opencv 0.94.4

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
pub mod calib3d {
	//! # Camera Calibration and 3D Reconstruction
	//!
	//! The functions in this section use a so-called pinhole camera model. The view of a scene
	//! is obtained by projecting a scene's 3D point ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw) into the image plane using a perspective
	//! transformation which forms the corresponding pixel ![inline formula](https://latex.codecogs.com/png.latex?p). Both ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw) and ![inline formula](https://latex.codecogs.com/png.latex?p) are
	//! represented in homogeneous coordinates, i.e. as 3D and 2D homogeneous vector respectively. You will
	//! find a brief introduction to projective geometry, homogeneous vectors and homogeneous
	//! transformations at the end of this section's introduction. For more succinct notation, we often drop
	//! the 'homogeneous' and say vector instead of homogeneous vector.
	//!
	//! The distortion-free projective transformation given by a  pinhole camera model is shown below.
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?s%20%5C%3B%20p%20%3D%20A%20%5Cbegin%7Bbmatrix%7D%20R%7Ct%20%5Cend%7Bbmatrix%7D%20P%5Fw%2C)
	//!
	//! where ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw) is a 3D point expressed with respect to the world coordinate system,
	//! ![inline formula](https://latex.codecogs.com/png.latex?p) is a 2D pixel in the image plane, ![inline formula](https://latex.codecogs.com/png.latex?A) is the camera intrinsic matrix,
	//! ![inline formula](https://latex.codecogs.com/png.latex?R) and ![inline formula](https://latex.codecogs.com/png.latex?t) are the rotation and translation that describe the change of coordinates from
	//! world to camera coordinate systems (or camera frame) and ![inline formula](https://latex.codecogs.com/png.latex?s) is the projective transformation's
	//! arbitrary scaling and not part of the camera model.
	//!
	//! The camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?A) (notation used as in [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000) and also generally notated
	//! as ![inline formula](https://latex.codecogs.com/png.latex?K)) projects 3D points given in the camera coordinate system to 2D pixel coordinates, i.e.
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?p%20%3D%20A%20P%5Fc%2E)
	//!
	//! The camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?A) is composed of the focal lengths ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy), which are
	//! expressed in pixel units, and the principal point ![inline formula](https://latex.codecogs.com/png.latex?%28c%5Fx%2C%20c%5Fy%29), that is usually close to the
	//! image center:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%2C)
	//!
	//! and thus
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?s%20%5Cbegin%7Bbmatrix%7D%20u%5C%5C%20v%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20X%5Fc%5C%5C%20Y%5Fc%5C%5C%20Z%5Fc%20%5Cend%7Bbmatrix%7D%2E)
	//!
	//! The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can
	//! be re-used as long as the focal length is fixed (in case of a zoom lens). Thus, if an image from the
	//! camera is scaled by a factor, all of these parameters need to be scaled (multiplied/divided,
	//! respectively) by the same factor.
	//!
	//! The joint rotation-translation matrix ![inline formula](https://latex.codecogs.com/png.latex?%5BR%7Ct%5D) is the matrix product of a projective
	//! transformation and a homogeneous transformation. The 3-by-4 projective transformation maps 3D points
	//! represented in camera coordinates to 2D points in the image plane and represented in normalized
	//! camera coordinates ![inline formula](https://latex.codecogs.com/png.latex?x%27%20%3D%20X%5Fc%20%2F%20Z%5Fc) and ![inline formula](https://latex.codecogs.com/png.latex?y%27%20%3D%20Y%5Fc%20%2F%20Z%5Fc):
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cbegin%7Bbmatrix%7D%0Ax%27%20%5C%5C%0Ay%27%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A1%20%26%200%20%26%200%20%26%200%20%5C%5C%0A0%20%26%201%20%26%200%20%26%200%20%5C%5C%0A0%20%26%200%20%26%201%20%26%200%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fc%20%5C%5C%0AY%5Fc%20%5C%5C%0AZ%5Fc%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	//!
	//! The homogeneous transformation is encoded by the extrinsic parameters ![inline formula](https://latex.codecogs.com/png.latex?R) and ![inline formula](https://latex.codecogs.com/png.latex?t) and
	//! represents the change of basis from world coordinate system ![inline formula](https://latex.codecogs.com/png.latex?w) to the camera coordinate sytem
	//! ![inline formula](https://latex.codecogs.com/png.latex?c). Thus, given the representation of the point ![inline formula](https://latex.codecogs.com/png.latex?P) in world coordinates, ![inline formula](https://latex.codecogs.com/png.latex?P%5Fw), we
	//! obtain ![inline formula](https://latex.codecogs.com/png.latex?P)'s representation in the camera coordinate system, ![inline formula](https://latex.codecogs.com/png.latex?P%5Fc), by
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?P%5Fc%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20P%5Fw%2C)
	//!
	//! This homogeneous transformation is composed out of ![inline formula](https://latex.codecogs.com/png.latex?R), a 3-by-3 rotation matrix, and ![inline formula](https://latex.codecogs.com/png.latex?t), a
	//! 3-by-1 translation vector:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A0%20%26%200%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D%2C%0A)
	//!
	//! and therefore
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5Fc%20%5C%5C%0AY%5Fc%20%5C%5C%0AZ%5Fc%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%20%5C%5C%0A0%20%26%200%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	//!
	//! Combining the projective transformation and the homogeneous transformation, we obtain the projective
	//! transformation that maps 3D points in world coordinates into 2D points in the image plane and in
	//! normalized camera coordinates:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cbegin%7Bbmatrix%7D%0Ax%27%20%5C%5C%0Ay%27%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20R%7Ct%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2C)
	//!
	//! with ![inline formula](https://latex.codecogs.com/png.latex?x%27%20%3D%20X%5Fc%20%2F%20Z%5Fc) and ![inline formula](https://latex.codecogs.com/png.latex?y%27%20%3D%20Y%5Fc%20%2F%20Z%5Fc). Putting the equations for instrincs and extrinsics together, we can write out
	//! ![inline formula](https://latex.codecogs.com/png.latex?s%20%5C%3B%20p%20%3D%20A%20%5Cbegin%7Bbmatrix%7D%20R%7Ct%20%5Cend%7Bbmatrix%7D%20P%5Fw) as
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?s%20%5Cbegin%7Bbmatrix%7D%20u%5C%5C%20v%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0Ar%5F%7B11%7D%20%26%20r%5F%7B12%7D%20%26%20r%5F%7B13%7D%20%26%20t%5Fx%20%5C%5C%0Ar%5F%7B21%7D%20%26%20r%5F%7B22%7D%20%26%20r%5F%7B23%7D%20%26%20t%5Fy%20%5C%5C%0Ar%5F%7B31%7D%20%26%20r%5F%7B32%7D%20%26%20r%5F%7B33%7D%20%26%20t%5Fz%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	//!
	//! If ![inline formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cne%200), the transformation above is equivalent to the following,
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Au%20%5C%5C%0Av%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Af%5Fx%20X%5Fc%2FZ%5Fc%20%2B%20c%5Fx%20%5C%5C%0Af%5Fy%20Y%5Fc%2FZ%5Fc%20%2B%20c%5Fy%0A%5Cend%7Bbmatrix%7D)
	//!
	//! with
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20X%5Fc%5C%5C%20Y%5Fc%5C%5C%20Z%5Fc%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%7Ct%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5Fw%20%5C%5C%0AY%5Fw%20%5C%5C%0AZ%5Fw%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	//!
	//! The following figure illustrates the pinhole camera model.
	//!
	//! ![Pinhole camera model](https://docs.opencv.org/4.11.0/pinhole_camera_model.png)
	//!
	//! Real lenses usually have some distortion, mostly radial distortion, and slight tangential distortion.
	//! So, the above model is extended as:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Au%20%5C%5C%0Av%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Af%5Fx%20x%27%27%20%2B%20c%5Fx%20%5C%5C%0Af%5Fy%20y%27%27%20%2B%20c%5Fy%0A%5Cend%7Bbmatrix%7D)
	//!
	//! where
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Ax%27%27%20%5C%5C%0Ay%27%27%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Ax%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%20%2B%202%20p%5F1%20x%27%20y%27%20%2B%20p%5F2%28r%5E2%20%2B%202%20x%27%5E2%29%20%2B%20s%5F1%20r%5E2%20%2B%20s%5F2%20r%5E4%20%5C%5C%0Ay%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%20%2B%20p%5F1%20%28r%5E2%20%2B%202%20y%27%5E2%29%20%2B%202%20p%5F2%20x%27%20y%27%20%2B%20s%5F3%20r%5E2%20%2B%20s%5F4%20r%5E4%20%5C%5C%0A%5Cend%7Bbmatrix%7D)
	//!
	//! with
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?r%5E2%20%3D%20x%27%5E2%20%2B%20y%27%5E2)
	//!
	//! and
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Ax%27%5C%5C%0Ay%27%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AX%5Fc%2FZ%5Fc%20%5C%5C%0AY%5Fc%2FZ%5Fc%0A%5Cend%7Bbmatrix%7D%2C)
	//!
	//! if ![inline formula](https://latex.codecogs.com/png.latex?Z%5Fc%20%5Cne%200).
	//!
	//! The distortion parameters are the radial coefficients ![inline formula](https://latex.codecogs.com/png.latex?k%5F1), ![inline formula](https://latex.codecogs.com/png.latex?k%5F2), ![inline formula](https://latex.codecogs.com/png.latex?k%5F3), ![inline formula](https://latex.codecogs.com/png.latex?k%5F4), ![inline formula](https://latex.codecogs.com/png.latex?k%5F5), and ![inline formula](https://latex.codecogs.com/png.latex?k%5F6)
	//! ,![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are the tangential distortion coefficients, and ![inline formula](https://latex.codecogs.com/png.latex?s%5F1), ![inline formula](https://latex.codecogs.com/png.latex?s%5F2), ![inline formula](https://latex.codecogs.com/png.latex?s%5F3), and ![inline formula](https://latex.codecogs.com/png.latex?s%5F4),
	//! are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.
	//!
	//! The next figures show two common types of radial distortion: barrel distortion
	//! (![inline formula](https://latex.codecogs.com/png.latex?%201%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%20) monotonically decreasing)
	//! and pincushion distortion (![inline formula](https://latex.codecogs.com/png.latex?%201%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%20) monotonically increasing).
	//! Radial distortion is always monotonic for real lenses,
	//! and if the estimator produces a non-monotonic result,
	//! this should be considered a calibration failure.
	//! More generally, radial distortion must be monotonic and the distortion function must be bijective.
	//! A failed estimation result may look deceptively good near the image center
	//! but will work poorly in e.g. AR/SFM applications.
	//! The optimization method used in OpenCV camera calibration does not include these constraints as
	//! the framework does not support the required integer programming and polynomial inequalities.
	//! See [issue #15992](https://github.com/opencv/opencv/issues/15992) for additional information.
	//!
	//! ![](https://docs.opencv.org/4.11.0/distortion_examples.png)
	//! ![](https://docs.opencv.org/4.11.0/distortion_examples2.png)
	//!
	//! In some cases, the image sensor may be tilted in order to focus an oblique plane in front of the
	//! camera (Scheimpflug principle). This can be useful for particle image velocimetry (PIV) or
	//! triangulation with a laser fan. The tilt causes a perspective distortion of ![inline formula](https://latex.codecogs.com/png.latex?x%27%27) and
	//! ![inline formula](https://latex.codecogs.com/png.latex?y%27%27). This distortion can be modeled in the following way, see e.g. [Louhichi07](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Louhichi07).
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0Au%20%5C%5C%0Av%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0Af%5Fx%20x%27%27%27%20%2B%20c%5Fx%20%5C%5C%0Af%5Fy%20y%27%27%27%20%2B%20c%5Fy%0A%5Cend%7Bbmatrix%7D%2C)
	//!
	//! where
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?s%5Cbegin%7Bbmatrix%7D%20x%27%27%27%5C%5C%20y%27%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%0A%5Cvecthreethree%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B0%7D%7B%2DR%5F%7B13%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B%2DR%5F%7B23%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7B0%7D%7B1%7D%20R%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%20%5Cbegin%7Bbmatrix%7D%20x%27%27%5C%5C%20y%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D)
	//!
	//! and the matrix ![inline formula](https://latex.codecogs.com/png.latex?R%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) is defined by two rotations with angular parameter
	//! ![inline formula](https://latex.codecogs.com/png.latex?%5Ctau%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?%5Ctau%5Fy), respectively,
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%0AR%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%20%3D%0A%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctau%5Fy%29%20%26%200%20%26%20%2D%5Csin%28%5Ctau%5Fy%29%5C%5C%200%20%26%201%20%26%200%5C%5C%20%5Csin%28%5Ctau%5Fy%29%20%26%200%20%26%20%5Ccos%28%5Ctau%5Fy%29%20%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%201%20%26%200%20%26%200%5C%5C%200%20%26%20%5Ccos%28%5Ctau%5Fx%29%20%26%20%5Csin%28%5Ctau%5Fx%29%5C%5C%200%20%26%20%2D%5Csin%28%5Ctau%5Fx%29%20%26%20%5Ccos%28%5Ctau%5Fx%29%20%5Cend%7Bbmatrix%7D%20%3D%0A%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctau%5Fy%29%20%26%20%5Csin%28%5Ctau%5Fy%29%5Csin%28%5Ctau%5Fx%29%20%26%20%2D%5Csin%28%5Ctau%5Fy%29%5Ccos%28%5Ctau%5Fx%29%5C%5C%200%20%26%20%5Ccos%28%5Ctau%5Fx%29%20%26%20%5Csin%28%5Ctau%5Fx%29%5C%5C%20%5Csin%28%5Ctau%5Fy%29%20%26%20%2D%5Ccos%28%5Ctau%5Fy%29%5Csin%28%5Ctau%5Fx%29%20%26%20%5Ccos%28%5Ctau%5Fy%29%5Ccos%28%5Ctau%5Fx%29%20%5Cend%7Bbmatrix%7D%2E%0A)
	//!
	//! In the functions below the coefficients are passed or returned as
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	//!
	//! vector. That is, if the vector contains four elements, it means that ![inline formula](https://latex.codecogs.com/png.latex?k%5F3%3D0) . The distortion
	//! coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
	//! parameters. And they remain the same regardless of the captured image resolution. If, for example, a
	//! camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
	//! coefficients can be used for 640 x 480 images from the same camera while ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx), ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy),
	//! ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx), and ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) need to be scaled appropriately.
	//!
	//! The functions below use the above model to do the following:
	//!
	//! *   Project 3D points to the image plane given intrinsic and extrinsic parameters.
	//! *   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
	//! projections.
	//! *   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
	//! pattern (every view is described by several 3D-2D point correspondences).
	//! *   Estimate the relative position and orientation of the stereo camera "heads" and compute the
	//! *rectification* transformation that makes the camera optical axes parallel.
	//!
	//! <B> Homogeneous Coordinates </B><br>
	//! Homogeneous Coordinates are a system of coordinates that are used in projective geometry. Their use
	//! allows to represent points at infinity by finite coordinates and simplifies formulas when compared
	//! to the cartesian counterparts, e.g. they have the advantage that affine transformations can be
	//! expressed as linear homogeneous transformation.
	//!
	//! One obtains the homogeneous vector ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh) by appending a 1 along an n-dimensional cartesian
	//! vector ![inline formula](https://latex.codecogs.com/png.latex?P) e.g. for a 3D cartesian vector the mapping ![inline formula](https://latex.codecogs.com/png.latex?P%20%5Crightarrow%20P%5Fh) is:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%0A%5Cend%7Bbmatrix%7D%20%5Crightarrow%20%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	//!
	//! For the inverse mapping ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh%20%5Crightarrow%20P), one divides all elements of the homogeneous vector
	//! by its last element, e.g. for a 3D homogeneous vector one gets its 2D cartesian counterpart by:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AW%0A%5Cend%7Bbmatrix%7D%20%5Crightarrow%20%5Cbegin%7Bbmatrix%7D%0AX%20%2F%20W%20%5C%5C%0AY%20%2F%20W%0A%5Cend%7Bbmatrix%7D%2C)
	//!
	//! if ![inline formula](https://latex.codecogs.com/png.latex?W%20%5Cne%200).
	//!
	//! Due to this mapping, all multiples ![inline formula](https://latex.codecogs.com/png.latex?k%20P%5Fh), for ![inline formula](https://latex.codecogs.com/png.latex?k%20%5Cne%200), of a homogeneous point represent
	//! the same point ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh). An intuitive understanding of this property is that under a projective
	//! transformation, all multiples of ![inline formula](https://latex.codecogs.com/png.latex?P%5Fh) are mapped to the same point. This is the physical
	//! observation one does for pinhole cameras, as all points along a ray through the camera's pinhole are
	//! projected to the same image point, e.g. all points along the red ray in the image of the pinhole
	//! camera model above would be mapped to the same image coordinate. This property is also the source
	//! for the scale ambiguity s in the equation of the pinhole camera model.
	//!
	//! As mentioned, by using homogeneous coordinates we can express any change of basis parameterized by
	//! ![inline formula](https://latex.codecogs.com/png.latex?R) and ![inline formula](https://latex.codecogs.com/png.latex?t) as a linear transformation, e.g. for the change of basis from coordinate system
	//! 0 to coordinate system 1 becomes:
	//!
	//! ![block formula](https://latex.codecogs.com/png.latex?P%5F1%20%3D%20R%20P%5F0%20%2B%20t%20%5Crightarrow%20P%5F%7Bh%5F1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20P%5F%7Bh%5F0%7D%2E)
	//!
	//!
	//! Note:
	//!    *   Many functions in this module take a camera intrinsic matrix as an input parameter. Although all
	//!        functions assume the same structure of this parameter, they may name it differently. The
	//!        parameter's description, however, will be clear in that a camera intrinsic matrix with the structure
	//!        shown above is required.
	//!    *   A calibration sample for 3 cameras in a horizontal position can be found at
	//!        opencv_source_code/samples/cpp/3calibration.cpp
	//!    *   A calibration sample based on a sequence of images can be found at
	//!        opencv_source_code/samples/cpp/calibration.cpp
	//!    *   A calibration sample in order to do 3D reconstruction can be found at
	//!        opencv_source_code/samples/cpp/build3dmodel.cpp
	//!    *   A calibration example on stereo calibration can be found at
	//!        opencv_source_code/samples/cpp/stereo_calib.cpp
	//!    *   A calibration example on stereo matching can be found at
	//!        opencv_source_code/samples/cpp/stereo_match.cpp
	//!    *   (Python) A camera calibration sample can be found at
	//!        opencv_source_code/samples/python/calibrate.py
	//!    # Fisheye camera model
	//!
	//!    Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
	//!    matrix X) The coordinate vector of P in the camera reference frame is:
	//!
	//!    ![block formula](https://latex.codecogs.com/png.latex?Xc%20%3D%20R%20X%20%2B%20T)
	//!
	//!    where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
	//!    and z the 3 coordinates of Xc:
	//!
	//!    ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20x%20%3D%20Xc%5F1%20%5C%5C%20y%20%3D%20Xc%5F2%20%5C%5C%20z%20%3D%20Xc%5F3%20%5Cend%7Barray%7D%20)
	//!
	//!    The pinhole projection coordinates of P is [a; b] where
	//!
	//!    ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20a%20%3D%20x%20%2F%20z%20%5C%20and%20%5C%20b%20%3D%20y%20%2F%20z%20%5C%5C%20r%5E2%20%3D%20a%5E2%20%2B%20b%5E2%20%5C%5C%20%5Ctheta%20%3D%20atan%28r%29%20%5Cend%7Barray%7D%20)
	//!
	//!    Fisheye distortion:
	//!
	//!    ![block formula](https://latex.codecogs.com/png.latex?%5Ctheta%5Fd%20%3D%20%5Ctheta%20%281%20%2B%20k%5F1%20%5Ctheta%5E2%20%2B%20k%5F2%20%5Ctheta%5E4%20%2B%20k%5F3%20%5Ctheta%5E6%20%2B%20k%5F4%20%5Ctheta%5E8%29)
	//!
	//!    The distorted point coordinates are [x'; y'] where
	//!
	//!    ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20x%27%20%3D%20%28%5Ctheta%5Fd%20%2F%20r%29%20a%20%5C%5C%20y%27%20%3D%20%28%5Ctheta%5Fd%20%2F%20r%29%20b%20%5Cend%7Barray%7D%20)
	//!
	//!    Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
	//!
	//!    ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20u%20%3D%20f%5Fx%20%28x%27%20%2B%20%5Calpha%20y%27%29%20%2B%20c%5Fx%20%5C%5C%0A%20%20%20%20v%20%3D%20f%5Fy%20y%27%20%2B%20c%5Fy%20%5Cend%7Barray%7D%20)
	//!
	//!    Summary:
	//!    Generic camera model [Kannala2006](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Kannala2006) with perspective projection and without distortion correction
	use crate::mod_prelude::*;
	use crate::{core, sys, types};
	pub mod prelude {
		pub use super::{LMSolverTrait, LMSolverTraitConst, LMSolver_CallbackTrait, LMSolver_CallbackTraitConst, StereoBMTrait, StereoBMTraitConst, StereoMatcherTrait, StereoMatcherTraitConst, StereoSGBMTrait, StereoSGBMTraitConst};
	}

