opencv 0.94.4

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
pub mod photo {
	//! # Computational Photography
	//!
	//! This module includes photo processing algorithms
	//!    # Inpainting
	//!    # Denoising
	//!    # HDR imaging
	//!
	//!    This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment,
	//!    camera calibration with multiple exposures and exposure fusion.
	//!
	//!    # Contrast Preserving Decolorization
	//!
	//!    Useful links:
	//!
	//!    <http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html>
	//!
	//!    # Seamless Cloning
	//!
	//!    Useful links:
	//!
	//!    <https://www.learnopencv.com/seamless-cloning-using-opencv-python-cpp>
	//!
	//!    # Non-Photorealistic Rendering
	//!
	//!    Useful links:
	//!
	//!    <http://www.inf.ufrgs.br/~eslgastal/DomainTransform>
	//!
	//!    <https://www.learnopencv.com/non-photorealistic-rendering-using-opencv-python-c/>
	use crate::mod_prelude::*;
	use crate::{core, sys, types};
	pub mod prelude {
		pub use super::{AlignExposuresTrait, AlignExposuresTraitConst, AlignMTBTrait, AlignMTBTraitConst, CalibrateCRFTrait, CalibrateCRFTraitConst, CalibrateDebevecTrait, CalibrateDebevecTraitConst, CalibrateRobertsonTrait, CalibrateRobertsonTraitConst, MergeDebevecTrait, MergeDebevecTraitConst, MergeExposuresTrait, MergeExposuresTraitConst, MergeMertensTrait, MergeMertensTraitConst, MergeRobertsonTrait, MergeRobertsonTraitConst, TonemapDragoTrait, TonemapDragoTraitConst, TonemapMantiukTrait, TonemapMantiukTraitConst, TonemapReinhardTrait, TonemapReinhardTraitConst, TonemapTrait, TonemapTraitConst};
	}

	/// Use Navier-Stokes based method
	pub const INPAINT_NS: i32 = 0;
	/// Use the algorithm proposed by Alexandru Telea [Telea04](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Telea04)
	pub const INPAINT_TELEA: i32 = 1;
	pub const LDR_SIZE: i32 = 256;
	/// Mixed seamless cloning.
	/// This method addresses cases where simple color-based selection or alpha masking is time-consuming
	/// and may result in undesirable halos. By combining structure from the source and texture from the
	/// destination, mixed seamless cloning is highly effective, even with loosely defined selections.
	pub const MIXED_CLONE: i32 = 2;
	/// Enhanced mixed seamless cloning.
	/// Similar to `MIXED_CLONE`, but with an advanced approach to ROI (Region of Interest) calculation.
	/// This mode processes a larger source region by considering the entire mask area instead of only
	/// the bounding rectangle of non-zero pixels.
	pub const MIXED_CLONE_WIDE: i32 = 10;
	/// Monochrome transfer cloning.
	/// This method allows users to replace specific features of an object, such as grayscale textures
	/// or patterns, with alternative features. It is particularly useful for artistic effects or
	/// targeted object modifications.
	pub const MONOCHROME_TRANSFER: i32 = 3;
	/// Enhanced monochrome transfer cloning.
	/// Similar to `MONOCHROME_TRANSFER`, but with an advanced approach to ROI (Region of Interest) calculation.
	/// This mode processes a larger source region by considering the entire mask area instead of only
	/// the bounding rectangle of non-zero pixels.
	pub const MONOCHROME_TRANSFER_WIDE: i32 = 11;
	/// Normal seamless cloning.
	/// This method is ideal for inserting objects with complex outlines into a new background.
	/// It preserves the original appearance and lighting of the inserted object, ensuring a natural blend.
	pub const NORMAL_CLONE: i32 = 1;
	/// Enhanced normal seamless cloning.
	/// Similar to `NORMAL_CLONE`, but with an advanced approach to ROI (Region of Interest) calculation.
	/// This mode processes a larger source region by considering the entire mask area instead of only
	/// the bounding rectangle of non-zero pixels.
	pub const NORMAL_CLONE_WIDE: i32 = 9;
	/// Normalized Convolution Filtering
	pub const NORMCONV_FILTER: i32 = 2;
	/// Recursive Filtering
	pub const RECURS_FILTER: i32 = 1;
	/// Flags for the seamlessClone algorithm
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum SeamlessCloneFlags {
		/// Normal seamless cloning.
		/// This method is ideal for inserting objects with complex outlines into a new background.
		/// It preserves the original appearance and lighting of the inserted object, ensuring a natural blend.
		NORMAL_CLONE = 1,
		/// Mixed seamless cloning.
		/// This method addresses cases where simple color-based selection or alpha masking is time-consuming
		/// and may result in undesirable halos. By combining structure from the source and texture from the
		/// destination, mixed seamless cloning is highly effective, even with loosely defined selections.
		MIXED_CLONE = 2,
		/// Monochrome transfer cloning.
		/// This method allows users to replace specific features of an object, such as grayscale textures
		/// or patterns, with alternative features. It is particularly useful for artistic effects or
		/// targeted object modifications.
		MONOCHROME_TRANSFER = 3,
		/// Enhanced normal seamless cloning.
		/// Similar to `NORMAL_CLONE`, but with an advanced approach to ROI (Region of Interest) calculation.
		/// This mode processes a larger source region by considering the entire mask area instead of only
		/// the bounding rectangle of non-zero pixels.
		NORMAL_CLONE_WIDE = 9,
		/// Enhanced mixed seamless cloning.
		/// Similar to `MIXED_CLONE`, but with an advanced approach to ROI (Region of Interest) calculation.
		/// This mode processes a larger source region by considering the entire mask area instead of only
		/// the bounding rectangle of non-zero pixels.
		MIXED_CLONE_WIDE = 10,
		/// Enhanced monochrome transfer cloning.
		/// Similar to `MONOCHROME_TRANSFER`, but with an advanced approach to ROI (Region of Interest) calculation.
		/// This mode processes a larger source region by considering the entire mask area instead of only
		/// the bounding rectangle of non-zero pixels.
		MONOCHROME_TRANSFER_WIDE = 11,
	}

	impl TryFrom<i32> for SeamlessCloneFlags {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				1 => Ok(Self::NORMAL_CLONE),
				2 => Ok(Self::MIXED_CLONE),
				3 => Ok(Self::MONOCHROME_TRANSFER),
				9 => Ok(Self::NORMAL_CLONE_WIDE),
				10 => Ok(Self::MIXED_CLONE_WIDE),
				11 => Ok(Self::MONOCHROME_TRANSFER_WIDE),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::photo::SeamlessCloneFlags"))),
			}
		}
	}

