural(Small(x)), _) => other.eq_mod_power_of_2_neg_limb(x, pow),
            (&Natural(Large(ref xs)), &Natural(Large(ref ys))) => {
                limbs_eq_mod_power_of_2_neg_pos(xs, ys, pow)
            }
        }
    }
}

impl<'a, 'b> EqModPowerOf2<&'b Integer> for &'a Integer {
    /// Returns whether one [`Integer`] is equal to another modulo $2^k$; that is, whether their $k$
    /// least-significant bits (in two's complement) are equal.
    ///
    /// $f(x, y, k) = (x \equiv y \mod 2^k)$.
    ///
    /// $f(x, y, k) = (\exists n \in \Z : x - y = n2^k)$.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `min(pow, self.significant_bits(),
    /// other.significant_bits())`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::arithmetic::traits::EqModPowerOf2;
    /// use malachite_base::num::basic::traits::Zero;
    /// use malachite_nz::integer::Integer;
    ///
    /// assert_eq!(Integer::ZERO.eq_mod_power_of_2(&Integer::from(-256), 8), true);
    /// assert_eq!(Integer::from(-0b1101).eq_mod_power_of_2(&Integer::from(0b11011), 3), true);
    /// assert_eq!(Integer::from(-0b1101).eq_mod_power_of_2(&Integer::from(0b11011), 4), false);
    /// ```
    fn eq_mod_power_of_2(self, other: &'b Integer, pow: u64) -> bool {
        if self.sign == other.sign {
            self.abs.eq_mod_power_of_2(&other.abs, pow)
        } else {
            self.abs.eq_mod_power_of_2_neg_pos(&other.abs, pow)
        }
    }
}