	pub const CALIB_CB_ACCURACY: i32 = 32;
	pub const CALIB_CB_ADAPTIVE_THRESH: i32 = 1;
	pub const CALIB_CB_ASYMMETRIC_GRID: i32 = 2;
	pub const CALIB_CB_CLUSTERING: i32 = 4;
	pub const CALIB_CB_EXHAUSTIVE: i32 = 16;
	pub const CALIB_CB_FAST_CHECK: i32 = 8;
	pub const CALIB_CB_FILTER_QUADS: i32 = 4;
	pub const CALIB_CB_LARGER: i32 = 64;
	pub const CALIB_CB_MARKER: i32 = 128;
	pub const CALIB_CB_NORMALIZE_IMAGE: i32 = 2;
	pub const CALIB_CB_PLAIN: i32 = 256;
	pub const CALIB_CB_SYMMETRIC_GRID: i32 = 1;
	pub const CALIB_FIX_ASPECT_RATIO: i32 = 2;
	pub const CALIB_FIX_FOCAL_LENGTH: i32 = 16;
	pub const CALIB_FIX_INTRINSIC: i32 = 256;
	pub const CALIB_FIX_K1: i32 = 32;
	pub const CALIB_FIX_K2: i32 = 64;
	pub const CALIB_FIX_K3: i32 = 128;
	pub const CALIB_FIX_K4: i32 = 2048;
	pub const CALIB_FIX_K5: i32 = 4096;
	pub const CALIB_FIX_K6: i32 = 8192;
	pub const CALIB_FIX_PRINCIPAL_POINT: i32 = 4;
	pub const CALIB_FIX_S1_S2_S3_S4: i32 = 65536;
	pub const CALIB_FIX_TANGENT_DIST: i32 = 2097152;
	pub const CALIB_FIX_TAUX_TAUY: i32 = 524288;
	/// On-line Hand-Eye Calibration [Andreff99](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Andreff99)
	pub const CALIB_HAND_EYE_ANDREFF: i32 = 3;
	/// Hand-Eye Calibration Using Dual Quaternions [Daniilidis98](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Daniilidis98)
	pub const CALIB_HAND_EYE_DANIILIDIS: i32 = 4;
	/// Hand-eye Calibration [Horaud95](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Horaud95)
	pub const CALIB_HAND_EYE_HORAUD: i32 = 2;
	/// Robot Sensor Calibration: Solving AX = XB on the Euclidean Group [Park94](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Park94)
	pub const CALIB_HAND_EYE_PARK: i32 = 1;
	/// A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration [Tsai89](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Tsai89)
	pub const CALIB_HAND_EYE_TSAI: i32 = 0;
	pub const CALIB_NINTRINSIC: i32 = 18;
	pub const CALIB_RATIONAL_MODEL: i32 = 16384;
	/// Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product [Li2010SimultaneousRA](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Li2010SimultaneousRA)
	pub const CALIB_ROBOT_WORLD_HAND_EYE_LI: i32 = 1;
	/// Solving the robot-world/hand-eye calibration problem using the kronecker product [Shah2013SolvingTR](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Shah2013SolvingTR)
	pub const CALIB_ROBOT_WORLD_HAND_EYE_SHAH: i32 = 0;
	pub const CALIB_SAME_FOCAL_LENGTH: i32 = 512;
	pub const CALIB_THIN_PRISM_MODEL: i32 = 32768;
	pub const CALIB_TILTED_MODEL: i32 = 262144;
	/// for stereoCalibrate
	pub const CALIB_USE_EXTRINSIC_GUESS: i32 = 4194304;
	pub const CALIB_USE_INTRINSIC_GUESS: i32 = 1;
	/// use LU instead of SVD decomposition for solving. much faster but potentially less precise
	pub const CALIB_USE_LU: i32 = 131072;
	/// use QR instead of SVD decomposition for solving. Faster but potentially less precise
	pub const CALIB_USE_QR: i32 = 1048576;
	pub const CALIB_ZERO_DISPARITY: i32 = 1024;
	pub const CALIB_ZERO_TANGENT_DIST: i32 = 8;
	pub const COV_POLISHER: i32 = 3;
	pub const CirclesGridFinderParameters_ASYMMETRIC_GRID: i32 = 1;
	pub const CirclesGridFinderParameters_SYMMETRIC_GRID: i32 = 0;
	/// 7-point algorithm
	pub const FM_7POINT: i32 = 1;
	/// 8-point algorithm
	pub const FM_8POINT: i32 = 2;
	/// least-median algorithm. 7-point algorithm is used.
	pub const FM_LMEDS: i32 = 4;
	/// RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
	pub const FM_RANSAC: i32 = 8;
	pub const Fisheye_CALIB_CHECK_COND: i32 = 4;
	pub const Fisheye_CALIB_FIX_FOCAL_LENGTH: i32 = 2048;
	pub const Fisheye_CALIB_FIX_INTRINSIC: i32 = 256;
	pub const Fisheye_CALIB_FIX_K1: i32 = 16;
	pub const Fisheye_CALIB_FIX_K2: i32 = 32;
	pub const Fisheye_CALIB_FIX_K3: i32 = 64;
	pub const Fisheye_CALIB_FIX_K4: i32 = 128;
	pub const Fisheye_CALIB_FIX_PRINCIPAL_POINT: i32 = 512;
	pub const Fisheye_CALIB_FIX_SKEW: i32 = 8;
	pub const Fisheye_CALIB_RECOMPUTE_EXTRINSIC: i32 = 2;
	pub const Fisheye_CALIB_USE_INTRINSIC_GUESS: i32 = 1;
	pub const Fisheye_CALIB_ZERO_DISPARITY: i32 = 1024;
	/// least-median of squares algorithm
	pub const LMEDS: i32 = 4;
	pub const LOCAL_OPTIM_GC: i32 = 3;
	pub const LOCAL_OPTIM_INNER_AND_ITER_LO: i32 = 2;
	pub const LOCAL_OPTIM_INNER_LO: i32 = 1;
	pub const LOCAL_OPTIM_NULL: i32 = 0;
	pub const LOCAL_OPTIM_SIGMA: i32 = 4;
	pub const LSQ_POLISHER: i32 = 1;
	pub const MAGSAC: i32 = 2;
	pub const NEIGH_FLANN_KNN: i32 = 0;
	pub const NEIGH_FLANN_RADIUS: i32 = 2;
	pub const NEIGH_GRID: i32 = 1;
	pub const NONE_POLISHER: i32 = 0;
	pub const PROJ_SPHERICAL_EQRECT: i32 = 1;
	pub const PROJ_SPHERICAL_ORTHO: i32 = 0;
	/// RANSAC algorithm
	pub const RANSAC: i32 = 8;
	/// RHO algorithm
	pub const RHO: i32 = 16;
	pub const SAMPLING_NAPSAC: i32 = 2;
	pub const SAMPLING_PROGRESSIVE_NAPSAC: i32 = 1;
	pub const SAMPLING_PROSAC: i32 = 3;
	pub const SAMPLING_UNIFORM: i32 = 0;
	pub const SCORE_METHOD_LMEDS: i32 = 3;
	pub const SCORE_METHOD_MAGSAC: i32 = 2;
	pub const SCORE_METHOD_MSAC: i32 = 1;
	pub const SCORE_METHOD_RANSAC: i32 = 0;
	/// An Efficient Algebraic Solution to the Perspective-Three-Point Problem [Ke17](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Ke17)
	pub const SOLVEPNP_AP3P: i32 = 5;
	/// **Broken implementation. Using this flag will fallback to EPnP.** 
	///
	/// A Direct Least-Squares (DLS) Method for PnP [hesch2011direct](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_hesch2011direct)
	pub const SOLVEPNP_DLS: i32 = 3;
	/// EPnP: Efficient Perspective-n-Point Camera Pose Estimation [lepetit2009epnp](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_lepetit2009epnp)
	pub const SOLVEPNP_EPNP: i32 = 1;
	/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Collins14) 
	///
	/// Object points must be coplanar.
	pub const SOLVEPNP_IPPE: i32 = 6;
	/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Collins14) 
	///
	/// This is a special case suitable for marker pose estimation.
	///
	/// 4 coplanar object points must be defined in the following order:
	///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
	pub const SOLVEPNP_IPPE_SQUARE: i32 = 7;
	/// Pose refinement using non-linear Levenberg-Marquardt minimization scheme [Madsen04](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Madsen04) [Eade13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Eade13) 
	///
	/// Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. 
	///
	/// Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
	pub const SOLVEPNP_ITERATIVE: i32 = 0;
	/// Used for count
	pub const SOLVEPNP_MAX_COUNT: i32 = 9;
	/// Complete Solution Classification for the Perspective-Three-Point Problem [gao2003complete](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_gao2003complete)
	pub const SOLVEPNP_P3P: i32 = 2;
	/// SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [Terzakis2020SQPnP](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Terzakis2020SQPnP)
	pub const SOLVEPNP_SQPNP: i32 = 8;
	/// **Broken implementation. Using this flag will fallback to EPnP.** 
	///
	/// Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [penate2013exhaustive](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_penate2013exhaustive)
	pub const SOLVEPNP_UPNP: i32 = 4;
	pub const StereoBM_PREFILTER_NORMALIZED_RESPONSE: i32 = 0;
	pub const StereoBM_PREFILTER_XSOBEL: i32 = 1;
	pub const StereoMatcher_DISP_SCALE: i32 = 16;
	pub const StereoMatcher_DISP_SHIFT: i32 = 4;
	pub const StereoSGBM_MODE_HH: i32 = 1;
	pub const StereoSGBM_MODE_HH4: i32 = 3;
	pub const StereoSGBM_MODE_SGBM: i32 = 0;
	pub const StereoSGBM_MODE_SGBM_3WAY: i32 = 2;
	/// USAC, accurate settings
	pub const USAC_ACCURATE: i32 = 36;
	/// USAC algorithm, default settings
	pub const USAC_DEFAULT: i32 = 32;
	/// USAC, fast settings
	pub const USAC_FAST: i32 = 35;
	/// USAC, fundamental matrix 8 points
	pub const USAC_FM_8PTS: i32 = 34;
	/// USAC, runs MAGSAC++
	pub const USAC_MAGSAC: i32 = 38;
	/// USAC, parallel version
	pub const USAC_PARALLEL: i32 = 33;
	/// USAC, sorted points, runs PROSAC
	pub const USAC_PROSAC: i32 = 37;
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum CirclesGridFinderParameters_GridType {
		SYMMETRIC_GRID = 0,
		ASYMMETRIC_GRID = 1,
	}