	opencv_type_enum! { crate::photo::SeamlessCloneFlags }

	/// Given an original color image, two differently colored versions of this image can be mixed
	/// seamlessly.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * mask: Input 8-bit 1 or 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * red_mul: R-channel multiply factor.
	/// * green_mul: G-channel multiply factor.
	/// * blue_mul: B-channel multiply factor.
	///
	/// Multiplication factor is between .5 to 2.5.
	///
	/// ## Note
	/// This alternative version of [color_change] function uses the following default values for its arguments:
	/// * red_mul: 1.0f
	/// * green_mul: 1.0f
	/// * blue_mul: 1.0f
	#[inline]
	pub fn color_change_def(src: &impl ToInputArray, mask: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_colorChange_const__InputArrayR_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Given an original color image, two differently colored versions of this image can be mixed
	/// seamlessly.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * mask: Input 8-bit 1 or 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * red_mul: R-channel multiply factor.
	/// * green_mul: G-channel multiply factor.
	/// * blue_mul: B-channel multiply factor.
	///
	/// Multiplication factor is between .5 to 2.5.
	///
	/// ## C++ default parameters
	/// * red_mul: 1.0f
	/// * green_mul: 1.0f
	/// * blue_mul: 1.0f
	#[inline]
	pub fn color_change(src: &impl ToInputArray, mask: &impl ToInputArray, dst: &mut impl ToOutputArray, red_mul: f32, green_mul: f32, blue_mul: f32) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_colorChange_const__InputArrayR_const__InputArrayR_const__OutputArrayR_float_float_float(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), red_mul, green_mul, blue_mul, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Creates AlignMTB object
	///
	/// ## Parameters
	/// * max_bits: logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
	/// usually good enough (31 and 63 pixels shift respectively).
	/// * exclude_range: range for exclusion bitmap that is constructed to suppress noise around the
	/// median value.
	/// * cut: if true cuts images, otherwise fills the new regions with zeros.
	///
	/// ## Note
	/// This alternative version of [create_align_mtb] function uses the following default values for its arguments:
	/// * max_bits: 6
	/// * exclude_range: 4
	/// * cut: true
	#[inline]
	pub fn create_align_mtb_def() -> Result<core::Ptr<crate::photo::AlignMTB>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createAlignMTB(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::AlignMTB>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates AlignMTB object
	///
	/// ## Parameters
	/// * max_bits: logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
	/// usually good enough (31 and 63 pixels shift respectively).
	/// * exclude_range: range for exclusion bitmap that is constructed to suppress noise around the
	/// median value.
	/// * cut: if true cuts images, otherwise fills the new regions with zeros.
	///
	/// ## C++ default parameters
	/// * max_bits: 6
	/// * exclude_range: 4
	/// * cut: true
	#[inline]
	pub fn create_align_mtb(max_bits: i32, exclude_range: i32, cut: bool) -> Result<core::Ptr<crate::photo::AlignMTB>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createAlignMTB_int_int_bool(max_bits, exclude_range, cut, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::AlignMTB>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates CalibrateDebevec object
	///
	/// ## Parameters
	/// * samples: number of pixel locations to use
	/// * lambda: smoothness term weight. Greater values produce smoother results, but can alter the
	/// response.
	/// * random: if true sample pixel locations are chosen at random, otherwise they form a
	/// rectangular grid.
	///
	/// ## Note
	/// This alternative version of [create_calibrate_debevec] function uses the following default values for its arguments:
	/// * samples: 70
	/// * lambda: 10.0f
	/// * random: false
	#[inline]
	pub fn create_calibrate_debevec_def() -> Result<core::Ptr<crate::photo::CalibrateDebevec>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createCalibrateDebevec(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::CalibrateDebevec>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates CalibrateDebevec object
	///
	/// ## Parameters
	/// * samples: number of pixel locations to use
	/// * lambda: smoothness term weight. Greater values produce smoother results, but can alter the
	/// response.
	/// * random: if true sample pixel locations are chosen at random, otherwise they form a
	/// rectangular grid.
	///
	/// ## C++ default parameters
	/// * samples: 70
	/// * lambda: 10.0f
	/// * random: false
	#[inline]
	pub fn create_calibrate_debevec(samples: i32, lambda: f32, random: bool) -> Result<core::Ptr<crate::photo::CalibrateDebevec>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createCalibrateDebevec_int_float_bool(samples, lambda, random, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::CalibrateDebevec>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates CalibrateRobertson object
	///
	/// ## Parameters
	/// * max_iter: maximal number of Gauss-Seidel solver iterations.
	/// * threshold: target difference between results of two successive steps of the minimization.
	///
	/// ## Note
	/// This alternative version of [create_calibrate_robertson] function uses the following default values for its arguments:
	/// * max_iter: 30
	/// * threshold: 0.01f
	#[inline]
	pub fn create_calibrate_robertson_def() -> Result<core::Ptr<crate::photo::CalibrateRobertson>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createCalibrateRobertson(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::CalibrateRobertson>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates CalibrateRobertson object
	///
	/// ## Parameters
	/// * max_iter: maximal number of Gauss-Seidel solver iterations.
	/// * threshold: target difference between results of two successive steps of the minimization.
	///
	/// ## C++ default parameters
	/// * max_iter: 30
	/// * threshold: 0.01f
	#[inline]
	pub fn create_calibrate_robertson(max_iter: i32, threshold: f32) -> Result<core::Ptr<crate::photo::CalibrateRobertson>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createCalibrateRobertson_int_float(max_iter, threshold, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::CalibrateRobertson>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates MergeDebevec object
	#[inline]
	pub fn create_merge_debevec() -> Result<core::Ptr<crate::photo::MergeDebevec>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createMergeDebevec(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::MergeDebevec>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates MergeMertens object
	///
	/// ## Parameters
	/// * contrast_weight: contrast measure weight. See MergeMertens.
	/// * saturation_weight: saturation measure weight
	/// * exposure_weight: well-exposedness measure weight
	///
	/// ## Note
	/// This alternative version of [create_merge_mertens] function uses the following default values for its arguments:
	/// * contrast_weight: 1.0f
	/// * saturation_weight: 1.0f
	/// * exposure_weight: 0.0f
	#[inline]
	pub fn create_merge_mertens_def() -> Result<core::Ptr<crate::photo::MergeMertens>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createMergeMertens(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::MergeMertens>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates MergeMertens object
	///
	/// ## Parameters
	/// * contrast_weight: contrast measure weight. See MergeMertens.
	/// * saturation_weight: saturation measure weight
	/// * exposure_weight: well-exposedness measure weight
	///
	/// ## C++ default parameters
	/// * contrast_weight: 1.0f
	/// * saturation_weight: 1.0f
	/// * exposure_weight: 0.0f
	#[inline]
	pub fn create_merge_mertens(contrast_weight: f32, saturation_weight: f32, exposure_weight: f32) -> Result<core::Ptr<crate::photo::MergeMertens>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createMergeMertens_float_float_float(contrast_weight, saturation_weight, exposure_weight, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::MergeMertens>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates MergeRobertson object
	#[inline]
	pub fn create_merge_robertson() -> Result<core::Ptr<crate::photo::MergeRobertson>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createMergeRobertson(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::MergeRobertson>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates simple linear mapper with gamma correction
	///
	/// ## Parameters
	/// * gamma: positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
	/// equal to 2.2f is suitable for most displays.
	/// Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
	///
	/// ## Note
	/// This alternative version of [create_tonemap] function uses the following default values for its arguments:
	/// * gamma: 1.0f
	#[inline]
	pub fn create_tonemap_def() -> Result<core::Ptr<crate::photo::Tonemap>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemap(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::Tonemap>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates TonemapDrago object
	///
	/// ## Parameters
	/// * gamma: gamma value for gamma correction. See createTonemap
	/// * saturation: positive saturation enhancement value. 1.0 preserves saturation, values greater
	/// than 1 increase saturation and values less than 1 decrease it.
	/// * bias: value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
	/// results, default value is 0.85.
	///
	/// ## Note
	/// This alternative version of [create_tonemap_drago] function uses the following default values for its arguments:
	/// * gamma: 1.0f
	/// * saturation: 1.0f
	/// * bias: 0.85f
	#[inline]
	pub fn create_tonemap_drago_def() -> Result<core::Ptr<crate::photo::TonemapDrago>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemapDrago(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::TonemapDrago>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates TonemapDrago object
	///
	/// ## Parameters
	/// * gamma: gamma value for gamma correction. See createTonemap
	/// * saturation: positive saturation enhancement value. 1.0 preserves saturation, values greater
	/// than 1 increase saturation and values less than 1 decrease it.
	/// * bias: value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
	/// results, default value is 0.85.
	///
	/// ## C++ default parameters
	/// * gamma: 1.0f
	/// * saturation: 1.0f
	/// * bias: 0.85f
	#[inline]
	pub fn create_tonemap_drago(gamma: f32, saturation: f32, bias: f32) -> Result<core::Ptr<crate::photo::TonemapDrago>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemapDrago_float_float_float(gamma, saturation, bias, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::TonemapDrago>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates TonemapMantiuk object
	///
	/// ## Parameters
	/// * gamma: gamma value for gamma correction. See createTonemap
	/// * scale: contrast scale factor. HVS response is multiplied by this parameter, thus compressing
	/// dynamic range. Values from 0.6 to 0.9 produce best results.
	/// * saturation: saturation enhancement value. See createTonemapDrago
	///
	/// ## Note
	/// This alternative version of [create_tonemap_mantiuk] function uses the following default values for its arguments:
	/// * gamma: 1.0f
	/// * scale: 0.7f
	/// * saturation: 1.0f
	#[inline]
	pub fn create_tonemap_mantiuk_def() -> Result<core::Ptr<crate::photo::TonemapMantiuk>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemapMantiuk(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::TonemapMantiuk>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates TonemapMantiuk object
	///
	/// ## Parameters
	/// * gamma: gamma value for gamma correction. See createTonemap
	/// * scale: contrast scale factor. HVS response is multiplied by this parameter, thus compressing
	/// dynamic range. Values from 0.6 to 0.9 produce best results.
	/// * saturation: saturation enhancement value. See createTonemapDrago
	///
	/// ## C++ default parameters
	/// * gamma: 1.0f
	/// * scale: 0.7f
	/// * saturation: 1.0f
	#[inline]
	pub fn create_tonemap_mantiuk(gamma: f32, scale: f32, saturation: f32) -> Result<core::Ptr<crate::photo::TonemapMantiuk>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemapMantiuk_float_float_float(gamma, scale, saturation, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::TonemapMantiuk>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates TonemapReinhard object
	///
	/// ## Parameters
	/// * gamma: gamma value for gamma correction. See createTonemap
	/// * intensity: result intensity in [-8, 8] range. Greater intensity produces brighter results.
	/// * light_adapt: light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
	/// value, if 0 it's global, otherwise it's a weighted mean of this two cases.
	/// * color_adapt: chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
	/// if 0 adaptation level is the same for each channel.
	///
	/// ## Note
	/// This alternative version of [create_tonemap_reinhard] function uses the following default values for its arguments:
	/// * gamma: 1.0f
	/// * intensity: 0.0f
	/// * light_adapt: 1.0f
	/// * color_adapt: 0.0f
	#[inline]
	pub fn create_tonemap_reinhard_def() -> Result<core::Ptr<crate::photo::TonemapReinhard>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemapReinhard(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::TonemapReinhard>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates TonemapReinhard object
	///
	/// ## Parameters
	/// * gamma: gamma value for gamma correction. See createTonemap
	/// * intensity: result intensity in [-8, 8] range. Greater intensity produces brighter results.
	/// * light_adapt: light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
	/// value, if 0 it's global, otherwise it's a weighted mean of this two cases.
	/// * color_adapt: chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
	/// if 0 adaptation level is the same for each channel.
	///
	/// ## C++ default parameters
	/// * gamma: 1.0f
	/// * intensity: 0.0f
	/// * light_adapt: 1.0f
	/// * color_adapt: 0.0f
	#[inline]
	pub fn create_tonemap_reinhard(gamma: f32, intensity: f32, light_adapt: f32, color_adapt: f32) -> Result<core::Ptr<crate::photo::TonemapReinhard>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemapReinhard_float_float_float_float(gamma, intensity, light_adapt, color_adapt, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::TonemapReinhard>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Creates simple linear mapper with gamma correction
	///
	/// ## Parameters
	/// * gamma: positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
	/// equal to 2.2f is suitable for most displays.
	/// Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.
	///
	/// ## C++ default parameters
	/// * gamma: 1.0f
	#[inline]
	pub fn create_tonemap(gamma: f32) -> Result<core::Ptr<crate::photo::Tonemap>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_createTonemap_float(gamma, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::photo::Tonemap>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_colored_1] function uses the following default values for its arguments:
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_colored_1_def(src: &impl core::GpuMatTraitConst, dst: &mut impl core::GpuMatTrait, h_luminance: f32, photo_render: f32) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoisingColored_const_GpuMatR_GpuMatR_float_float(src.as_raw_GpuMat(), dst.as_raw_mut_GpuMat(), h_luminance, photo_render, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## C++ default parameters
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_colored_1(src: &impl core::GpuMatTraitConst, dst: &mut impl core::GpuMatTrait, h_luminance: f32, photo_render: f32, search_window: i32, block_size: i32, stream: &mut impl core::StreamTrait) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoisingColored_const_GpuMatR_GpuMatR_float_float_int_int_StreamR(src.as_raw_GpuMat(), dst.as_raw_mut_GpuMat(), h_luminance, photo_render, search_window, block_size, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for colored images
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * h_luminance: Parameter regulating filter strength. Big h value perfectly removes noise but
	/// also removes image details, smaller h value preserves details but also preserves some noise