	impl TryFrom<i32> for CirclesGridFinderParameters_GridType {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::SYMMETRIC_GRID),
				1 => Ok(Self::ASYMMETRIC_GRID),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::CirclesGridFinderParameters_GridType"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::CirclesGridFinderParameters_GridType }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum HandEyeCalibrationMethod {
		/// A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration [Tsai89](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Tsai89)
		CALIB_HAND_EYE_TSAI = 0,
		/// Robot Sensor Calibration: Solving AX = XB on the Euclidean Group [Park94](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Park94)
		CALIB_HAND_EYE_PARK = 1,
		/// Hand-eye Calibration [Horaud95](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Horaud95)
		CALIB_HAND_EYE_HORAUD = 2,
		/// On-line Hand-Eye Calibration [Andreff99](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Andreff99)
		CALIB_HAND_EYE_ANDREFF = 3,
		/// Hand-Eye Calibration Using Dual Quaternions [Daniilidis98](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Daniilidis98)
		CALIB_HAND_EYE_DANIILIDIS = 4,
	}

	impl TryFrom<i32> for HandEyeCalibrationMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::CALIB_HAND_EYE_TSAI),
				1 => Ok(Self::CALIB_HAND_EYE_PARK),
				2 => Ok(Self::CALIB_HAND_EYE_HORAUD),
				3 => Ok(Self::CALIB_HAND_EYE_ANDREFF),
				4 => Ok(Self::CALIB_HAND_EYE_DANIILIDIS),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::HandEyeCalibrationMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::HandEyeCalibrationMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum LocalOptimMethod {
		LOCAL_OPTIM_NULL = 0,
		LOCAL_OPTIM_INNER_LO = 1,
		LOCAL_OPTIM_INNER_AND_ITER_LO = 2,
		LOCAL_OPTIM_GC = 3,
		LOCAL_OPTIM_SIGMA = 4,
	}

	impl TryFrom<i32> for LocalOptimMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::LOCAL_OPTIM_NULL),
				1 => Ok(Self::LOCAL_OPTIM_INNER_LO),
				2 => Ok(Self::LOCAL_OPTIM_INNER_AND_ITER_LO),
				3 => Ok(Self::LOCAL_OPTIM_GC),
				4 => Ok(Self::LOCAL_OPTIM_SIGMA),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::LocalOptimMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::LocalOptimMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum NeighborSearchMethod {
		NEIGH_FLANN_KNN = 0,
		NEIGH_GRID = 1,
		NEIGH_FLANN_RADIUS = 2,
	}

	impl TryFrom<i32> for NeighborSearchMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::NEIGH_FLANN_KNN),
				1 => Ok(Self::NEIGH_GRID),
				2 => Ok(Self::NEIGH_FLANN_RADIUS),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::NeighborSearchMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::NeighborSearchMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum PolishingMethod {
		NONE_POLISHER = 0,
		LSQ_POLISHER = 1,
		MAGSAC = 2,
		COV_POLISHER = 3,
	}

	impl TryFrom<i32> for PolishingMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::NONE_POLISHER),
				1 => Ok(Self::LSQ_POLISHER),
				2 => Ok(Self::MAGSAC),
				3 => Ok(Self::COV_POLISHER),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::PolishingMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::PolishingMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum RobotWorldHandEyeCalibrationMethod {
		/// Solving the robot-world/hand-eye calibration problem using the kronecker product [Shah2013SolvingTR](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Shah2013SolvingTR)
		CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0,
		/// Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product [Li2010SimultaneousRA](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Li2010SimultaneousRA)
		CALIB_ROBOT_WORLD_HAND_EYE_LI = 1,
	}

	impl TryFrom<i32> for RobotWorldHandEyeCalibrationMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::CALIB_ROBOT_WORLD_HAND_EYE_SHAH),
				1 => Ok(Self::CALIB_ROBOT_WORLD_HAND_EYE_LI),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::RobotWorldHandEyeCalibrationMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::RobotWorldHandEyeCalibrationMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum SamplingMethod {
		SAMPLING_UNIFORM = 0,
		SAMPLING_PROGRESSIVE_NAPSAC = 1,
		SAMPLING_NAPSAC = 2,
		SAMPLING_PROSAC = 3,
	}

	impl TryFrom<i32> for SamplingMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::SAMPLING_UNIFORM),
				1 => Ok(Self::SAMPLING_PROGRESSIVE_NAPSAC),
				2 => Ok(Self::SAMPLING_NAPSAC),
				3 => Ok(Self::SAMPLING_PROSAC),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::SamplingMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::SamplingMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum ScoreMethod {
		SCORE_METHOD_RANSAC = 0,
		SCORE_METHOD_MSAC = 1,
		SCORE_METHOD_MAGSAC = 2,
		SCORE_METHOD_LMEDS = 3,
	}

	impl TryFrom<i32> for ScoreMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::SCORE_METHOD_RANSAC),
				1 => Ok(Self::SCORE_METHOD_MSAC),
				2 => Ok(Self::SCORE_METHOD_MAGSAC),
				3 => Ok(Self::SCORE_METHOD_LMEDS),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::ScoreMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::ScoreMethod }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum SolvePnPMethod {
		/// Pose refinement using non-linear Levenberg-Marquardt minimization scheme [Madsen04](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Madsen04) [Eade13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Eade13) 
		///
		/// Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. 
		///
		/// Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
		SOLVEPNP_ITERATIVE = 0,
		/// EPnP: Efficient Perspective-n-Point Camera Pose Estimation [lepetit2009epnp](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_lepetit2009epnp)
		SOLVEPNP_EPNP = 1,
		/// Complete Solution Classification for the Perspective-Three-Point Problem [gao2003complete](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_gao2003complete)
		SOLVEPNP_P3P = 2,
		/// **Broken implementation. Using this flag will fallback to EPnP.** 
		///
		/// A Direct Least-Squares (DLS) Method for PnP [hesch2011direct](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_hesch2011direct)
		SOLVEPNP_DLS = 3,
		/// **Broken implementation. Using this flag will fallback to EPnP.** 
		///
		/// Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation [penate2013exhaustive](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_penate2013exhaustive)
		SOLVEPNP_UPNP = 4,
		/// An Efficient Algebraic Solution to the Perspective-Three-Point Problem [Ke17](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Ke17)
		SOLVEPNP_AP3P = 5,
		/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Collins14) 
		///
		/// Object points must be coplanar.
		SOLVEPNP_IPPE = 6,
		/// Infinitesimal Plane-Based Pose Estimation [Collins14](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Collins14) 
		///
		/// This is a special case suitable for marker pose estimation.
		///
		/// 4 coplanar object points must be defined in the following order:
		///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
		///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
		///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
		///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
		SOLVEPNP_IPPE_SQUARE = 7,
		/// SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem [Terzakis2020SQPnP](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Terzakis2020SQPnP)
		SOLVEPNP_SQPNP = 8,
		/// Used for count
		SOLVEPNP_MAX_COUNT = 9,
	}

	impl TryFrom<i32> for SolvePnPMethod {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::SOLVEPNP_ITERATIVE),
				1 => Ok(Self::SOLVEPNP_EPNP),
				2 => Ok(Self::SOLVEPNP_P3P),
				3 => Ok(Self::SOLVEPNP_DLS),
				4 => Ok(Self::SOLVEPNP_UPNP),
				5 => Ok(Self::SOLVEPNP_AP3P),
				6 => Ok(Self::SOLVEPNP_IPPE),
				7 => Ok(Self::SOLVEPNP_IPPE_SQUARE),
				8 => Ok(Self::SOLVEPNP_SQPNP),
				9 => Ok(Self::SOLVEPNP_MAX_COUNT),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::SolvePnPMethod"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::SolvePnPMethod }

	/// cv::undistort mode
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum UndistortTypes {
		PROJ_SPHERICAL_ORTHO = 0,
		PROJ_SPHERICAL_EQRECT = 1,
	}

	impl TryFrom<i32> for UndistortTypes {
		type Error = crate::Error;

		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::PROJ_SPHERICAL_ORTHO),
				1 => Ok(Self::PROJ_SPHERICAL_EQRECT),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::calib3d::UndistortTypes"))),
			}
		}
	}