	/// * photo_render: float The same as h but for color components. For most images value equals 10 will be
	/// enough to remove colored noise and do not distort colors
	/// * search_window: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater search_window - greater
	/// denoising time. Recommended value 21 pixels
	/// * block_size: Size in pixels of the template patch that is used to compute weights. Should be
	/// odd. Recommended value 7 pixels
	/// * stream: Stream for the asynchronous invocations.
	///
	/// The function converts image to CIELAB colorspace and then separately denoise L and AB components
	/// with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
	/// ## See also
	/// fastNlMeansDenoisingColored
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_colored_cuda] function uses the following default values for its arguments:
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_colored_cuda_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h_luminance: f32, photo_render: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoisingColored_const__InputArrayR_const__OutputArrayR_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h_luminance, photo_render, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for colored images
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * h_luminance: Parameter regulating filter strength. Big h value perfectly removes noise but
	/// also removes image details, smaller h value preserves details but also preserves some noise
	/// * photo_render: float The same as h but for color components. For most images value equals 10 will be
	/// enough to remove colored noise and do not distort colors
	/// * search_window: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater search_window - greater
	/// denoising time. Recommended value 21 pixels
	/// * block_size: Size in pixels of the template patch that is used to compute weights. Should be
	/// odd. Recommended value 7 pixels
	/// * stream: Stream for the asynchronous invocations.
	///
	/// The function converts image to CIELAB colorspace and then separately denoise L and AB components
	/// with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
	/// ## See also
	/// fastNlMeansDenoisingColored
	///
	/// ## C++ default parameters
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_colored_cuda(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h_luminance: f32, photo_render: f32, search_window: i32, block_size: i32, stream: &mut impl core::StreamTrait) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoisingColored_const__InputArrayR_const__OutputArrayR_float_float_int_int_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h_luminance, photo_render, search_window, block_size, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_1] function uses the following default values for its arguments:
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_1_def(src: &impl core::GpuMatTraitConst, dst: &mut impl core::GpuMatTrait, h: f32) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoising_const_GpuMatR_GpuMatR_float(src.as_raw_GpuMat(), dst.as_raw_mut_GpuMat(), h, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## C++ default parameters
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_1(src: &impl core::GpuMatTraitConst, dst: &mut impl core::GpuMatTrait, h: f32, search_window: i32, block_size: i32, stream: &mut impl core::StreamTrait) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoising_const_GpuMatR_GpuMatR_float_int_int_StreamR(src.as_raw_GpuMat(), dst.as_raw_mut_GpuMat(), h, search_window, block_size, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Perform image denoising using Non-local Means Denoising algorithm
	/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising> with several computational
	/// optimizations. Noise expected to be a gaussian white noise
	///
	/// ## Parameters
	/// * src: Input 8-bit 1-channel, 2-channel or 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
	/// removes image details, smaller h value preserves details but also preserves some noise
	/// * search_window: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater search_window - greater
	/// denoising time. Recommended value 21 pixels
	/// * block_size: Size in pixels of the template patch that is used to compute weights. Should be
	/// odd. Recommended value 7 pixels
	/// * stream: Stream for the asynchronous invocations.
	///
	/// This function expected to be applied to grayscale images. For colored images look at
	/// FastNonLocalMeansDenoising::labMethod.
	/// ## See also
	/// fastNlMeansDenoising
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_cuda] function uses the following default values for its arguments:
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_cuda_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoising_const__InputArrayR_const__OutputArrayR_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Perform image denoising using Non-local Means Denoising algorithm
	/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising> with several computational
	/// optimizations. Noise expected to be a gaussian white noise
	///
	/// ## Parameters
	/// * src: Input 8-bit 1-channel, 2-channel or 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
	/// removes image details, smaller h value preserves details but also preserves some noise
	/// * search_window: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater search_window - greater
	/// denoising time. Recommended value 21 pixels
	/// * block_size: Size in pixels of the template patch that is used to compute weights. Should be
	/// odd. Recommended value 7 pixels
	/// * stream: Stream for the asynchronous invocations.
	///
	/// This function expected to be applied to grayscale images. For colored images look at
	/// FastNonLocalMeansDenoising::labMethod.
	/// ## See also
	/// fastNlMeansDenoising
	///
	/// ## C++ default parameters
	/// * search_window: 21
	/// * block_size: 7
	/// * stream: Stream::Null()
	#[inline]
	pub fn fast_nl_means_denoising_cuda(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: f32, search_window: i32, block_size: i32, stream: &mut impl core::StreamTrait) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_fastNlMeansDenoising_const__InputArrayR_const__OutputArrayR_float_int_int_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, search_window, block_size, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## Note
	/// This alternative version of [non_local_means_1] function uses the following default values for its arguments:
	/// * search_window: 21
	/// * block_size: 7
	/// * border_mode: BORDER_DEFAULT
	/// * stream: Stream::Null()
	#[inline]
	pub fn non_local_means_1_def(src: &impl core::GpuMatTraitConst, dst: &mut impl core::GpuMatTrait, h: f32) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_nonLocalMeans_const_GpuMatR_GpuMatR_float(src.as_raw_GpuMat(), dst.as_raw_mut_GpuMat(), h, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## C++ default parameters
	/// * search_window: 21
	/// * block_size: 7
	/// * border_mode: BORDER_DEFAULT
	/// * stream: Stream::Null()
	#[inline]
	pub fn non_local_means_1(src: &impl core::GpuMatTraitConst, dst: &mut impl core::GpuMatTrait, h: f32, search_window: i32, block_size: i32, border_mode: i32, stream: &mut impl core::StreamTrait) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_nonLocalMeans_const_GpuMatR_GpuMatR_float_int_int_int_StreamR(src.as_raw_GpuMat(), dst.as_raw_mut_GpuMat(), h, search_window, block_size, border_mode, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Performs pure non local means denoising without any simplification, and thus it is not fast.
	///
	/// ## Parameters
	/// * src: Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.
	/// * dst: Destination image.
	/// * h: Filter sigma regulating filter strength for color.
	/// * search_window: Size of search window.
	/// * block_size: Size of block used for computing weights.
	/// * borderMode: Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
	/// BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
	/// * stream: Stream for the asynchronous version.
	/// ## See also
	/// fastNlMeansDenoising
	///
	/// ## Note
	/// This alternative version of [non_local_means] function uses the following default values for its arguments:
	/// * search_window: 21
	/// * block_size: 7
	/// * border_mode: BORDER_DEFAULT
	/// * stream: Stream::Null()
	#[inline]
	pub fn non_local_means_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_nonLocalMeans_const__InputArrayR_const__OutputArrayR_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Performs pure non local means denoising without any simplification, and thus it is not fast.
	///
	/// ## Parameters
	/// * src: Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.
	/// * dst: Destination image.
	/// * h: Filter sigma regulating filter strength for color.
	/// * search_window: Size of search window.
	/// * block_size: Size of block used for computing weights.
	/// * borderMode: Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
	/// BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
	/// * stream: Stream for the asynchronous version.
	/// ## See also
	/// fastNlMeansDenoising
	///
	/// ## C++ default parameters
	/// * search_window: 21
	/// * block_size: 7
	/// * border_mode: BORDER_DEFAULT
	/// * stream: Stream::Null()
	#[inline]
	pub fn non_local_means(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: f32, search_window: i32, block_size: i32, border_mode: i32, stream: &mut impl core::StreamTrait) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_cuda_nonLocalMeans_const__InputArrayR_const__OutputArrayR_float_int_int_int_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, search_window, block_size, border_mode, stream.as_raw_mut_Stream(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
	/// black-and-white photograph rendering, and in many single channel image processing applications
	/// [CL12](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_CL12) .
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * grayscale: Output 8-bit 1-channel image.
	/// * color_boost: Output 8-bit 3-channel image.
	///
	/// This function is to be applied on color images.
	#[inline]
	pub fn decolor(src: &impl ToInputArray, grayscale: &mut impl ToOutputArray, color_boost: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(grayscale);
		output_array_arg!(color_boost);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_decolor_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), grayscale.as_raw__OutputArray(), color_boost.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
	/// finding a function to minimize some functional). As the image denoising, in particular, may be seen
	/// as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
	/// exactly what is implemented.
	///
	/// It should be noted, that this implementation was taken from the July 2013 blog entry
	/// [MA13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_MA13) , which also contained (slightly more general) ready-to-use source code on Python.
	/// Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
	/// of July 2013 and finally it was slightly adapted by later authors.
	///
	/// Although the thorough discussion and justification of the algorithm involved may be found in
	/// [ChambolleEtAl](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_ChambolleEtAl), it might make sense to skim over it here, following [MA13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_MA13) . To begin
	/// with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
	/// pixels (it may be seen as set
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cleft%5C%7B%28x%2Cy%29%5Cin%5Cmathbb%7BN%7D%5Ctimes%5Cmathbb%7BN%7D%5Cmid%201%5Cleq%20x%5Cleq%20n%2C%5C%3B1%5Cleq%20y%5Cleq%20m%5Cright%5C%7D) for some
	/// ![inline formula](https://latex.codecogs.com/png.latex?m%2C%5C%3Bn%5Cin%5Cmathbb%7BN%7D)) into ![inline formula](https://latex.codecogs.com/png.latex?%5C%7B0%2C1%2C%5Cdots%2C255%5C%7D). We shall denote the noised images as ![inline formula](https://latex.codecogs.com/png.latex?f%5Fi) and with
	/// this view, given some image ![inline formula](https://latex.codecogs.com/png.latex?x) of the same size, we may measure how bad it is by the formula
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cleft%5C%7C%5Cleft%5C%7C%5Cnabla%20x%5Cright%5C%7C%5Cright%5C%7C%20%2B%20%5Clambda%5Csum%5Fi%5Cleft%5C%7C%5Cleft%5C%7Cx%2Df%5Fi%5Cright%5C%7C%5Cright%5C%7C)
	///
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5C%7C%5C%7C%5Ccdot%5C%7C%5C%7C) here denotes ![inline formula](https://latex.codecogs.com/png.latex?L%5F2)-norm and as you see, the first addend states that we want our
	/// image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
	/// we want our result to be close to the observations we've got. If we treat ![inline formula](https://latex.codecogs.com/png.latex?x) as a function, this is
	/// exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
	///
	/// ## Parameters
	/// * observations: This array should contain one or more noised versions of the image that is to
	/// be restored.
	/// * result: Here the denoised image will be stored. There is no need to do pre-allocation of
	/// storage space, as it will be automatically allocated, if necessary.
	/// * lambda: Corresponds to ![inline formula](https://latex.codecogs.com/png.latex?%5Clambda) in the formulas above. As it is enlarged, the smooth
	/// (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
	/// speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
	/// removed.
	/// * niters: Number of iterations that the algorithm will run. Of course, as more iterations as
	/// better, but it is hard to quantitatively refine this statement, so just use the default and
	/// increase it if the results are poor.
	///
	/// ## Note
	/// This alternative version of [denoise_tvl1] function uses the following default values for its arguments:
	/// * lambda: 1.0
	/// * niters: 30
	#[inline]
	pub fn denoise_tvl1_def(observations: &core::Vector<core::Mat>, result: &mut impl core::MatTrait) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_denoise_TVL1_const_vectorLMatGR_MatR(observations.as_raw_VectorOfMat(), result.as_raw_mut_Mat(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
	/// finding a function to minimize some functional). As the image denoising, in particular, may be seen
	/// as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
	/// exactly what is implemented.
	///
	/// It should be noted, that this implementation was taken from the July 2013 blog entry
	/// [MA13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_MA13) , which also contained (slightly more general) ready-to-use source code on Python.
	/// Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
	/// of July 2013 and finally it was slightly adapted by later authors.
	///
	/// Although the thorough discussion and justification of the algorithm involved may be found in
	/// [ChambolleEtAl](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_ChambolleEtAl), it might make sense to skim over it here, following [MA13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_MA13) . To begin
	/// with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
	/// pixels (it may be seen as set
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cleft%5C%7B%28x%2Cy%29%5Cin%5Cmathbb%7BN%7D%5Ctimes%5Cmathbb%7BN%7D%5Cmid%201%5Cleq%20x%5Cleq%20n%2C%5C%3B1%5Cleq%20y%5Cleq%20m%5Cright%5C%7D) for some
	/// ![inline formula](https://latex.codecogs.com/png.latex?m%2C%5C%3Bn%5Cin%5Cmathbb%7BN%7D)) into ![inline formula](https://latex.codecogs.com/png.latex?%5C%7B0%2C1%2C%5Cdots%2C255%5C%7D). We shall denote the noised images as ![inline formula](https://latex.codecogs.com/png.latex?f%5Fi) and with
	/// this view, given some image ![inline formula](https://latex.codecogs.com/png.latex?x) of the same size, we may measure how bad it is by the formula
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cleft%5C%7C%5Cleft%5C%7C%5Cnabla%20x%5Cright%5C%7C%5Cright%5C%7C%20%2B%20%5Clambda%5Csum%5Fi%5Cleft%5C%7C%5Cleft%5C%7Cx%2Df%5Fi%5Cright%5C%7C%5Cright%5C%7C)
	///
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5C%7C%5C%7C%5Ccdot%5C%7C%5C%7C) here denotes ![inline formula](https://latex.codecogs.com/png.latex?L%5F2)-norm and as you see, the first addend states that we want our
	/// image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
	/// we want our result to be close to the observations we've got. If we treat ![inline formula](https://latex.codecogs.com/png.latex?x) as a function, this is
	/// exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
	///
	/// ## Parameters
	/// * observations: This array should contain one or more noised versions of the image that is to
	/// be restored.
	/// * result: Here the denoised image will be stored. There is no need to do pre-allocation of
	/// storage space, as it will be automatically allocated, if necessary.
	/// * lambda: Corresponds to ![inline formula](https://latex.codecogs.com/png.latex?%5Clambda) in the formulas above. As it is enlarged, the smooth
	/// (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
	/// speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
	/// removed.
	/// * niters: Number of iterations that the algorithm will run. Of course, as more iterations as
	/// better, but it is hard to quantitatively refine this statement, so just use the default and
	/// increase it if the results are poor.
	///
	/// ## C++ default parameters
	/// * lambda: 1.0
	/// * niters: 30
	#[inline]
	pub fn denoise_tvl1(observations: &core::Vector<core::Mat>, result: &mut impl core::MatTrait, lambda: f64, niters: i32) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_denoise_TVL1_const_vectorLMatGR_MatR_double_int(observations.as_raw_VectorOfMat(), result.as_raw_mut_Mat(), lambda, niters, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// This filter enhances the details of a particular image.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	///
	/// ## Note
	/// This alternative version of [detail_enhance] function uses the following default values for its arguments:
	/// * sigma_s: 10
	/// * sigma_r: 0.15f
	#[inline]
	pub fn detail_enhance_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_detailEnhance_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// This filter enhances the details of a particular image.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	///
	/// ## C++ default parameters
	/// * sigma_s: 10
	/// * sigma_r: 0.15f
	#[inline]
	pub fn detail_enhance(src: &impl ToInputArray, dst: &mut impl ToOutputArray, sigma_s: f32, sigma_r: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_detailEnhance_const__InputArrayR_const__OutputArrayR_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_s, sigma_r, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
	/// filters are used in many different applications [EM11](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_EM11) .
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output 8-bit 3-channel image.
	/// * flags: Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	///
	/// ## Note
	/// This alternative version of [edge_preserving_filter] function uses the following default values for its arguments:
	/// * flags: 1
	/// * sigma_s: 60
	/// * sigma_r: 0.4f
	#[inline]
	pub fn edge_preserving_filter_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_edgePreservingFilter_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
	/// filters are used in many different applications [EM11](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_EM11) .
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output 8-bit 3-channel image.
	/// * flags: Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	///
	/// ## C++ default parameters
	/// * flags: 1
	/// * sigma_s: 60
	/// * sigma_r: 0.4f
	#[inline]
	pub fn edge_preserving_filter(src: &impl ToInputArray, dst: &mut impl ToOutputArray, flags: i32, sigma_s: f32, sigma_r: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_edgePreservingFilter_const__InputArrayR_const__OutputArrayR_int_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), flags, sigma_s, sigma_r, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoisingMulti function for colored images sequences
	///
	/// ## Parameters
	/// * srcImgs: Input 8-bit 3-channel images sequence. All images should have the same type and
	/// size.
	/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
	/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
	/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
	/// imgToDenoiseIndex + temporalWindowSize / 2 from srcImgs will be used to denoise
	/// srcImgs[imgToDenoiseIndex] image.
	/// * dst: Output image with the same size and type as srcImgs images.
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength for luminance component. Bigger h value perfectly
	/// removes noise but also removes image details, smaller h value preserves details but also preserves
	/// some noise.
	/// * hColor: The same as h but for color components.
	///
	/// The function converts images to CIELAB colorspace and then separately denoise L and AB components
	/// with given h parameters using fastNlMeansDenoisingMulti function.
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_colored_multi] function uses the following default values for its arguments:
	/// * h: 3
	/// * h_color: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_colored_multi_def(src_imgs: &impl ToInputArray, dst: &mut impl ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32) -> Result<()> {
		input_array_arg!(src_imgs);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingColoredMulti_const__InputArrayR_const__OutputArrayR_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoisingMulti function for colored images sequences
	///
	/// ## Parameters
	/// * srcImgs: Input 8-bit 3-channel images sequence. All images should have the same type and
	/// size.
	/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
	/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
	/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
	/// imgToDenoiseIndex + temporalWindowSize / 2 from srcImgs will be used to denoise
	/// srcImgs[imgToDenoiseIndex] image.
	/// * dst: Output image with the same size and type as srcImgs images.
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength for luminance component. Bigger h value perfectly
	/// removes noise but also removes image details, smaller h value preserves details but also preserves
	/// some noise.
	/// * hColor: The same as h but for color components.
	///
	/// The function converts images to CIELAB colorspace and then separately denoise L and AB components
	/// with given h parameters using fastNlMeansDenoisingMulti function.
	///
	/// ## C++ default parameters
	/// * h: 3
	/// * h_color: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_colored_multi(src_imgs: &impl ToInputArray, dst: &mut impl ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: f32, h_color: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
		input_array_arg!(src_imgs);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingColoredMulti_const__InputArrayR_const__OutputArrayR_int_int_float_float_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h, h_color, template_window_size, search_window_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for colored images
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength for luminance component. Bigger h value perfectly
	/// removes noise but also removes image details, smaller h value preserves details but also preserves
	/// some noise
	/// * hColor: The same as h but for color components. For most images value equals 10
	/// will be enough to remove colored noise and do not distort colors
	///
	/// The function converts image to CIELAB colorspace and then separately denoise L and AB components
	/// with given h parameters using fastNlMeansDenoising function.
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_colored] function uses the following default values for its arguments:
	/// * h: 3
	/// * h_color: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_colored_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingColored_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for colored images
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength for luminance component. Bigger h value perfectly
	/// removes noise but also removes image details, smaller h value preserves details but also preserves
	/// some noise
	/// * hColor: The same as h but for color components. For most images value equals 10
	/// will be enough to remove colored noise and do not distort colors
	///
	/// The function converts image to CIELAB colorspace and then separately denoise L and AB components
	/// with given h parameters using fastNlMeansDenoising function.
	///
	/// ## C++ default parameters
	/// * h: 3
	/// * h_color: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_colored(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: f32, h_color: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingColored_const__InputArrayR_const__OutputArrayR_float_float_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, h_color, template_window_size, search_window_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
	/// captured in small period of time. For example video. This version of the function is for grayscale
	/// images or for manual manipulation with colorspaces. See [Buades2005DenoisingIS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Buades2005DenoisingIS) for more details
	/// (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
	///
	/// ## Parameters
	/// * srcImgs: Input 8-bit 1-channel, 2-channel, 3-channel or
	/// 4-channel images sequence. All images should have the same type and
	/// size.
	/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
	/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
	/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
	/// imgToDenoiseIndex + temporalWindowSize / 2 from srcImgs will be used to denoise
	/// srcImgs[imgToDenoiseIndex] image.
	/// * dst: Output image with the same size and type as srcImgs images.
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength. Bigger h value
	/// perfectly removes noise but also removes image details, smaller h
	/// value preserves details but also preserves some noise
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_multi] function uses the following default values for its arguments:
	/// * h: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_multi_def(src_imgs: &impl ToInputArray, dst: &mut impl ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32) -> Result<()> {
		input_array_arg!(src_imgs);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingMulti_const__InputArrayR_const__OutputArrayR_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
	/// captured in small period of time. For example video. This version of the function is for grayscale
	/// images or for manual manipulation with colorspaces. See [Buades2005DenoisingIS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Buades2005DenoisingIS) for more details
	/// (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
	///
	/// ## Parameters
	/// * srcImgs: Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
	/// 2-channel, 3-channel or 4-channel images sequence. All images should
	/// have the same type and size.
	/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
	/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
	/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
	/// imgToDenoiseIndex + temporalWindowSize / 2 from srcImgs will be used to denoise
	/// srcImgs[imgToDenoiseIndex] image.
	/// * dst: Output image with the same size and type as srcImgs images.
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Array of parameters regulating filter strength, either one
	/// parameter applied to all channels or one per channel in dst. Big h value
	/// perfectly removes noise but also removes image details, smaller h
	/// value preserves details but also preserves some noise
	/// * normType: Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_multi_vec] function uses the following default values for its arguments:
	/// * template_window_size: 7
	/// * search_window_size: 21
	/// * norm_type: NORM_L2
	#[inline]
	pub fn fast_nl_means_denoising_multi_vec_def(src_imgs: &impl ToInputArray, dst: &mut impl ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: &core::Vector<f32>) -> Result<()> {
		input_array_arg!(src_imgs);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingMulti_const__InputArrayR_const__OutputArrayR_int_int_const_vectorLfloatGR(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h.as_raw_VectorOff32(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
	/// captured in small period of time. For example video. This version of the function is for grayscale
	/// images or for manual manipulation with colorspaces. See [Buades2005DenoisingIS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Buades2005DenoisingIS) for more details
	/// (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
	///
	/// ## Parameters
	/// * srcImgs: Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
	/// 2-channel, 3-channel or 4-channel images sequence. All images should
	/// have the same type and size.
	/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
	/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
	/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
	/// imgToDenoiseIndex + temporalWindowSize / 2 from srcImgs will be used to denoise
	/// srcImgs[imgToDenoiseIndex] image.
	/// * dst: Output image with the same size and type as srcImgs images.
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Array of parameters regulating filter strength, either one
	/// parameter applied to all channels or one per channel in dst. Big h value
	/// perfectly removes noise but also removes image details, smaller h
	/// value preserves details but also preserves some noise
	/// * normType: Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
	///
	/// ## C++ default parameters
	/// * template_window_size: 7
	/// * search_window_size: 21
	/// * norm_type: NORM_L2
	#[inline]
	pub fn fast_nl_means_denoising_multi_vec(src_imgs: &impl ToInputArray, dst: &mut impl ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: &core::Vector<f32>, template_window_size: i32, search_window_size: i32, norm_type: i32) -> Result<()> {
		input_array_arg!(src_imgs);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingMulti_const__InputArrayR_const__OutputArrayR_int_int_const_vectorLfloatGR_int_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h.as_raw_VectorOff32(), template_window_size, search_window_size, norm_type, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
	/// captured in small period of time. For example video. This version of the function is for grayscale
	/// images or for manual manipulation with colorspaces. See [Buades2005DenoisingIS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Buades2005DenoisingIS) for more details
	/// (open access [here](https://static.aminer.org/pdf/PDF/000/317/196/spatio_temporal_wiener_filtering_of_image_sequences_using_a_parametric.pdf)).
	///
	/// ## Parameters
	/// * srcImgs: Input 8-bit 1-channel, 2-channel, 3-channel or
	/// 4-channel images sequence. All images should have the same type and
	/// size.
	/// * imgToDenoiseIndex: Target image to denoise index in srcImgs sequence
	/// * temporalWindowSize: Number of surrounding images to use for target image denoising. Should
	/// be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
	/// imgToDenoiseIndex + temporalWindowSize / 2 from srcImgs will be used to denoise
	/// srcImgs[imgToDenoiseIndex] image.
	/// * dst: Output image with the same size and type as srcImgs images.
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength. Bigger h value
	/// perfectly removes noise but also removes image details, smaller h
	/// value preserves details but also preserves some noise
	///
	/// ## C++ default parameters
	/// * h: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_multi(src_imgs: &impl ToInputArray, dst: &mut impl ToOutputArray, img_to_denoise_index: i32, temporal_window_size: i32, h: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
		input_array_arg!(src_imgs);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoisingMulti_const__InputArrayR_const__OutputArrayR_int_int_float_int_int(src_imgs.as_raw__InputArray(), dst.as_raw__OutputArray(), img_to_denoise_index, temporal_window_size, h, template_window_size, search_window_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Perform image denoising using Non-local Means Denoising algorithm
	/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
	/// optimizations. Noise expected to be a gaussian white noise
	///
	/// ## Parameters
	/// * src: Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
	/// removes image details, smaller h value preserves details but also preserves some noise
	///