	opencv_type_enum! { crate::calib3d::UndistortTypes }

	pub type CirclesGridFinderParameters2 = crate::calib3d::CirclesGridFinderParameters;
	/// Computes an RQ decomposition of 3x3 matrices.
	///
	/// ## Parameters
	/// * src: 3x3 input matrix.
	/// * mtxR: Output 3x3 upper-triangular matrix.
	/// * mtxQ: Output 3x3 orthogonal matrix.
	/// * Qx: Optional output 3x3 rotation matrix around x-axis.
	/// * Qy: Optional output 3x3 rotation matrix around y-axis.
	/// * Qz: Optional output 3x3 rotation matrix around z-axis.
	///
	/// The function computes a RQ decomposition using the given rotations. This function is used in
	/// [decompose_projection_matrix] to decompose the left 3x3 submatrix of a projection matrix into a camera
	/// and a rotation matrix.
	///
	/// It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
	/// degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
	/// sequence of rotations about the three principal axes that results in the same orientation of an
	/// object, e.g. see [Slabaugh](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Slabaugh) . Returned three rotation matrices and corresponding three Euler angles
	/// are only one of the possible solutions.
	///
	/// ## Note
	/// This alternative version of [rq_decomp3x3] function uses the following default values for its arguments:
	/// * qx: noArray()
	/// * qy: noArray()
	/// * qz: noArray()
	#[inline]
	pub fn rq_decomp3x3_def(src: &impl ToInputArray, mtx_r: &mut impl ToOutputArray, mtx_q: &mut impl ToOutputArray) -> Result<core::Vec3d> {
		input_array_arg!(src);
		output_array_arg!(mtx_r);
		output_array_arg!(mtx_q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_RQDecomp3x3_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), mtx_r.as_raw__OutputArray(), mtx_q.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes an RQ decomposition of 3x3 matrices.
	///
	/// ## Parameters
	/// * src: 3x3 input matrix.
	/// * mtxR: Output 3x3 upper-triangular matrix.
	/// * mtxQ: Output 3x3 orthogonal matrix.
	/// * Qx: Optional output 3x3 rotation matrix around x-axis.
	/// * Qy: Optional output 3x3 rotation matrix around y-axis.
	/// * Qz: Optional output 3x3 rotation matrix around z-axis.
	///
	/// The function computes a RQ decomposition using the given rotations. This function is used in
	/// [decompose_projection_matrix] to decompose the left 3x3 submatrix of a projection matrix into a camera
	/// and a rotation matrix.
	///
	/// It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
	/// degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
	/// sequence of rotations about the three principal axes that results in the same orientation of an
	/// object, e.g. see [Slabaugh](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Slabaugh) . Returned three rotation matrices and corresponding three Euler angles
	/// are only one of the possible solutions.
	///
	/// ## C++ default parameters
	/// * qx: noArray()
	/// * qy: noArray()
	/// * qz: noArray()
	#[inline]
	pub fn rq_decomp3x3(src: &impl ToInputArray, mtx_r: &mut impl ToOutputArray, mtx_q: &mut impl ToOutputArray, qx: &mut impl ToOutputArray, qy: &mut impl ToOutputArray, qz: &mut impl ToOutputArray) -> Result<core::Vec3d> {
		input_array_arg!(src);
		output_array_arg!(mtx_r);
		output_array_arg!(mtx_q);
		output_array_arg!(qx);
		output_array_arg!(qy);
		output_array_arg!(qz);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_RQDecomp3x3_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), mtx_r.as_raw__OutputArray(), mtx_q.as_raw__OutputArray(), qx.as_raw__OutputArray(), qy.as_raw__OutputArray(), qz.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Converts a rotation matrix to a rotation vector or vice versa.
	///
	/// ## Parameters
	/// * src: Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
	/// * dst: Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
	/// * jacobian: Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
	/// derivatives of the output array components with respect to the input array components.
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctheta%20%5Cleftarrow%20norm%28r%29%20%5C%5C%20r%20%20%5Cleftarrow%20r%2F%20%5Ctheta%20%5C%5C%20R%20%3D%20%20%5Ccos%28%5Ctheta%29%20I%20%2B%20%281%2D%20%5Ccos%7B%5Ctheta%7D%20%29%20r%20r%5ET%20%2B%20%20%5Csin%28%5Ctheta%29%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2Dr%5Fz%20%26%20r%5Fy%5C%5C%20r%5Fz%20%26%200%20%26%20%2Dr%5Fx%5C%5C%20%2Dr%5Fy%20%26%20r%5Fx%20%26%200%20%5Cend%7Bbmatrix%7D%20%5Cend%7Barray%7D)
	///
	/// Inverse transformation can be also done easily, since
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Csin%20%28%20%5Ctheta%20%29%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2Dr%5Fz%20%26%20r%5Fy%5C%5C%20r%5Fz%20%26%200%20%26%20%2Dr%5Fx%5C%5C%20%2Dr%5Fy%20%26%20r%5Fx%20%26%200%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cfrac%7BR%20%2D%20R%5ET%7D%7B2%7D)
	///
	/// A rotation vector is a convenient and most compact representation of a rotation matrix (since any
	/// rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
	/// optimization procedures like [calibrateCamera], [stereoCalibrate], or [solvePnP] .
	///
	///
	/// Note: More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
	/// can be found in:
	///    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi [Gallego2014ACF](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Gallego2014ACF)
	///
	///
	/// Note: Useful information on SE(3) and Lie Groups can be found in:
	///    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco [blanco2010tutorial](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_blanco2010tutorial)
	///    - Lie Groups for 2D and 3D Transformation, Ethan Eade [Eade17](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Eade17)
	///    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan [Sol2018AML](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Sol2018AML)
	///
	/// ## Note
	/// This alternative version of [rodrigues] function uses the following default values for its arguments:
	/// * jacobian: noArray()
	#[inline]
	pub fn rodrigues_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_Rodrigues_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Converts a rotation matrix to a rotation vector or vice versa.
	///
	/// ## Parameters
	/// * src: Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
	/// * dst: Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
	/// * jacobian: Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
	/// derivatives of the output array components with respect to the input array components.
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctheta%20%5Cleftarrow%20norm%28r%29%20%5C%5C%20r%20%20%5Cleftarrow%20r%2F%20%5Ctheta%20%5C%5C%20R%20%3D%20%20%5Ccos%28%5Ctheta%29%20I%20%2B%20%281%2D%20%5Ccos%7B%5Ctheta%7D%20%29%20r%20r%5ET%20%2B%20%20%5Csin%28%5Ctheta%29%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2Dr%5Fz%20%26%20r%5Fy%5C%5C%20r%5Fz%20%26%200%20%26%20%2Dr%5Fx%5C%5C%20%2Dr%5Fy%20%26%20r%5Fx%20%26%200%20%5Cend%7Bbmatrix%7D%20%5Cend%7Barray%7D)
	///
	/// Inverse transformation can be also done easily, since
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Csin%20%28%20%5Ctheta%20%29%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2Dr%5Fz%20%26%20r%5Fy%5C%5C%20r%5Fz%20%26%200%20%26%20%2Dr%5Fx%5C%5C%20%2Dr%5Fy%20%26%20r%5Fx%20%26%200%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cfrac%7BR%20%2D%20R%5ET%7D%7B2%7D)
	///
	/// A rotation vector is a convenient and most compact representation of a rotation matrix (since any
	/// rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
	/// optimization procedures like [calibrateCamera], [stereoCalibrate], or [solvePnP] .
	///
	///
	/// Note: More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
	/// can be found in:
	///    - A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi [Gallego2014ACF](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Gallego2014ACF)
	///
	///
	/// Note: Useful information on SE(3) and Lie Groups can be found in:
	///    - A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco [blanco2010tutorial](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_blanco2010tutorial)
	///    - Lie Groups for 2D and 3D Transformation, Ethan Eade [Eade17](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Eade17)
	///    - A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan [Sol2018AML](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Sol2018AML)
	///
	/// ## C++ default parameters
	/// * jacobian: noArray()
	#[inline]
	pub fn rodrigues(src: &impl ToInputArray, dst: &mut impl ToOutputArray, jacobian: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		output_array_arg!(jacobian);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_Rodrigues_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), jacobian.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [calibrate_camera_ro] function uses the following default values for its arguments:
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_ro_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, i_fixed_point: i32, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, new_obj_points: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(new_obj_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCameraRO_const__InputArrayR_const__InputArrayR_Size_int_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, i_fixed_point, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), new_obj_points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
	///
	/// This function is an extension of [calibrate_camera] with the method of releasing object which was
	/// proposed in [strobl2011iccv](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). In many common cases with inaccurate, unmeasured, roughly planar
	/// targets (calibration plates), this method can dramatically improve the precision of the estimated
	/// camera parameters. Both the object-releasing method and standard method are supported by this
	/// function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
	/// [calibrate_camera] is a wrapper for this function.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of calibration pattern points in the calibration pattern
	/// coordinate space. See [calibrate_camera] for details. If the method of releasing object to be used,
	/// the identical calibration board must be used in each view and it must be fully visible, and all
	/// objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
	/// target has to be rigid, or at least static if the camera (rather than the calibration target) is
	/// shifted for grabbing images.**
	/// * imagePoints: Vector of vectors of the projections of calibration pattern points. See
	/// [calibrate_camera] for details.
	/// * imageSize: Size of the image used only to initialize the intrinsic camera matrix.
	/// * iFixedPoint: The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
	/// a switch for calibration method selection. If object-releasing method to be used, pass in the
	/// parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
	/// make standard calibration method selected. Usually the top-right corner point of the calibration
	/// board grid is recommended to be fixed when object-releasing method being utilized. According to
	/// \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
	/// and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
	/// newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
	/// * cameraMatrix: Output 3x3 floating-point camera matrix. See [calibrate_camera] for details.
	/// * distCoeffs: Output vector of distortion coefficients. See [calibrate_camera] for details.
	/// * rvecs: Output vector of rotation vectors estimated for each pattern view. See [calibrate_camera]
	/// for details.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view.
	/// * newObjPoints: The updated output vector of calibration pattern points. The coordinates might
	/// be scaled based on three fixed points. The returned coordinates are accurate only if the above
	/// mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
	/// is ignored with standard calibration method.
	/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
	/// See [calibrate_camera] for details.
	/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
	/// See [calibrate_camera] for details.
	/// * stdDeviationsObjPoints: Output vector of standard deviations estimated for refined coordinates
	/// of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
	/// parameter is ignored with standard calibration method.
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of some predefined values. See
	/// [calibrate_camera] for details. If the method of releasing object is used, the calibration time may
	/// be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
	/// less precise and less stable in some rare cases.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Returns
	/// the overall RMS re-projection error.
	///
	/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
	/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000), [BouguetMCT](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BouguetMCT) and [strobl2011iccv](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). See
	/// [calibrate_camera] for other detailed explanations.
	/// ## See also
	/// calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
	///
	/// ## Note
	/// This alternative version of [calibrate_camera_ro_extended] function uses the following default values for its arguments:
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_ro_extended_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, i_fixed_point: i32, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, new_obj_points: &mut impl ToOutputArray, std_deviations_intrinsics: &mut impl ToOutputArray, std_deviations_extrinsics: &mut impl ToOutputArray, std_deviations_obj_points: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(new_obj_points);
		output_array_arg!(std_deviations_intrinsics);
		output_array_arg!(std_deviations_extrinsics);
		output_array_arg!(std_deviations_obj_points);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCameraRO_const__InputArrayR_const__InputArrayR_Size_int_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, i_fixed_point, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), new_obj_points.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), std_deviations_obj_points.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
	///
	/// This function is an extension of [calibrate_camera] with the method of releasing object which was
	/// proposed in [strobl2011iccv](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). In many common cases with inaccurate, unmeasured, roughly planar
	/// targets (calibration plates), this method can dramatically improve the precision of the estimated
	/// camera parameters. Both the object-releasing method and standard method are supported by this
	/// function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
	/// [calibrate_camera] is a wrapper for this function.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of calibration pattern points in the calibration pattern
	/// coordinate space. See [calibrate_camera] for details. If the method of releasing object to be used,
	/// the identical calibration board must be used in each view and it must be fully visible, and all
	/// objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
	/// target has to be rigid, or at least static if the camera (rather than the calibration target) is
	/// shifted for grabbing images.**
	/// * imagePoints: Vector of vectors of the projections of calibration pattern points. See
	/// [calibrate_camera] for details.
	/// * imageSize: Size of the image used only to initialize the intrinsic camera matrix.
	/// * iFixedPoint: The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
	/// a switch for calibration method selection. If object-releasing method to be used, pass in the
	/// parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
	/// make standard calibration method selected. Usually the top-right corner point of the calibration
	/// board grid is recommended to be fixed when object-releasing method being utilized. According to
	/// \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
	/// and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
	/// newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
	/// * cameraMatrix: Output 3x3 floating-point camera matrix. See [calibrate_camera] for details.
	/// * distCoeffs: Output vector of distortion coefficients. See [calibrate_camera] for details.
	/// * rvecs: Output vector of rotation vectors estimated for each pattern view. See [calibrate_camera]
	/// for details.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view.
	/// * newObjPoints: The updated output vector of calibration pattern points. The coordinates might
	/// be scaled based on three fixed points. The returned coordinates are accurate only if the above
	/// mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
	/// is ignored with standard calibration method.
	/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
	/// See [calibrate_camera] for details.
	/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
	/// See [calibrate_camera] for details.
	/// * stdDeviationsObjPoints: Output vector of standard deviations estimated for refined coordinates
	/// of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
	/// parameter is ignored with standard calibration method.
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of some predefined values. See
	/// [calibrate_camera] for details. If the method of releasing object is used, the calibration time may
	/// be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