	/// This function expected to be applied to grayscale images. For colored images look at
	/// fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
	/// image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
	/// image to CIELAB colorspace and then separately denoise L and AB components with different h
	/// parameter.
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising] function uses the following default values for its arguments:
	/// * h: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoising_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Perform image denoising using Non-local Means Denoising algorithm
	/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
	/// optimizations. Noise expected to be a gaussian white noise
	///
	/// ## Parameters
	/// * src: Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
	/// 2-channel, 3-channel or 4-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Array of parameters regulating filter strength, either one
	/// parameter applied to all channels or one per channel in dst. Big h value
	/// perfectly removes noise but also removes image details, smaller h
	/// value preserves details but also preserves some noise
	/// * normType: Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
	///
	/// This function expected to be applied to grayscale images. For colored images look at
	/// fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
	/// image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
	/// image to CIELAB colorspace and then separately denoise L and AB components with different h
	/// parameter.
	///
	/// ## Note
	/// This alternative version of [fast_nl_means_denoising_vec] function uses the following default values for its arguments:
	/// * template_window_size: 7
	/// * search_window_size: 21
	/// * norm_type: NORM_L2
	#[inline]
	pub fn fast_nl_means_denoising_vec_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: &core::Vector<f32>) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoising_const__InputArrayR_const__OutputArrayR_const_vectorLfloatGR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h.as_raw_VectorOff32(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Perform image denoising using Non-local Means Denoising algorithm
	/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
	/// optimizations. Noise expected to be a gaussian white noise
	///
	/// ## Parameters
	/// * src: Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
	/// 2-channel, 3-channel or 4-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Array of parameters regulating filter strength, either one
	/// parameter applied to all channels or one per channel in dst. Big h value
	/// perfectly removes noise but also removes image details, smaller h
	/// value preserves details but also preserves some noise
	/// * normType: Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
	///
	/// This function expected to be applied to grayscale images. For colored images look at
	/// fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
	/// image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
	/// image to CIELAB colorspace and then separately denoise L and AB components with different h
	/// parameter.
	///
	/// ## C++ default parameters
	/// * template_window_size: 7
	/// * search_window_size: 21
	/// * norm_type: NORM_L2
	#[inline]
	pub fn fast_nl_means_denoising_vec(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: &core::Vector<f32>, template_window_size: i32, search_window_size: i32, norm_type: i32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoising_const__InputArrayR_const__OutputArrayR_const_vectorLfloatGR_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h.as_raw_VectorOff32(), template_window_size, search_window_size, norm_type, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Perform image denoising using Non-local Means Denoising algorithm
	/// <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
	/// optimizations. Noise expected to be a gaussian white noise
	///
	/// ## Parameters
	/// * src: Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
	/// * dst: Output image with the same size and type as src .
	/// * templateWindowSize: Size in pixels of the template patch that is used to compute weights.
	/// Should be odd. Recommended value 7 pixels
	/// * searchWindowSize: Size in pixels of the window that is used to compute weighted average for
	/// given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
	/// denoising time. Recommended value 21 pixels
	/// * h: Parameter regulating filter strength. Big h value perfectly removes noise but also
	/// removes image details, smaller h value preserves details but also preserves some noise
	///
	/// This function expected to be applied to grayscale images. For colored images look at
	/// fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
	/// image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
	/// image to CIELAB colorspace and then separately denoise L and AB components with different h
	/// parameter.
	///
	/// ## C++ default parameters
	/// * h: 3
	/// * template_window_size: 7
	/// * search_window_size: 21
	#[inline]
	pub fn fast_nl_means_denoising(src: &impl ToInputArray, dst: &mut impl ToOutputArray, h: f32, template_window_size: i32, search_window_size: i32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fastNlMeansDenoising_const__InputArrayR_const__OutputArrayR_float_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), h, template_window_size, search_window_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Applying an appropriate non-linear transformation to the gradient field inside the selection and
	/// then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * mask: Input 8-bit 1 or 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * alpha: Value ranges between 0-2.
	/// * beta: Value ranges between 0-2.
	///
	/// This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
	///
	/// ## Note
	/// This alternative version of [illumination_change] function uses the following default values for its arguments:
	/// * alpha: 0.2f
	/// * beta: 0.4f
	#[inline]
	pub fn illumination_change_def(src: &impl ToInputArray, mask: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_illuminationChange_const__InputArrayR_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Applying an appropriate non-linear transformation to the gradient field inside the selection and
	/// then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * mask: Input 8-bit 1 or 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * alpha: Value ranges between 0-2.
	/// * beta: Value ranges between 0-2.
	///
	/// This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
	///
	/// ## C++ default parameters
	/// * alpha: 0.2f
	/// * beta: 0.4f
	#[inline]
	pub fn illumination_change(src: &impl ToInputArray, mask: &impl ToInputArray, dst: &mut impl ToOutputArray, alpha: f32, beta: f32) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_illuminationChange_const__InputArrayR_const__InputArrayR_const__OutputArrayR_float_float(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), alpha, beta, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Restores the selected region in an image using the region neighborhood.
	///
	/// ## Parameters
	/// * src: Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
	/// * inpaintMask: Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
	/// needs to be inpainted.
	/// * dst: Output image with the same size and type as src .
	/// * inpaintRadius: Radius of a circular neighborhood of each point inpainted that is considered
	/// by the algorithm.
	/// * flags: Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
	///
	/// The function reconstructs the selected image area from the pixel near the area boundary. The
	/// function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
	/// objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
	///
	///
	/// Note:
	///    *   An example using the inpainting technique can be found at
	///        opencv_source_code/samples/cpp/inpaint.cpp
	///    *   (Python) An example using the inpainting technique can be found at
	///        opencv_source_code/samples/python/inpaint.py
	#[inline]
	pub fn inpaint(src: &impl ToInputArray, inpaint_mask: &impl ToInputArray, dst: &mut impl ToOutputArray, inpaint_radius: f64, flags: i32) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(inpaint_mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_inpaint_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_int(src.as_raw__InputArray(), inpaint_mask.as_raw__InputArray(), dst.as_raw__OutputArray(), inpaint_radius, flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @example samples/cpp/tutorial_code/photo/non_photorealistic_rendering/npr_demo.cpp
	/// An example using non-photorealistic line drawing functions
	///
	/// Pencil-like non-photorealistic line drawing
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst1: Output 8-bit 1-channel image.
	/// * dst2: Output image with the same size and type as src.
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	/// * shade_factor: %Range between 0 to 0.1.
	///
	/// ## Note
	/// This alternative version of [pencil_sketch] function uses the following default values for its arguments:
	/// * sigma_s: 60
	/// * sigma_r: 0.07f
	/// * shade_factor: 0.02f
	#[inline]
	pub fn pencil_sketch_def(src: &impl ToInputArray, dst1: &mut impl ToOutputArray, dst2: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst1);
		output_array_arg!(dst2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_pencilSketch_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst1.as_raw__OutputArray(), dst2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @example samples/cpp/tutorial_code/photo/non_photorealistic_rendering/npr_demo.cpp
	/// An example using non-photorealistic line drawing functions
	///
	/// Pencil-like non-photorealistic line drawing
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst1: Output 8-bit 1-channel image.
	/// * dst2: Output image with the same size and type as src.
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	/// * shade_factor: %Range between 0 to 0.1.
	///
	/// ## C++ default parameters
	/// * sigma_s: 60
	/// * sigma_r: 0.07f
	/// * shade_factor: 0.02f
	#[inline]
	pub fn pencil_sketch(src: &impl ToInputArray, dst1: &mut impl ToOutputArray, dst2: &mut impl ToOutputArray, sigma_s: f32, sigma_r: f32, shade_factor: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst1);
		output_array_arg!(dst2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_pencilSketch_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_float_float_float(src.as_raw__InputArray(), dst1.as_raw__OutputArray(), dst2.as_raw__OutputArray(), sigma_s, sigma_r, shade_factor, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @example samples/cpp/tutorial_code/photo/seamless_cloning/cloning_demo.cpp
	/// An example using seamlessClone function
	///
	/// Performs seamless cloning to blend a region from a source image into a destination image.
	/// This function is designed for local image editing, allowing changes restricted to a region
	/// (manually selected as the ROI) to be applied effortlessly and seamlessly. These changes can
	/// range from slight distortions to complete replacement by novel content [PM03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_PM03).
	///
	/// ## Parameters
	/// * src: The source image (8-bit 3-channel), from which a region will be blended into the destination.
	/// * dst: The destination image (8-bit 3-channel), where the src image will be blended.
	/// * mask: A binary mask (8-bit, 1, 3, or 4-channel) specifying the region in the source image to blend.
	/// Non-zero pixels indicate the region to be blended. If an empty Mat is provided, a mask with
	/// all non-zero pixels is created internally.
	/// * p: The point where the center of the src image is placed in the dst image.
	/// * blend: The output image that stores the result of the seamless cloning. It has the same size and type as `dst`.
	/// * flags: Flags that control the type of cloning method, can take values of `cv::SeamlessCloneFlags`.
	#[inline]
	pub fn seamless_clone(src: &impl ToInputArray, dst: &impl ToInputArray, mask: &impl ToInputArray, p: core::Point, blend: &mut impl ToOutputArray, flags: i32) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(dst);
		input_array_arg!(mask);
		output_array_arg!(blend);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_seamlessClone_const__InputArrayR_const__InputArrayR_const__InputArrayR_Point_const__OutputArrayR_int(src.as_raw__InputArray(), dst.as_raw__InputArray(), mask.as_raw__InputArray(), &p, blend.as_raw__OutputArray(), flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Stylization aims to produce digital imagery with a wide variety of effects not focused on
	/// photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
	/// contrast while preserving, or enhancing, high-contrast features.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	///
	/// ## Note
	/// This alternative version of [stylization] function uses the following default values for its arguments:
	/// * sigma_s: 60
	/// * sigma_r: 0.45f
	#[inline]
	pub fn stylization_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stylization_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Stylization aims to produce digital imagery with a wide variety of effects not focused on
	/// photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
	/// contrast while preserving, or enhancing, high-contrast features.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * sigma_s: %Range between 0 to 200.
	/// * sigma_r: %Range between 0 to 1.
	///
	/// ## C++ default parameters
	/// * sigma_s: 60
	/// * sigma_r: 0.45f
	#[inline]
	pub fn stylization(src: &impl ToInputArray, dst: &mut impl ToOutputArray, sigma_s: f32, sigma_r: f32) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stylization_const__InputArrayR_const__OutputArrayR_float_float(src.as_raw__InputArray(), dst.as_raw__OutputArray(), sigma_s, sigma_r, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
	/// washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * mask: Input 8-bit 1 or 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * low_threshold: %Range from 0 to 100.
	/// * high_threshold: Value \> 100.
	/// * kernel_size: The size of the Sobel kernel to be used.
	///
	///
	/// Note:
	/// The algorithm assumes that the color of the source image is close to that of the destination. This
	/// assumption means that when the colors don't match, the source image color gets tinted toward the
	/// color of the destination image.
	///
	/// ## Note
	/// This alternative version of [texture_flattening] function uses the following default values for its arguments:
	/// * low_threshold: 30
	/// * high_threshold: 45
	/// * kernel_size: 3
	#[inline]
	pub fn texture_flattening_def(src: &impl ToInputArray, mask: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_textureFlattening_const__InputArrayR_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
	/// washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
	///
	/// ## Parameters
	/// * src: Input 8-bit 3-channel image.
	/// * mask: Input 8-bit 1 or 3-channel image.
	/// * dst: Output image with the same size and type as src.
	/// * low_threshold: %Range from 0 to 100.
	/// * high_threshold: Value \> 100.
	/// * kernel_size: The size of the Sobel kernel to be used.
	///
	///
	/// Note:
	/// The algorithm assumes that the color of the source image is close to that of the destination. This
	/// assumption means that when the colors don't match, the source image color gets tinted toward the
	/// color of the destination image.
	///
	/// ## C++ default parameters
	/// * low_threshold: 30
	/// * high_threshold: 45
	/// * kernel_size: 3
	#[inline]
	pub fn texture_flattening(src: &impl ToInputArray, mask: &impl ToInputArray, dst: &mut impl ToOutputArray, low_threshold: f32, high_threshold: f32, kernel_size: i32) -> Result<()> {
		input_array_arg!(src);
		input_array_arg!(mask);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_textureFlattening_const__InputArrayR_const__InputArrayR_const__OutputArrayR_float_float_int(src.as_raw__InputArray(), mask.as_raw__InputArray(), dst.as_raw__OutputArray(), low_threshold, high_threshold, kernel_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// The base class for algorithms that align images of the same scene with different exposures
	pub struct AlignExposures {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { AlignExposures }

	impl Drop for AlignExposures {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_AlignExposures_delete(self.as_raw_mut_AlignExposures()) };
		}
	}

	unsafe impl Send for AlignExposures {}

	/// Constant methods for [crate::photo::AlignExposures]
	pub trait AlignExposuresTraitConst: core::AlgorithmTraitConst {
		fn as_raw_AlignExposures(&self) -> *const c_void;

	}

	/// Mutable methods for [crate::photo::AlignExposures]
	pub trait AlignExposuresTrait: core::AlgorithmTrait + crate::photo::AlignExposuresTraitConst {
		fn as_raw_mut_AlignExposures(&mut self) -> *mut c_void;

		/// Aligns images
		///
		/// ## Parameters
		/// * src: vector of input images
		/// * dst: vector of aligned images
		/// * times: vector of exposure time values for each image
		/// * response: 256x1 matrix with inverse camera response function for each pixel value, it should
		/// have the same number of channels as images.
		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut core::Vector<core::Mat>, times: &impl ToInputArray, response: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			input_array_arg!(times);
			input_array_arg!(response);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignExposures_process_const__InputArrayR_vectorLMatGR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_AlignExposures(), src.as_raw__InputArray(), dst.as_raw_mut_VectorOfMat(), times.as_raw__InputArray(), response.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for AlignExposures {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("AlignExposures")
				.finish()
		}
	}

	boxed_cast_base! { AlignExposures, core::Algorithm, cv_AlignExposures_to_Algorithm }

	boxed_cast_descendant! { AlignExposures, crate::photo::AlignMTB, cv_AlignExposures_to_AlignMTB }

	impl core::AlgorithmTraitConst for AlignExposures {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for AlignExposures {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { AlignExposures, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::AlignExposuresTraitConst for AlignExposures {
		#[inline] fn as_raw_AlignExposures(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::AlignExposuresTrait for AlignExposures {
		#[inline] fn as_raw_mut_AlignExposures(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { AlignExposures, crate::photo::AlignExposuresTraitConst, as_raw_AlignExposures, crate::photo::AlignExposuresTrait, as_raw_mut_AlignExposures }

	/// This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median
	/// luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations.
	///
	/// It is invariant to exposure, so exposure values and camera response are not necessary.
	///
	/// In this implementation new image regions are filled with zeros.
	///
	/// For more information see [GW03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_GW03) .
	pub struct AlignMTB {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { AlignMTB }

	impl Drop for AlignMTB {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_AlignMTB_delete(self.as_raw_mut_AlignMTB()) };
		}
	}

	unsafe impl Send for AlignMTB {}

	/// Constant methods for [crate::photo::AlignMTB]
	pub trait AlignMTBTraitConst: crate::photo::AlignExposuresTraitConst {
		fn as_raw_AlignMTB(&self) -> *const c_void;

		#[inline]
		fn get_max_bits(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_getMaxBits_const(self.as_raw_AlignMTB(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_exclude_range(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_getExcludeRange_const(self.as_raw_AlignMTB(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_cut(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_getCut_const(self.as_raw_AlignMTB(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::AlignMTB]
	pub trait AlignMTBTrait: crate::photo::AlignExposuresTrait + crate::photo::AlignMTBTraitConst {
		fn as_raw_mut_AlignMTB(&mut self) -> *mut c_void;

		#[inline]
		fn process_with_response(&mut self, src: &impl ToInputArray, dst: &mut core::Vector<core::Mat>, times: &impl ToInputArray, response: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			input_array_arg!(times);
			input_array_arg!(response);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_process_const__InputArrayR_vectorLMatGR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_AlignMTB(), src.as_raw__InputArray(), dst.as_raw_mut_VectorOfMat(), times.as_raw__InputArray(), response.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Short version of process, that doesn't take extra arguments.
		///
		/// ## Parameters
		/// * src: vector of input images
		/// * dst: vector of aligned images
		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut core::Vector<core::Mat>) -> Result<()> {
			input_array_arg!(src);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_process_const__InputArrayR_vectorLMatGR(self.as_raw_mut_AlignMTB(), src.as_raw__InputArray(), dst.as_raw_mut_VectorOfMat(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Calculates shift between two images, i. e. how to shift the second image to correspond it with the
		/// first.
		///
		/// ## Parameters
		/// * img0: first image
		/// * img1: second image
		#[inline]
		fn calculate_shift(&mut self, img0: &impl ToInputArray, img1: &impl ToInputArray) -> Result<core::Point> {
			input_array_arg!(img0);
			input_array_arg!(img1);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_calculateShift_const__InputArrayR_const__InputArrayR(self.as_raw_mut_AlignMTB(), img0.as_raw__InputArray(), img1.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Helper function, that shift Mat filling new regions with zeros.
		///
		/// ## Parameters
		/// * src: input image
		/// * dst: result image
		/// * shift: shift value
		#[inline]
		fn shift_mat(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, shift: core::Point) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_shiftMat_const__InputArrayR_const__OutputArrayR_const_Point(self.as_raw_mut_AlignMTB(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), &shift, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Computes median threshold and exclude bitmaps of given image.
		///
		/// ## Parameters
		/// * img: input image
		/// * tb: median threshold bitmap
		/// * eb: exclude bitmap
		#[inline]
		fn compute_bitmaps(&mut self, img: &impl ToInputArray, tb: &mut impl ToOutputArray, eb: &mut impl ToOutputArray) -> Result<()> {
			input_array_arg!(img);
			output_array_arg!(tb);
			output_array_arg!(eb);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_computeBitmaps_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_AlignMTB(), img.as_raw__InputArray(), tb.as_raw__OutputArray(), eb.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_max_bits(&mut self, max_bits: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_setMaxBits_int(self.as_raw_mut_AlignMTB(), max_bits, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_exclude_range(&mut self, exclude_range: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_setExcludeRange_int(self.as_raw_mut_AlignMTB(), exclude_range, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_cut(&mut self, value: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_AlignMTB_setCut_bool(self.as_raw_mut_AlignMTB(), value, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for AlignMTB {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("AlignMTB")
				.finish()
		}
	}

	boxed_cast_base! { AlignMTB, core::Algorithm, cv_AlignMTB_to_Algorithm }

	boxed_cast_base! { AlignMTB, crate::photo::AlignExposures, cv_AlignMTB_to_AlignExposures }

	impl core::AlgorithmTraitConst for AlignMTB {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for AlignMTB {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { AlignMTB, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::AlignExposuresTraitConst for AlignMTB {
		#[inline] fn as_raw_AlignExposures(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::AlignExposuresTrait for AlignMTB {
		#[inline] fn as_raw_mut_AlignExposures(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { AlignMTB, crate::photo::AlignExposuresTraitConst, as_raw_AlignExposures, crate::photo::AlignExposuresTrait, as_raw_mut_AlignExposures }

	impl crate::photo::AlignMTBTraitConst for AlignMTB {
		#[inline] fn as_raw_AlignMTB(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::AlignMTBTrait for AlignMTB {
		#[inline] fn as_raw_mut_AlignMTB(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { AlignMTB, crate::photo::AlignMTBTraitConst, as_raw_AlignMTB, crate::photo::AlignMTBTrait, as_raw_mut_AlignMTB }

	/// The base class for camera response calibration algorithms.
	pub struct CalibrateCRF {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { CalibrateCRF }

	impl Drop for CalibrateCRF {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_CalibrateCRF_delete(self.as_raw_mut_CalibrateCRF()) };
		}
	}

	unsafe impl Send for CalibrateCRF {}

	/// Constant methods for [crate::photo::CalibrateCRF]
	pub trait CalibrateCRFTraitConst: core::AlgorithmTraitConst {
		fn as_raw_CalibrateCRF(&self) -> *const c_void;

	}

	/// Mutable methods for [crate::photo::CalibrateCRF]
	pub trait CalibrateCRFTrait: core::AlgorithmTrait + crate::photo::CalibrateCRFTraitConst {
		fn as_raw_mut_CalibrateCRF(&mut self) -> *mut c_void;

		/// Recovers inverse camera response.
		///
		/// ## Parameters
		/// * src: vector of input images
		/// * dst: 256x1 matrix with inverse camera response function
		/// * times: vector of exposure time values for each image
		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateCRF_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR(self.as_raw_mut_CalibrateCRF(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for CalibrateCRF {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("CalibrateCRF")
				.finish()
		}
	}

	boxed_cast_base! { CalibrateCRF, core::Algorithm, cv_CalibrateCRF_to_Algorithm }

	boxed_cast_descendant! { CalibrateCRF, crate::photo::CalibrateDebevec, cv_CalibrateCRF_to_CalibrateDebevec }

	boxed_cast_descendant! { CalibrateCRF, crate::photo::CalibrateRobertson, cv_CalibrateCRF_to_CalibrateRobertson }

	impl core::AlgorithmTraitConst for CalibrateCRF {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for CalibrateCRF {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateCRF, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::CalibrateCRFTraitConst for CalibrateCRF {
		#[inline] fn as_raw_CalibrateCRF(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::CalibrateCRFTrait for CalibrateCRF {
		#[inline] fn as_raw_mut_CalibrateCRF(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateCRF, crate::photo::CalibrateCRFTraitConst, as_raw_CalibrateCRF, crate::photo::CalibrateCRFTrait, as_raw_mut_CalibrateCRF }

	/// Inverse camera response function is extracted for each brightness value by minimizing an objective
	/// function as linear system. Objective function is constructed using pixel values on the same position
	/// in all images, extra term is added to make the result smoother.
	///
	/// For more information see [DM97](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_DM97) .
	pub struct CalibrateDebevec {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { CalibrateDebevec }

	impl Drop for CalibrateDebevec {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_CalibrateDebevec_delete(self.as_raw_mut_CalibrateDebevec()) };
		}
	}

	unsafe impl Send for CalibrateDebevec {}

	/// Constant methods for [crate::photo::CalibrateDebevec]
	pub trait CalibrateDebevecTraitConst: crate::photo::CalibrateCRFTraitConst {
		fn as_raw_CalibrateDebevec(&self) -> *const c_void;

		#[inline]
		fn get_lambda(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateDebevec_getLambda_const(self.as_raw_CalibrateDebevec(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_samples(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateDebevec_getSamples_const(self.as_raw_CalibrateDebevec(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_random(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateDebevec_getRandom_const(self.as_raw_CalibrateDebevec(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::CalibrateDebevec]
	pub trait CalibrateDebevecTrait: crate::photo::CalibrateCRFTrait + crate::photo::CalibrateDebevecTraitConst {
		fn as_raw_mut_CalibrateDebevec(&mut self) -> *mut c_void;

		#[inline]
		fn set_lambda(&mut self, lambda: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateDebevec_setLambda_float(self.as_raw_mut_CalibrateDebevec(), lambda, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_samples(&mut self, samples: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateDebevec_setSamples_int(self.as_raw_mut_CalibrateDebevec(), samples, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_random(&mut self, random: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateDebevec_setRandom_bool(self.as_raw_mut_CalibrateDebevec(), random, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for CalibrateDebevec {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("CalibrateDebevec")
				.finish()
		}
	}

	boxed_cast_base! { CalibrateDebevec, core::Algorithm, cv_CalibrateDebevec_to_Algorithm }

	boxed_cast_base! { CalibrateDebevec, crate::photo::CalibrateCRF, cv_CalibrateDebevec_to_CalibrateCRF }

	impl core::AlgorithmTraitConst for CalibrateDebevec {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for CalibrateDebevec {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateDebevec, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::CalibrateCRFTraitConst for CalibrateDebevec {
		#[inline] fn as_raw_CalibrateCRF(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::CalibrateCRFTrait for CalibrateDebevec {
		#[inline] fn as_raw_mut_CalibrateCRF(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateDebevec, crate::photo::CalibrateCRFTraitConst, as_raw_CalibrateCRF, crate::photo::CalibrateCRFTrait, as_raw_mut_CalibrateCRF }

	impl crate::photo::CalibrateDebevecTraitConst for CalibrateDebevec {
		#[inline] fn as_raw_CalibrateDebevec(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::CalibrateDebevecTrait for CalibrateDebevec {
		#[inline] fn as_raw_mut_CalibrateDebevec(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateDebevec, crate::photo::CalibrateDebevecTraitConst, as_raw_CalibrateDebevec, crate::photo::CalibrateDebevecTrait, as_raw_mut_CalibrateDebevec }