	/// less precise and less stable in some rare cases.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Returns
	/// the overall RMS re-projection error.
	///
	/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
	/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000), [BouguetMCT](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BouguetMCT) and [strobl2011iccv](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). See
	/// [calibrate_camera] for other detailed explanations.
	/// ## See also
	/// calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
	///
	/// ## C++ default parameters
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_ro_extended(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, i_fixed_point: i32, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, new_obj_points: &mut impl ToOutputArray, std_deviations_intrinsics: &mut impl ToOutputArray, std_deviations_extrinsics: &mut impl ToOutputArray, std_deviations_obj_points: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(new_obj_points);
		output_array_arg!(std_deviations_intrinsics);
		output_array_arg!(std_deviations_extrinsics);
		output_array_arg!(std_deviations_obj_points);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCameraRO_const__InputArrayR_const__InputArrayR_Size_int_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, i_fixed_point, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), new_obj_points.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), std_deviations_obj_points.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
	///
	/// This function is an extension of [calibrate_camera] with the method of releasing object which was
	/// proposed in [strobl2011iccv](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). In many common cases with inaccurate, unmeasured, roughly planar
	/// targets (calibration plates), this method can dramatically improve the precision of the estimated
	/// camera parameters. Both the object-releasing method and standard method are supported by this
	/// function. Use the parameter **iFixedPoint** for method selection. In the internal implementation,
	/// [calibrate_camera] is a wrapper for this function.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of calibration pattern points in the calibration pattern
	/// coordinate space. See [calibrate_camera] for details. If the method of releasing object to be used,
	/// the identical calibration board must be used in each view and it must be fully visible, and all
	/// objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration
	/// target has to be rigid, or at least static if the camera (rather than the calibration target) is
	/// shifted for grabbing images.**
	/// * imagePoints: Vector of vectors of the projections of calibration pattern points. See
	/// [calibrate_camera] for details.
	/// * imageSize: Size of the image used only to initialize the intrinsic camera matrix.
	/// * iFixedPoint: The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
	/// a switch for calibration method selection. If object-releasing method to be used, pass in the
	/// parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
	/// make standard calibration method selected. Usually the top-right corner point of the calibration
	/// board grid is recommended to be fixed when object-releasing method being utilized. According to
	/// \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
	/// and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
	/// newObjPoints are only possible if coordinates of these three fixed points are accurate enough.
	/// * cameraMatrix: Output 3x3 floating-point camera matrix. See [calibrate_camera] for details.
	/// * distCoeffs: Output vector of distortion coefficients. See [calibrate_camera] for details.
	/// * rvecs: Output vector of rotation vectors estimated for each pattern view. See [calibrate_camera]
	/// for details.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view.
	/// * newObjPoints: The updated output vector of calibration pattern points. The coordinates might
	/// be scaled based on three fixed points. The returned coordinates are accurate only if the above
	/// mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
	/// is ignored with standard calibration method.
	/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
	/// See [calibrate_camera] for details.
	/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
	/// See [calibrate_camera] for details.
	/// * stdDeviationsObjPoints: Output vector of standard deviations estimated for refined coordinates
	/// of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
	/// parameter is ignored with standard calibration method.
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of some predefined values. See
	/// [calibrate_camera] for details. If the method of releasing object is used, the calibration time may
	/// be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
	/// less precise and less stable in some rare cases.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Returns
	/// the overall RMS re-projection error.
	///
	/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
	/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000), [BouguetMCT](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BouguetMCT) and [strobl2011iccv](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_strobl2011iccv). See
	/// [calibrate_camera] for other detailed explanations.
	/// ## See also
	/// calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_ro(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, i_fixed_point: i32, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, new_obj_points: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(new_obj_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCameraRO_const__InputArrayR_const__InputArrayR_Size_int_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, i_fixed_point, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), new_obj_points.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [calibrate_camera] function uses the following default values for its arguments:
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCamera_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration
	/// pattern.
	///
	/// ## Parameters
	/// * objectPoints: In the new interface it is a vector of vectors of calibration pattern points in
	/// the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
	/// vector contains as many elements as the number of pattern views. If the same calibration pattern
	/// is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
	/// possible to use partially occluded patterns or even different patterns in different views. Then,
	/// the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
	/// XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
	/// In the old interface all the vectors of object points from different views are concatenated
	/// together.
	/// * imagePoints: In the new interface it is a vector of vectors of the projections of calibration
	/// pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
	/// objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
	/// respectively. In the old interface all the vectors of object points from different views are
	/// concatenated together.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrix.
	/// * cameraMatrix: Input/output 3x3 floating-point camera intrinsic matrix
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If [CALIB_USE_INTRINSIC_GUESS]
	/// and/or [CALIB_FIX_ASPECT_RATIO], [CALIB_FIX_PRINCIPAL_POINT] or [CALIB_FIX_FOCAL_LENGTH]
	/// are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
	/// * distCoeffs: Input/output vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs).
	/// * rvecs: Output vector of rotation vectors ([Rodrigues] ) estimated for each pattern view
	/// (e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
	/// i-th translation vector (see the next output parameter description) brings the calibration pattern
	/// from the object coordinate space (in which object points are specified) to the camera coordinate
	/// space. In more technical terms, the tuple of the i-th rotation and translation vector performs
	/// a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
	/// tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
	/// space.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter
	/// describtion above.
	/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic
	/// parameters. Order of deviations values:
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0A%20s%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
	/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic
	/// parameters. Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F0%2C%20T%5F0%2C%20%5Cdotsc%20%2C%20R%5F%7BM%20%2D%201%7D%2C%20T%5F%7BM%20%2D%201%7D%29) where M is
	/// the number of pattern views. ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_USE_INTRINSIC_GUESS] cameraMatrix contains valid initial values of
	/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	/// center ( imageSize is used), and focal distances are computed in a least-squares fashion.
	/// Note, that if intrinsic parameters are known, there is no need to use this function just to
	/// estimate extrinsic parameters. Use [solvePnP] instead.
	/// *   [CALIB_FIX_PRINCIPAL_POINT] The principal point is not changed during the global
	/// optimization. It stays at the center or at a different location specified when
	///  [CALIB_USE_INTRINSIC_GUESS] is set too.
	/// *   [CALIB_FIX_ASPECT_RATIO] The functions consider only fy as a free parameter. The
	/// ratio fx/fy stays the same as in the input cameraMatrix . When
	///  [CALIB_USE_INTRINSIC_GUESS] is not set, the actual input values of fx and fy are
	/// ignored, only their ratio is computed and used further.
	/// *   [CALIB_ZERO_TANGENT_DIST] Tangential distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28p%5F1%2C%20p%5F2%29) are set
	/// to zeros and stay zero.
	/// *   [CALIB_FIX_FOCAL_LENGTH] The focal length is not changed during the global optimization if
	///  [CALIB_USE_INTRINSIC_GUESS] is set.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] The corresponding radial distortion
	/// coefficient is not changed during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is
	/// set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Coefficients k4, k5, and k6 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the rational model and return 8 coefficients or more.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients or more.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Returns
	/// the overall RMS re-projection error.
	///
	/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
	/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000) and [BouguetMCT](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BouguetMCT) . The coordinates of 3D object
	/// points and their corresponding 2D projections in each view must be specified. That may be achieved
	/// by using an object with known geometry and easily detectable feature points. Such an object is
	/// called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
	/// a calibration rig (see [findChessboardCorners]). Currently, initialization of intrinsic
	/// parameters (when [CALIB_USE_INTRINSIC_GUESS] is not set) is only implemented for planar calibration
	/// patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
	/// be used as long as initial cameraMatrix is provided.
	///
	/// The algorithm performs the following steps:
	///
	/// *   Compute the initial intrinsic parameters (the option only available for planar calibration
	///    patterns) or read them from the input parameters. The distortion coefficients are all set to
	///    zeros initially unless some of CALIB_FIX_K? are specified.
	///
	/// *   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
	///    done using [solvePnP] .
	///
	/// *   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
	///    that is, the total sum of squared distances between the observed feature points imagePoints and
	///    the projected (using the current estimates for camera parameters and the poses) object points
	///    objectPoints. See [projectPoints] for details.
	///
	///
	/// Note:
	///    If you use a non-square (i.e. non-N-by-N) grid and [findChessboardCorners] for calibration,
	///    and [calibrateCamera] returns bad values (zero distortion coefficients, ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx) and
	///    ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) very far from the image center, and/or large differences between ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and
	///    ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
	///    instead of using patternSize=cvSize(cols,rows) in [findChessboardCorners].
	///
	///
	/// Note:
	///    The function may throw exceptions, if unsupported combination of parameters is provided or
	///    the system is underconstrained.
	/// ## See also
	/// calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
	///    undistort
	///
	/// ## Note
	/// This alternative version of [calibrate_camera_extended] function uses the following default values for its arguments:
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_extended_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, std_deviations_intrinsics: &mut impl ToOutputArray, std_deviations_extrinsics: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(std_deviations_intrinsics);
		output_array_arg!(std_deviations_extrinsics);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCamera_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration
	/// pattern.
	///
	/// ## Parameters
	/// * objectPoints: In the new interface it is a vector of vectors of calibration pattern points in
	/// the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
	/// vector contains as many elements as the number of pattern views. If the same calibration pattern
	/// is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
	/// possible to use partially occluded patterns or even different patterns in different views. Then,
	/// the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
	/// XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
	/// In the old interface all the vectors of object points from different views are concatenated
	/// together.
	/// * imagePoints: In the new interface it is a vector of vectors of the projections of calibration
	/// pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
	/// objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
	/// respectively. In the old interface all the vectors of object points from different views are
	/// concatenated together.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrix.
	/// * cameraMatrix: Input/output 3x3 floating-point camera intrinsic matrix
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If [CALIB_USE_INTRINSIC_GUESS]
	/// and/or [CALIB_FIX_ASPECT_RATIO], [CALIB_FIX_PRINCIPAL_POINT] or [CALIB_FIX_FOCAL_LENGTH]
	/// are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
	/// * distCoeffs: Input/output vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs).
	/// * rvecs: Output vector of rotation vectors ([Rodrigues] ) estimated for each pattern view
	/// (e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
	/// i-th translation vector (see the next output parameter description) brings the calibration pattern
	/// from the object coordinate space (in which object points are specified) to the camera coordinate
	/// space. In more technical terms, the tuple of the i-th rotation and translation vector performs
	/// a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
	/// tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
	/// space.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter
	/// describtion above.
	/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic
	/// parameters. Order of deviations values:
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0A%20s%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
	/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic
	/// parameters. Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F0%2C%20T%5F0%2C%20%5Cdotsc%20%2C%20R%5F%7BM%20%2D%201%7D%2C%20T%5F%7BM%20%2D%201%7D%29) where M is
	/// the number of pattern views. ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_USE_INTRINSIC_GUESS] cameraMatrix contains valid initial values of
	/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	/// center ( imageSize is used), and focal distances are computed in a least-squares fashion.
	/// Note, that if intrinsic parameters are known, there is no need to use this function just to
	/// estimate extrinsic parameters. Use [solvePnP] instead.
	/// *   [CALIB_FIX_PRINCIPAL_POINT] The principal point is not changed during the global
	/// optimization. It stays at the center or at a different location specified when
	///  [CALIB_USE_INTRINSIC_GUESS] is set too.
	/// *   [CALIB_FIX_ASPECT_RATIO] The functions consider only fy as a free parameter. The
	/// ratio fx/fy stays the same as in the input cameraMatrix . When
	///  [CALIB_USE_INTRINSIC_GUESS] is not set, the actual input values of fx and fy are
	/// ignored, only their ratio is computed and used further.
	/// *   [CALIB_ZERO_TANGENT_DIST] Tangential distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28p%5F1%2C%20p%5F2%29) are set
	/// to zeros and stay zero.
	/// *   [CALIB_FIX_FOCAL_LENGTH] The focal length is not changed during the global optimization if
	///  [CALIB_USE_INTRINSIC_GUESS] is set.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] The corresponding radial distortion
	/// coefficient is not changed during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is