	/// Inverse camera response function is extracted for each brightness value by minimizing an objective
	/// function as linear system. This algorithm uses all image pixels.
	///
	/// For more information see [RB99](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_RB99) .
	pub struct CalibrateRobertson {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { CalibrateRobertson }

	impl Drop for CalibrateRobertson {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_CalibrateRobertson_delete(self.as_raw_mut_CalibrateRobertson()) };
		}
	}

	unsafe impl Send for CalibrateRobertson {}

	/// Constant methods for [crate::photo::CalibrateRobertson]
	pub trait CalibrateRobertsonTraitConst: crate::photo::CalibrateCRFTraitConst {
		fn as_raw_CalibrateRobertson(&self) -> *const c_void;

		#[inline]
		fn get_max_iter(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateRobertson_getMaxIter_const(self.as_raw_CalibrateRobertson(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_threshold(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateRobertson_getThreshold_const(self.as_raw_CalibrateRobertson(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_radiance(&self) -> Result<core::Mat> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateRobertson_getRadiance_const(self.as_raw_CalibrateRobertson(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Mat::opencv_from_extern(ret) };
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::CalibrateRobertson]
	pub trait CalibrateRobertsonTrait: crate::photo::CalibrateCRFTrait + crate::photo::CalibrateRobertsonTraitConst {
		fn as_raw_mut_CalibrateRobertson(&mut self) -> *mut c_void;

		#[inline]
		fn set_max_iter(&mut self, max_iter: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateRobertson_setMaxIter_int(self.as_raw_mut_CalibrateRobertson(), max_iter, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_threshold(&mut self, threshold: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CalibrateRobertson_setThreshold_float(self.as_raw_mut_CalibrateRobertson(), threshold, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for CalibrateRobertson {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("CalibrateRobertson")
				.finish()
		}
	}

	boxed_cast_base! { CalibrateRobertson, core::Algorithm, cv_CalibrateRobertson_to_Algorithm }

	boxed_cast_base! { CalibrateRobertson, crate::photo::CalibrateCRF, cv_CalibrateRobertson_to_CalibrateCRF }

	impl core::AlgorithmTraitConst for CalibrateRobertson {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for CalibrateRobertson {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateRobertson, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::CalibrateCRFTraitConst for CalibrateRobertson {
		#[inline] fn as_raw_CalibrateCRF(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::CalibrateCRFTrait for CalibrateRobertson {
		#[inline] fn as_raw_mut_CalibrateCRF(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateRobertson, crate::photo::CalibrateCRFTraitConst, as_raw_CalibrateCRF, crate::photo::CalibrateCRFTrait, as_raw_mut_CalibrateCRF }

	impl crate::photo::CalibrateRobertsonTraitConst for CalibrateRobertson {
		#[inline] fn as_raw_CalibrateRobertson(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::CalibrateRobertsonTrait for CalibrateRobertson {
		#[inline] fn as_raw_mut_CalibrateRobertson(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { CalibrateRobertson, crate::photo::CalibrateRobertsonTraitConst, as_raw_CalibrateRobertson, crate::photo::CalibrateRobertsonTrait, as_raw_mut_CalibrateRobertson }

	/// The resulting HDR image is calculated as weighted average of the exposures considering exposure
	/// values and camera response.
	///
	/// For more information see [DM97](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_DM97) .
	pub struct MergeDebevec {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { MergeDebevec }

	impl Drop for MergeDebevec {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_MergeDebevec_delete(self.as_raw_mut_MergeDebevec()) };
		}
	}

	unsafe impl Send for MergeDebevec {}

	/// Constant methods for [crate::photo::MergeDebevec]
	pub trait MergeDebevecTraitConst: crate::photo::MergeExposuresTraitConst {
		fn as_raw_MergeDebevec(&self) -> *const c_void;

	}

	/// Mutable methods for [crate::photo::MergeDebevec]
	pub trait MergeDebevecTrait: crate::photo::MergeDebevecTraitConst + crate::photo::MergeExposuresTrait {
		fn as_raw_mut_MergeDebevec(&mut self) -> *mut c_void;

		#[inline]
		fn process_with_response(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray, response: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			input_array_arg!(response);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeDebevec_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_MergeDebevec(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeDebevec_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR(self.as_raw_mut_MergeDebevec(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for MergeDebevec {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("MergeDebevec")
				.finish()
		}
	}

	boxed_cast_base! { MergeDebevec, core::Algorithm, cv_MergeDebevec_to_Algorithm }

	boxed_cast_base! { MergeDebevec, crate::photo::MergeExposures, cv_MergeDebevec_to_MergeExposures }

	impl core::AlgorithmTraitConst for MergeDebevec {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for MergeDebevec {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeDebevec, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::MergeExposuresTraitConst for MergeDebevec {
		#[inline] fn as_raw_MergeExposures(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeExposuresTrait for MergeDebevec {
		#[inline] fn as_raw_mut_MergeExposures(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeDebevec, crate::photo::MergeExposuresTraitConst, as_raw_MergeExposures, crate::photo::MergeExposuresTrait, as_raw_mut_MergeExposures }

	impl crate::photo::MergeDebevecTraitConst for MergeDebevec {
		#[inline] fn as_raw_MergeDebevec(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeDebevecTrait for MergeDebevec {
		#[inline] fn as_raw_mut_MergeDebevec(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeDebevec, crate::photo::MergeDebevecTraitConst, as_raw_MergeDebevec, crate::photo::MergeDebevecTrait, as_raw_mut_MergeDebevec }

	/// The base class algorithms that can merge exposure sequence to a single image.
	pub struct MergeExposures {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { MergeExposures }

	impl Drop for MergeExposures {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_MergeExposures_delete(self.as_raw_mut_MergeExposures()) };
		}
	}

	unsafe impl Send for MergeExposures {}

	/// Constant methods for [crate::photo::MergeExposures]
	pub trait MergeExposuresTraitConst: core::AlgorithmTraitConst {
		fn as_raw_MergeExposures(&self) -> *const c_void;

	}

	/// Mutable methods for [crate::photo::MergeExposures]
	pub trait MergeExposuresTrait: core::AlgorithmTrait + crate::photo::MergeExposuresTraitConst {
		fn as_raw_mut_MergeExposures(&mut self) -> *mut c_void;

		/// Merges images.
		///
		/// ## Parameters
		/// * src: vector of input images
		/// * dst: result image
		/// * times: vector of exposure time values for each image
		/// * response: 256x1 matrix with inverse camera response function for each pixel value, it should
		/// have the same number of channels as images.
		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray, response: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			input_array_arg!(response);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeExposures_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_MergeExposures(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for MergeExposures {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("MergeExposures")
				.finish()
		}
	}

	boxed_cast_base! { MergeExposures, core::Algorithm, cv_MergeExposures_to_Algorithm }

	boxed_cast_descendant! { MergeExposures, crate::photo::MergeDebevec, cv_MergeExposures_to_MergeDebevec }

	boxed_cast_descendant! { MergeExposures, crate::photo::MergeMertens, cv_MergeExposures_to_MergeMertens }

	boxed_cast_descendant! { MergeExposures, crate::photo::MergeRobertson, cv_MergeExposures_to_MergeRobertson }

	impl core::AlgorithmTraitConst for MergeExposures {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for MergeExposures {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeExposures, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::MergeExposuresTraitConst for MergeExposures {
		#[inline] fn as_raw_MergeExposures(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeExposuresTrait for MergeExposures {
		#[inline] fn as_raw_mut_MergeExposures(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeExposures, crate::photo::MergeExposuresTraitConst, as_raw_MergeExposures, crate::photo::MergeExposuresTrait, as_raw_mut_MergeExposures }

	/// Pixels are weighted using contrast, saturation and well-exposedness measures, than images are
	/// combined using laplacian pyramids.
	///
	/// The resulting image weight is constructed as weighted average of contrast, saturation and
	/// well-exposedness measures.
	///
	/// The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying
	/// by 255, but it's recommended to apply gamma correction and/or linear tonemapping.
	///
	/// For more information see [MK07](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_MK07) .
	pub struct MergeMertens {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { MergeMertens }

	impl Drop for MergeMertens {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_MergeMertens_delete(self.as_raw_mut_MergeMertens()) };
		}
	}

	unsafe impl Send for MergeMertens {}

	/// Constant methods for [crate::photo::MergeMertens]
	pub trait MergeMertensTraitConst: crate::photo::MergeExposuresTraitConst {
		fn as_raw_MergeMertens(&self) -> *const c_void;

		#[inline]
		fn get_contrast_weight(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_getContrastWeight_const(self.as_raw_MergeMertens(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_saturation_weight(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_getSaturationWeight_const(self.as_raw_MergeMertens(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_exposure_weight(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_getExposureWeight_const(self.as_raw_MergeMertens(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::MergeMertens]
	pub trait MergeMertensTrait: crate::photo::MergeExposuresTrait + crate::photo::MergeMertensTraitConst {
		fn as_raw_mut_MergeMertens(&mut self) -> *mut c_void;

		#[inline]
		fn process_with_response(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray, response: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			input_array_arg!(response);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_MergeMertens(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Short version of process, that doesn't take extra arguments.
		///
		/// ## Parameters
		/// * src: vector of input images
		/// * dst: result image
		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_process_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_MergeMertens(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_contrast_weight(&mut self, contrast_weiht: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_setContrastWeight_float(self.as_raw_mut_MergeMertens(), contrast_weiht, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_saturation_weight(&mut self, saturation_weight: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_setSaturationWeight_float(self.as_raw_mut_MergeMertens(), saturation_weight, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_exposure_weight(&mut self, exposure_weight: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeMertens_setExposureWeight_float(self.as_raw_mut_MergeMertens(), exposure_weight, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for MergeMertens {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("MergeMertens")
				.finish()
		}
	}

	boxed_cast_base! { MergeMertens, core::Algorithm, cv_MergeMertens_to_Algorithm }

	boxed_cast_base! { MergeMertens, crate::photo::MergeExposures, cv_MergeMertens_to_MergeExposures }

	impl core::AlgorithmTraitConst for MergeMertens {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for MergeMertens {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeMertens, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::MergeExposuresTraitConst for MergeMertens {
		#[inline] fn as_raw_MergeExposures(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeExposuresTrait for MergeMertens {
		#[inline] fn as_raw_mut_MergeExposures(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeMertens, crate::photo::MergeExposuresTraitConst, as_raw_MergeExposures, crate::photo::MergeExposuresTrait, as_raw_mut_MergeExposures }

	impl crate::photo::MergeMertensTraitConst for MergeMertens {
		#[inline] fn as_raw_MergeMertens(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeMertensTrait for MergeMertens {
		#[inline] fn as_raw_mut_MergeMertens(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeMertens, crate::photo::MergeMertensTraitConst, as_raw_MergeMertens, crate::photo::MergeMertensTrait, as_raw_mut_MergeMertens }

	/// The resulting HDR image is calculated as weighted average of the exposures considering exposure
	/// values and camera response.
	///
	/// For more information see [RB99](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_RB99) .
	pub struct MergeRobertson {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { MergeRobertson }

	impl Drop for MergeRobertson {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_MergeRobertson_delete(self.as_raw_mut_MergeRobertson()) };
		}
	}

	unsafe impl Send for MergeRobertson {}

	/// Constant methods for [crate::photo::MergeRobertson]
	pub trait MergeRobertsonTraitConst: crate::photo::MergeExposuresTraitConst {
		fn as_raw_MergeRobertson(&self) -> *const c_void;

	}

	/// Mutable methods for [crate::photo::MergeRobertson]
	pub trait MergeRobertsonTrait: crate::photo::MergeExposuresTrait + crate::photo::MergeRobertsonTraitConst {
		fn as_raw_mut_MergeRobertson(&mut self) -> *mut c_void;