	/// set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Coefficients k4, k5, and k6 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the rational model and return 8 coefficients or more.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients or more.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Returns
	/// the overall RMS re-projection error.
	///
	/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
	/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000) and [BouguetMCT](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BouguetMCT) . The coordinates of 3D object
	/// points and their corresponding 2D projections in each view must be specified. That may be achieved
	/// by using an object with known geometry and easily detectable feature points. Such an object is
	/// called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
	/// a calibration rig (see [findChessboardCorners]). Currently, initialization of intrinsic
	/// parameters (when [CALIB_USE_INTRINSIC_GUESS] is not set) is only implemented for planar calibration
	/// patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
	/// be used as long as initial cameraMatrix is provided.
	///
	/// The algorithm performs the following steps:
	///
	/// *   Compute the initial intrinsic parameters (the option only available for planar calibration
	///    patterns) or read them from the input parameters. The distortion coefficients are all set to
	///    zeros initially unless some of CALIB_FIX_K? are specified.
	///
	/// *   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
	///    done using [solvePnP] .
	///
	/// *   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
	///    that is, the total sum of squared distances between the observed feature points imagePoints and
	///    the projected (using the current estimates for camera parameters and the poses) object points
	///    objectPoints. See [projectPoints] for details.
	///
	///
	/// Note:
	///    If you use a non-square (i.e. non-N-by-N) grid and [findChessboardCorners] for calibration,
	///    and [calibrateCamera] returns bad values (zero distortion coefficients, ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx) and
	///    ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) very far from the image center, and/or large differences between ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and
	///    ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
	///    instead of using patternSize=cvSize(cols,rows) in [findChessboardCorners].
	///
	///
	/// Note:
	///    The function may throw exceptions, if unsupported combination of parameters is provided or
	///    the system is underconstrained.
	/// ## See also
	/// calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
	///    undistort
	///
	/// ## C++ default parameters
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera_extended(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, std_deviations_intrinsics: &mut impl ToOutputArray, std_deviations_extrinsics: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(std_deviations_intrinsics);
		output_array_arg!(std_deviations_extrinsics);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCamera_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the camera intrinsic and extrinsic parameters from several views of a calibration
	/// pattern.
	///
	/// ## Parameters
	/// * objectPoints: In the new interface it is a vector of vectors of calibration pattern points in
	/// the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
	/// vector contains as many elements as the number of pattern views. If the same calibration pattern
	/// is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
	/// possible to use partially occluded patterns or even different patterns in different views. Then,
	/// the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
	/// XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
	/// In the old interface all the vectors of object points from different views are concatenated
	/// together.
	/// * imagePoints: In the new interface it is a vector of vectors of the projections of calibration
	/// pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
	/// objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
	/// respectively. In the old interface all the vectors of object points from different views are
	/// concatenated together.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrix.
	/// * cameraMatrix: Input/output 3x3 floating-point camera intrinsic matrix
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If [CALIB_USE_INTRINSIC_GUESS]
	/// and/or [CALIB_FIX_ASPECT_RATIO], [CALIB_FIX_PRINCIPAL_POINT] or [CALIB_FIX_FOCAL_LENGTH]
	/// are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.
	/// * distCoeffs: Input/output vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs).
	/// * rvecs: Output vector of rotation vectors ([Rodrigues] ) estimated for each pattern view
	/// (e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
	/// i-th translation vector (see the next output parameter description) brings the calibration pattern
	/// from the object coordinate space (in which object points are specified) to the camera coordinate
	/// space. In more technical terms, the tuple of the i-th rotation and translation vector performs
	/// a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
	/// tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
	/// space.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter
	/// describtion above.
	/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic
	/// parameters. Order of deviations values:
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0A%20s%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
	/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic
	/// parameters. Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F0%2C%20T%5F0%2C%20%5Cdotsc%20%2C%20R%5F%7BM%20%2D%201%7D%2C%20T%5F%7BM%20%2D%201%7D%29) where M is
	/// the number of pattern views. ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_USE_INTRINSIC_GUESS] cameraMatrix contains valid initial values of
	/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	/// center ( imageSize is used), and focal distances are computed in a least-squares fashion.
	/// Note, that if intrinsic parameters are known, there is no need to use this function just to
	/// estimate extrinsic parameters. Use [solvePnP] instead.
	/// *   [CALIB_FIX_PRINCIPAL_POINT] The principal point is not changed during the global
	/// optimization. It stays at the center or at a different location specified when
	///  [CALIB_USE_INTRINSIC_GUESS] is set too.
	/// *   [CALIB_FIX_ASPECT_RATIO] The functions consider only fy as a free parameter. The
	/// ratio fx/fy stays the same as in the input cameraMatrix . When
	///  [CALIB_USE_INTRINSIC_GUESS] is not set, the actual input values of fx and fy are
	/// ignored, only their ratio is computed and used further.
	/// *   [CALIB_ZERO_TANGENT_DIST] Tangential distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28p%5F1%2C%20p%5F2%29) are set
	/// to zeros and stay zero.
	/// *   [CALIB_FIX_FOCAL_LENGTH] The focal length is not changed during the global optimization if
	///  [CALIB_USE_INTRINSIC_GUESS] is set.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] The corresponding radial distortion
	/// coefficient is not changed during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is
	/// set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Coefficients k4, k5, and k6 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the rational model and return 8 coefficients or more.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients or more.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Returns
	/// the overall RMS re-projection error.
	///
	/// The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
	/// views. The algorithm is based on [Zhang2000](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zhang2000) and [BouguetMCT](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BouguetMCT) . The coordinates of 3D object
	/// points and their corresponding 2D projections in each view must be specified. That may be achieved
	/// by using an object with known geometry and easily detectable feature points. Such an object is
	/// called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
	/// a calibration rig (see [findChessboardCorners]). Currently, initialization of intrinsic
	/// parameters (when [CALIB_USE_INTRINSIC_GUESS] is not set) is only implemented for planar calibration
	/// patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
	/// be used as long as initial cameraMatrix is provided.
	///
	/// The algorithm performs the following steps:
	///
	/// *   Compute the initial intrinsic parameters (the option only available for planar calibration
	///    patterns) or read them from the input parameters. The distortion coefficients are all set to
	///    zeros initially unless some of CALIB_FIX_K? are specified.
	///
	/// *   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
	///    done using [solvePnP] .
	///
	/// *   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
	///    that is, the total sum of squared distances between the observed feature points imagePoints and
	///    the projected (using the current estimates for camera parameters and the poses) object points
	///    objectPoints. See [projectPoints] for details.
	///
	///
	/// Note:
	///    If you use a non-square (i.e. non-N-by-N) grid and [findChessboardCorners] for calibration,
	///    and [calibrateCamera] returns bad values (zero distortion coefficients, ![inline formula](https://latex.codecogs.com/png.latex?c%5Fx) and
	///    ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) very far from the image center, and/or large differences between ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and
	///    ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
	///    instead of using patternSize=cvSize(cols,rows) in [findChessboardCorners].
	///
	///
	/// Note:
	///    The function may throw exceptions, if unsupported combination of parameters is provided or
	///    the system is underconstrained.
	/// ## See also
	/// calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
	///    undistort
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	pub fn calibrate_camera(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateCamera_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes Hand-Eye calibration: ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)
	///
	/// ## Parameters
	/// * R_gripper2base: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the robot base frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fg)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from gripper frame to robot base frame.
	/// * t_gripper2base: Translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the robot base frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fg)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from gripper frame to robot base frame.
	/// * R_target2cam: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the target frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Ft)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from calibration target frame to camera frame.
	/// * t_target2cam: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the target frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Ft)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from calibration target frame to camera frame.
	/// * R_cam2gripper:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the camera frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)).
	/// * t_cam2gripper:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the camera frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)).
	/// * method: One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
	///
	/// The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
	/// rotation then the translation (separable solutions) and the following methods are implemented:
	///   - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
	///   - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
	///   - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
	///
	/// Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
	/// with the following implemented methods:
	///   - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
	///   - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
	///
	/// The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
	/// mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
	///
	/// The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
	/// end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
	/// the suitable transformations to the function, see below.
	///
	/// ![](https://docs.opencv.org/4.11.0/hand-eye_figure.png)
	///
	/// The calibration procedure is the following:
	///   - a static calibration pattern is used to estimate the transformation between the target frame
	///   and the camera frame
	///   - the robot gripper is moved in order to acquire several poses
	///   - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
	///   instance the robot kinematics
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BR%7D%5Fg%20%26%20%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7Bt%7D%5Fg%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///   - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
	///   for instance a pose estimation method (PnP) from 2D-3D point correspondences
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Ft%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Ft%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Ft%5C%5C%0A%20%20%20%20Y%5Ft%5C%5C%0A%20%20%20%20Z%5Ft%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// The Hand-Eye calibration procedure returns the following homogeneous transformation
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BR%7D%5Fc%20%26%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7Bt%7D%5Fc%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// This problem is also known as solving the ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%5Cmathbf%7BX%7D%3D%5Cmathbf%7BX%7D%5Cmathbf%7BB%7D) equation:
	///   - for an eye-in-hand configuration
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%20%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%282%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%5C%5C%0A%0A%20%20%20%20%28%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%282%29%7D%29%5E%7B%2D1%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%28%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%29%5E%7B%2D1%7D%20%5C%5C%0A%0A%20%20%20%20%5Ctextrm%7BA%7D%5Fi%20%5Ctextrm%7BX%7D%20%26%3D%20%5Ctextrm%7BX%7D%20%5Ctextrm%7BB%7D%5Fi%20%5C%5C%0A%20%20%20%20%5Cend%7Balign%2A%7D%0A)
	///
	///   - for an eye-to-hand configuration
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%20%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%282%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%5C%5C%0A%0A%20%20%20%20%28%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%282%29%7D%29%5E%7B%2D1%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%28%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%29%5E%7B%2D1%7D%20%5C%5C%0A%0A%20%20%20%20%5Ctextrm%7BA%7D%5Fi%20%5Ctextrm%7BX%7D%20%26%3D%20%5Ctextrm%7BX%7D%20%5Ctextrm%7BB%7D%5Fi%20%5C%5C%0A%20%20%20%20%5Cend%7Balign%2A%7D%0A)
	///
	/// \note
	/// Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
	/// \note
	/// A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
	/// So at least 3 different poses are required, but it is strongly recommended to use many more poses.
	///
	/// ## Note
	/// This alternative version of [calibrate_hand_eye] function uses the following default values for its arguments:
	/// * method: CALIB_HAND_EYE_TSAI
	#[inline]
	pub fn calibrate_hand_eye_def(r_gripper2base: &impl ToInputArray, t_gripper2base: &impl ToInputArray, r_target2cam: &impl ToInputArray, t_target2cam: &impl ToInputArray, r_cam2gripper: &mut impl ToOutputArray, t_cam2gripper: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(r_gripper2base);
		input_array_arg!(t_gripper2base);
		input_array_arg!(r_target2cam);
		input_array_arg!(t_target2cam);
		output_array_arg!(r_cam2gripper);
		output_array_arg!(t_cam2gripper);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateHandEye_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(r_gripper2base.as_raw__InputArray(), t_gripper2base.as_raw__InputArray(), r_target2cam.as_raw__InputArray(), t_target2cam.as_raw__InputArray(), r_cam2gripper.as_raw__OutputArray(), t_cam2gripper.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes Hand-Eye calibration: ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)
	///
	/// ## Parameters
	/// * R_gripper2base: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the robot base frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fg)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from gripper frame to robot base frame.
	/// * t_gripper2base: Translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the robot base frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fg)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from gripper frame to robot base frame.
	/// * R_target2cam: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the target frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Ft)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from calibration target frame to camera frame.
	/// * t_target2cam: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the target frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Ft)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from calibration target frame to camera frame.
	/// * R_cam2gripper:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the camera frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)).