		#[inline]
		fn process_with_response(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray, response: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			input_array_arg!(response);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeRobertson_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_MergeRobertson(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), response.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray, times: &impl ToInputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			input_array_arg!(times);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_MergeRobertson_process_const__InputArrayR_const__OutputArrayR_const__InputArrayR(self.as_raw_mut_MergeRobertson(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), times.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for MergeRobertson {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("MergeRobertson")
				.finish()
		}
	}

	boxed_cast_base! { MergeRobertson, core::Algorithm, cv_MergeRobertson_to_Algorithm }

	boxed_cast_base! { MergeRobertson, crate::photo::MergeExposures, cv_MergeRobertson_to_MergeExposures }

	impl core::AlgorithmTraitConst for MergeRobertson {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for MergeRobertson {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeRobertson, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::MergeExposuresTraitConst for MergeRobertson {
		#[inline] fn as_raw_MergeExposures(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeExposuresTrait for MergeRobertson {
		#[inline] fn as_raw_mut_MergeExposures(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeRobertson, crate::photo::MergeExposuresTraitConst, as_raw_MergeExposures, crate::photo::MergeExposuresTrait, as_raw_mut_MergeExposures }

	impl crate::photo::MergeRobertsonTraitConst for MergeRobertson {
		#[inline] fn as_raw_MergeRobertson(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::MergeRobertsonTrait for MergeRobertson {
		#[inline] fn as_raw_mut_MergeRobertson(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { MergeRobertson, crate::photo::MergeRobertsonTraitConst, as_raw_MergeRobertson, crate::photo::MergeRobertsonTrait, as_raw_mut_MergeRobertson }

	/// Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range.
	pub struct Tonemap {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { Tonemap }

	impl Drop for Tonemap {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_Tonemap_delete(self.as_raw_mut_Tonemap()) };
		}
	}

	unsafe impl Send for Tonemap {}

	/// Constant methods for [crate::photo::Tonemap]
	pub trait TonemapTraitConst: core::AlgorithmTraitConst {
		fn as_raw_Tonemap(&self) -> *const c_void;

		#[inline]
		fn get_gamma(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_Tonemap_getGamma_const(self.as_raw_Tonemap(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::Tonemap]
	pub trait TonemapTrait: core::AlgorithmTrait + crate::photo::TonemapTraitConst {
		fn as_raw_mut_Tonemap(&mut self) -> *mut c_void;

		/// Tonemaps image
		///
		/// ## Parameters
		/// * src: source image - CV_32FC3 Mat (float 32 bits 3 channels)
		/// * dst: destination image - CV_32FC3 Mat with values in [0, 1] range
		#[inline]
		fn process(&mut self, src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
			input_array_arg!(src);
			output_array_arg!(dst);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_Tonemap_process_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_Tonemap(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_gamma(&mut self, gamma: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_Tonemap_setGamma_float(self.as_raw_mut_Tonemap(), gamma, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for Tonemap {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("Tonemap")
				.finish()
		}
	}

	boxed_cast_base! { Tonemap, core::Algorithm, cv_Tonemap_to_Algorithm }

	boxed_cast_descendant! { Tonemap, crate::photo::TonemapDrago, cv_Tonemap_to_TonemapDrago }

	boxed_cast_descendant! { Tonemap, crate::photo::TonemapMantiuk, cv_Tonemap_to_TonemapMantiuk }

	boxed_cast_descendant! { Tonemap, crate::photo::TonemapReinhard, cv_Tonemap_to_TonemapReinhard }

	impl core::AlgorithmTraitConst for Tonemap {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for Tonemap {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { Tonemap, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::TonemapTraitConst for Tonemap {
		#[inline] fn as_raw_Tonemap(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapTrait for Tonemap {
		#[inline] fn as_raw_mut_Tonemap(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { Tonemap, crate::photo::TonemapTraitConst, as_raw_Tonemap, crate::photo::TonemapTrait, as_raw_mut_Tonemap }

	/// Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in
	/// logarithmic domain.
	///
	/// Since it's a global operator the same function is applied to all the pixels, it is controlled by the
	/// bias parameter.
	///
	/// Optional saturation enhancement is possible as described in [FL02](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_FL02) .
	///
	/// For more information see [DM03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_DM03) .
	pub struct TonemapDrago {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { TonemapDrago }

	impl Drop for TonemapDrago {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_TonemapDrago_delete(self.as_raw_mut_TonemapDrago()) };
		}
	}

	unsafe impl Send for TonemapDrago {}

	/// Constant methods for [crate::photo::TonemapDrago]
	pub trait TonemapDragoTraitConst: crate::photo::TonemapTraitConst {
		fn as_raw_TonemapDrago(&self) -> *const c_void;

		#[inline]
		fn get_saturation(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapDrago_getSaturation_const(self.as_raw_TonemapDrago(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_bias(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapDrago_getBias_const(self.as_raw_TonemapDrago(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::TonemapDrago]
	pub trait TonemapDragoTrait: crate::photo::TonemapDragoTraitConst + crate::photo::TonemapTrait {
		fn as_raw_mut_TonemapDrago(&mut self) -> *mut c_void;

		#[inline]
		fn set_saturation(&mut self, saturation: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapDrago_setSaturation_float(self.as_raw_mut_TonemapDrago(), saturation, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_bias(&mut self, bias: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapDrago_setBias_float(self.as_raw_mut_TonemapDrago(), bias, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for TonemapDrago {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("TonemapDrago")
				.finish()
		}
	}

	boxed_cast_base! { TonemapDrago, core::Algorithm, cv_TonemapDrago_to_Algorithm }

	boxed_cast_base! { TonemapDrago, crate::photo::Tonemap, cv_TonemapDrago_to_Tonemap }

	impl core::AlgorithmTraitConst for TonemapDrago {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for TonemapDrago {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapDrago, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::TonemapTraitConst for TonemapDrago {
		#[inline] fn as_raw_Tonemap(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapTrait for TonemapDrago {
		#[inline] fn as_raw_mut_Tonemap(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapDrago, crate::photo::TonemapTraitConst, as_raw_Tonemap, crate::photo::TonemapTrait, as_raw_mut_Tonemap }

	impl crate::photo::TonemapDragoTraitConst for TonemapDrago {
		#[inline] fn as_raw_TonemapDrago(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapDragoTrait for TonemapDrago {
		#[inline] fn as_raw_mut_TonemapDrago(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapDrago, crate::photo::TonemapDragoTraitConst, as_raw_TonemapDrago, crate::photo::TonemapDragoTrait, as_raw_mut_TonemapDrago }

	/// This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid,
	/// transforms contrast values to HVS response and scales the response. After this the image is
	/// reconstructed from new contrast values.
	///
	/// For more information see [MM06](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_MM06) .
	pub struct TonemapMantiuk {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { TonemapMantiuk }

	impl Drop for TonemapMantiuk {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_TonemapMantiuk_delete(self.as_raw_mut_TonemapMantiuk()) };
		}
	}

	unsafe impl Send for TonemapMantiuk {}

	/// Constant methods for [crate::photo::TonemapMantiuk]
	pub trait TonemapMantiukTraitConst: crate::photo::TonemapTraitConst {
		fn as_raw_TonemapMantiuk(&self) -> *const c_void;

		#[inline]
		fn get_scale(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapMantiuk_getScale_const(self.as_raw_TonemapMantiuk(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_saturation(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapMantiuk_getSaturation_const(self.as_raw_TonemapMantiuk(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::TonemapMantiuk]
	pub trait TonemapMantiukTrait: crate::photo::TonemapMantiukTraitConst + crate::photo::TonemapTrait {
		fn as_raw_mut_TonemapMantiuk(&mut self) -> *mut c_void;

		#[inline]
		fn set_scale(&mut self, scale: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapMantiuk_setScale_float(self.as_raw_mut_TonemapMantiuk(), scale, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_saturation(&mut self, saturation: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapMantiuk_setSaturation_float(self.as_raw_mut_TonemapMantiuk(), saturation, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for TonemapMantiuk {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("TonemapMantiuk")
				.finish()
		}
	}

	boxed_cast_base! { TonemapMantiuk, core::Algorithm, cv_TonemapMantiuk_to_Algorithm }

	boxed_cast_base! { TonemapMantiuk, crate::photo::Tonemap, cv_TonemapMantiuk_to_Tonemap }

	impl core::AlgorithmTraitConst for TonemapMantiuk {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for TonemapMantiuk {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapMantiuk, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::TonemapTraitConst for TonemapMantiuk {
		#[inline] fn as_raw_Tonemap(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapTrait for TonemapMantiuk {
		#[inline] fn as_raw_mut_Tonemap(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapMantiuk, crate::photo::TonemapTraitConst, as_raw_Tonemap, crate::photo::TonemapTrait, as_raw_mut_Tonemap }

	impl crate::photo::TonemapMantiukTraitConst for TonemapMantiuk {
		#[inline] fn as_raw_TonemapMantiuk(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapMantiukTrait for TonemapMantiuk {
		#[inline] fn as_raw_mut_TonemapMantiuk(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapMantiuk, crate::photo::TonemapMantiukTraitConst, as_raw_TonemapMantiuk, crate::photo::TonemapMantiukTrait, as_raw_mut_TonemapMantiuk }

	/// This is a global tonemapping operator that models human visual system.
	///
	/// Mapping function is controlled by adaptation parameter, that is computed using light adaptation and
	/// color adaptation.
	///
	/// For more information see [RD05](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_RD05) .
	pub struct TonemapReinhard {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { TonemapReinhard }

	impl Drop for TonemapReinhard {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_TonemapReinhard_delete(self.as_raw_mut_TonemapReinhard()) };
		}
	}

	unsafe impl Send for TonemapReinhard {}

	/// Constant methods for [crate::photo::TonemapReinhard]
	pub trait TonemapReinhardTraitConst: crate::photo::TonemapTraitConst {
		fn as_raw_TonemapReinhard(&self) -> *const c_void;

		#[inline]
		fn get_intensity(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapReinhard_getIntensity_const(self.as_raw_TonemapReinhard(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_light_adaptation(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapReinhard_getLightAdaptation_const(self.as_raw_TonemapReinhard(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_color_adaptation(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapReinhard_getColorAdaptation_const(self.as_raw_TonemapReinhard(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::photo::TonemapReinhard]
	pub trait TonemapReinhardTrait: crate::photo::TonemapReinhardTraitConst + crate::photo::TonemapTrait {
		fn as_raw_mut_TonemapReinhard(&mut self) -> *mut c_void;

		#[inline]
		fn set_intensity(&mut self, intensity: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapReinhard_setIntensity_float(self.as_raw_mut_TonemapReinhard(), intensity, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_light_adaptation(&mut self, light_adapt: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapReinhard_setLightAdaptation_float(self.as_raw_mut_TonemapReinhard(), light_adapt, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_color_adaptation(&mut self, color_adapt: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_TonemapReinhard_setColorAdaptation_float(self.as_raw_mut_TonemapReinhard(), color_adapt, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for TonemapReinhard {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("TonemapReinhard")
				.finish()
		}
	}

	boxed_cast_base! { TonemapReinhard, core::Algorithm, cv_TonemapReinhard_to_Algorithm }

	boxed_cast_base! { TonemapReinhard, crate::photo::Tonemap, cv_TonemapReinhard_to_Tonemap }

	impl core::AlgorithmTraitConst for TonemapReinhard {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for TonemapReinhard {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapReinhard, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::photo::TonemapTraitConst for TonemapReinhard {
		#[inline] fn as_raw_Tonemap(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapTrait for TonemapReinhard {
		#[inline] fn as_raw_mut_Tonemap(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapReinhard, crate::photo::TonemapTraitConst, as_raw_Tonemap, crate::photo::TonemapTrait, as_raw_mut_Tonemap }

	impl crate::photo::TonemapReinhardTraitConst for TonemapReinhard {
		#[inline] fn as_raw_TonemapReinhard(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::photo::TonemapReinhardTrait for TonemapReinhard {
		#[inline] fn as_raw_mut_TonemapReinhard(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { TonemapReinhard, crate::photo::TonemapReinhardTraitConst, as_raw_TonemapReinhard, crate::photo::TonemapReinhardTrait, as_raw_mut_TonemapReinhard }

}