	/// * t_cam2gripper:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the camera frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc)).
	/// * method: One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
	///
	/// The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
	/// rotation then the translation (separable solutions) and the following methods are implemented:
	///   - R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
	///   - F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
	///   - R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
	///
	/// Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
	/// with the following implemented methods:
	///   - N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
	///   - K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
	///
	/// The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
	/// mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
	///
	/// The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
	/// end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
	/// the suitable transformations to the function, see below.
	///
	/// ![](https://docs.opencv.org/4.11.0/hand-eye_figure.png)
	///
	/// The calibration procedure is the following:
	///   - a static calibration pattern is used to estimate the transformation between the target frame
	///   and the camera frame
	///   - the robot gripper is moved in order to acquire several poses
	///   - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
	///   instance the robot kinematics
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7BR%7D%5Fg%20%26%20%5F%7B%7D%5E%7Bb%7D%5Ctextrm%7Bt%7D%5Fg%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///   - for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
	///   for instance a pose estimation method (PnP) from 2D-3D point correspondences
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Ft%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Ft%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Ft%5C%5C%0A%20%20%20%20Y%5Ft%5C%5C%0A%20%20%20%20Z%5Ft%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// The Hand-Eye calibration procedure returns the following homogeneous transformation
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BR%7D%5Fc%20%26%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7Bt%7D%5Fc%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// This problem is also known as solving the ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%5Cmathbf%7BX%7D%3D%5Cmathbf%7BX%7D%5Cmathbf%7BB%7D) equation:
	///   - for an eye-in-hand configuration
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%20%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%282%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%5C%5C%0A%0A%20%20%20%20%28%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%282%29%7D%29%5E%7B%2D1%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%7B%5Ctextrm%7BT%7D%5Fg%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%28%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%29%5E%7B%2D1%7D%20%5C%5C%0A%0A%20%20%20%20%5Ctextrm%7BA%7D%5Fi%20%5Ctextrm%7BX%7D%20%26%3D%20%5Ctextrm%7BX%7D%20%5Ctextrm%7BB%7D%5Fi%20%5C%5C%0A%20%20%20%20%5Cend%7Balign%2A%7D%0A)
	///
	///   - for an eye-to-hand configuration
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Balign%2A%7D%0A%20%20%20%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%282%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%5C%5C%0A%0A%20%20%20%20%28%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%282%29%7D%29%5E%7B%2D1%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bg%7D%7B%5Ctextrm%7BT%7D%5Fb%7D%5E%7B%281%29%7D%20%5Chspace%7B0%2E2em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%26%3D%0A%20%20%20%20%5Chspace%7B0%2E1em%7D%20%5E%7Bb%7D%5Ctextrm%7BT%7D%5Fc%20%5Chspace%7B0%2E2em%7D%20%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%282%29%7D%20%28%5E%7Bc%7D%7B%5Ctextrm%7BT%7D%5Ft%7D%5E%7B%281%29%7D%29%5E%7B%2D1%7D%20%5C%5C%0A%0A%20%20%20%20%5Ctextrm%7BA%7D%5Fi%20%5Ctextrm%7BX%7D%20%26%3D%20%5Ctextrm%7BX%7D%20%5Ctextrm%7BB%7D%5Fi%20%5C%5C%0A%20%20%20%20%5Cend%7Balign%2A%7D%0A)
	///
	/// \note
	/// Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
	/// \note
	/// A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
	/// So at least 3 different poses are required, but it is strongly recommended to use many more poses.
	///
	/// ## C++ default parameters
	/// * method: CALIB_HAND_EYE_TSAI
	#[inline]
	pub fn calibrate_hand_eye(r_gripper2base: &impl ToInputArray, t_gripper2base: &impl ToInputArray, r_target2cam: &impl ToInputArray, t_target2cam: &impl ToInputArray, r_cam2gripper: &mut impl ToOutputArray, t_cam2gripper: &mut impl ToOutputArray, method: crate::calib3d::HandEyeCalibrationMethod) -> Result<()> {
		input_array_arg!(r_gripper2base);
		input_array_arg!(t_gripper2base);
		input_array_arg!(r_target2cam);
		input_array_arg!(t_target2cam);
		output_array_arg!(r_cam2gripper);
		output_array_arg!(t_cam2gripper);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateHandEye_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_HandEyeCalibrationMethod(r_gripper2base.as_raw__InputArray(), t_gripper2base.as_raw__InputArray(), r_target2cam.as_raw__InputArray(), t_target2cam.as_raw__InputArray(), r_cam2gripper.as_raw__OutputArray(), t_cam2gripper.as_raw__OutputArray(), method, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes Robot-World/Hand-Eye calibration: ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb) and ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)
	///
	/// ## Parameters
	/// * R_world2cam: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the world frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from world frame to the camera frame.
	/// * t_world2cam: Translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the world frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from world frame to the camera frame.
	/// * R_base2gripper: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from robot base frame to the gripper frame.
	/// * t_base2gripper: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from robot base frame to the gripper frame.
	/// * R_base2world:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the world frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)).
	/// * t_base2world:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the world frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)).
	/// * R_gripper2cam:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)).
	/// * t_gripper2cam:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)).
	/// * method: One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
	///
	/// The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
	/// rotation then the translation (separable solutions):
	///   - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
	///
	/// Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
	/// with the following implemented method:
	///   - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
	///
	/// The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
	/// and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
	///
	/// ![](https://docs.opencv.org/4.11.0/robot-world_hand-eye_figure.png)
	///
	/// The calibration procedure is the following:
	///   - a static calibration pattern is used to estimate the transformation between the target frame
	///   and the camera frame
	///   - the robot gripper is moved in order to acquire several poses
	///   - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
	///   instance the robot kinematics
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BR%7D%5Fb%20%26%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7Bt%7D%5Fb%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///   - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
	///   for instance a pose estimation method (PnP) from 2D-3D point correspondences
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Fw%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Fw%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fw%5C%5C%0A%20%20%20%20Y%5Fw%5C%5C%0A%20%20%20%20Z%5Fw%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fw%5C%5C%0A%20%20%20%20Y%5Fw%5C%5C%0A%20%20%20%20Z%5Fw%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BR%7D%5Fb%20%26%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7Bt%7D%5Fb%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Fg%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Fg%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// This problem is also known as solving the ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%5Cmathbf%7BX%7D%3D%5Cmathbf%7BZ%7D%5Cmathbf%7BB%7D) equation, with:
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BX%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BZ%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BB%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)
	///
	/// \note
	/// At least 3 measurements are required (input vectors size must be greater or equal to 3).
	///
	/// ## Note
	/// This alternative version of [calibrate_robot_world_hand_eye] function uses the following default values for its arguments:
	/// * method: CALIB_ROBOT_WORLD_HAND_EYE_SHAH
	#[inline]
	pub fn calibrate_robot_world_hand_eye_def(r_world2cam: &impl ToInputArray, t_world2cam: &impl ToInputArray, r_base2gripper: &impl ToInputArray, t_base2gripper: &impl ToInputArray, r_base2world: &mut impl ToOutputArray, t_base2world: &mut impl ToOutputArray, r_gripper2cam: &mut impl ToOutputArray, t_gripper2cam: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(r_world2cam);
		input_array_arg!(t_world2cam);
		input_array_arg!(r_base2gripper);
		input_array_arg!(t_base2gripper);
		output_array_arg!(r_base2world);
		output_array_arg!(t_base2world);
		output_array_arg!(r_gripper2cam);
		output_array_arg!(t_gripper2cam);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateRobotWorldHandEye_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(r_world2cam.as_raw__InputArray(), t_world2cam.as_raw__InputArray(), r_base2gripper.as_raw__InputArray(), t_base2gripper.as_raw__InputArray(), r_base2world.as_raw__OutputArray(), t_base2world.as_raw__OutputArray(), r_gripper2cam.as_raw__OutputArray(), t_gripper2cam.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes Robot-World/Hand-Eye calibration: ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb) and ![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)
	///
	/// ## Parameters
	/// * R_world2cam: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the world frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from world frame to the camera frame.
	/// * t_world2cam: Translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the world frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from world frame to the camera frame.
	/// * R_base2gripper: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)).
	/// This is a vector (`vector<Mat>`) that contains the rotation, `(3x3)` rotation matrices or `(3x1)` rotation vectors,
	/// for all the transformations from robot base frame to the gripper frame.
	/// * t_base2gripper: Rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the gripper frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)).
	/// This is a vector (`vector<Mat>`) that contains the `(3x1)` translation vectors for all the transformations
	/// from robot base frame to the gripper frame.
	/// * R_base2world:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the world frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)).
	/// * t_base2world:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the robot base frame to the world frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)).
	/// * R_gripper2cam:[out] Estimated `(3x3)` rotation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)).
	/// * t_gripper2cam:[out] Estimated `(3x1)` translation part extracted from the homogeneous matrix that transforms a point
	/// expressed in the gripper frame to the camera frame (![inline formula](https://latex.codecogs.com/png.latex?%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)).
	/// * method: One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
	///
	/// The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
	/// rotation then the translation (separable solutions):
	///   - M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
	///
	/// Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
	/// with the following implemented method:
	///   - A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
	///
	/// The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
	/// and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
	///
	/// ![](https://docs.opencv.org/4.11.0/robot-world_hand-eye_figure.png)
	///
	/// The calibration procedure is the following:
	///   - a static calibration pattern is used to estimate the transformation between the target frame
	///   and the camera frame
	///   - the robot gripper is moved in order to acquire several poses
	///   - for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
	///   instance the robot kinematics
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BR%7D%5Fb%20%26%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7Bt%7D%5Fb%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///   - for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
	///   for instance a pose estimation method (PnP) from 2D-3D point correspondences
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Fw%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Fw%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fw%5C%5C%0A%20%20%20%20Y%5Fw%5C%5C%0A%20%20%20%20Z%5Fw%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fw%5C%5C%0A%20%20%20%20Y%5Fw%5C%5C%0A%20%20%20%20Z%5Fw%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BR%7D%5Fb%20%26%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7Bt%7D%5Fb%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fb%5C%5C%0A%20%20%20%20Y%5Fb%5C%5C%0A%20%20%20%20Z%5Fb%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fc%5C%5C%0A%20%20%20%20Y%5Fc%5C%5C%0A%20%20%20%20Z%5Fc%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%3D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BR%7D%5Fg%20%26%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7Bt%7D%5Fg%20%5C%5C%0A%20%20%20%200%5F%7B1%20%5Ctimes%203%7D%20%26%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A%20%20%20%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20X%5Fg%5C%5C%0A%20%20%20%20Y%5Fg%5C%5C%0A%20%20%20%20Z%5Fg%5C%5C%0A%20%20%20%201%0A%20%20%20%20%5Cend%7Bbmatrix%7D%0A)
	///
	/// This problem is also known as solving the ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%5Cmathbf%7BX%7D%3D%5Cmathbf%7BZ%7D%5Cmathbf%7BB%7D) equation, with:
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BA%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fw)
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BX%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bw%7D%5Ctextrm%7BT%7D%5Fb)
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BZ%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bc%7D%5Ctextrm%7BT%7D%5Fg)
	///   - ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathbf%7BB%7D%20%5CLeftrightarrow%20%5Chspace%7B0%2E1em%7D%20%5F%7B%7D%5E%7Bg%7D%5Ctextrm%7BT%7D%5Fb)
	///
	/// \note
	/// At least 3 measurements are required (input vectors size must be greater or equal to 3).
	///
	/// ## C++ default parameters
	/// * method: CALIB_ROBOT_WORLD_HAND_EYE_SHAH
	#[inline]
	pub fn calibrate_robot_world_hand_eye(r_world2cam: &impl ToInputArray, t_world2cam: &impl ToInputArray, r_base2gripper: &impl ToInputArray, t_base2gripper: &impl ToInputArray, r_base2world: &mut impl ToOutputArray, t_base2world: &mut impl ToOutputArray, r_gripper2cam: &mut impl ToOutputArray, t_gripper2cam: &mut impl ToOutputArray, method: crate::calib3d::RobotWorldHandEyeCalibrationMethod) -> Result<()> {
		input_array_arg!(r_world2cam);
		input_array_arg!(t_world2cam);
		input_array_arg!(r_base2gripper);
		input_array_arg!(t_base2gripper);
		output_array_arg!(r_base2world);
		output_array_arg!(t_base2world);
		output_array_arg!(r_gripper2cam);
		output_array_arg!(t_gripper2cam);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrateRobotWorldHandEye_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_RobotWorldHandEyeCalibrationMethod(r_world2cam.as_raw__InputArray(), t_world2cam.as_raw__InputArray(), r_base2gripper.as_raw__InputArray(), t_base2gripper.as_raw__InputArray(), r_base2world.as_raw__OutputArray(), t_base2world.as_raw__OutputArray(), r_gripper2cam.as_raw__OutputArray(), t_gripper2cam.as_raw__OutputArray(), method, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes useful camera characteristics from the camera intrinsic matrix.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera intrinsic matrix that can be estimated by [calibrate_camera] or
	/// [stereo_calibrate] .
	/// * imageSize: Input image size in pixels.
	/// * apertureWidth: Physical width in mm of the sensor.
	/// * apertureHeight: Physical height in mm of the sensor.
	/// * fovx: Output field of view in degrees along the horizontal sensor axis.
	/// * fovy: Output field of view in degrees along the vertical sensor axis.
	/// * focalLength: Focal length of the lens in mm.
	/// * principalPoint: Principal point in mm.
	/// * aspectRatio: ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy%2Ff%5Fx)
	///
	/// The function computes various useful camera characteristics from the previously estimated camera
	/// matrix.
	///
	///
	/// Note:
	///    Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
	///    the chessboard pitch (it can thus be any value).
	#[inline]
	pub fn calibration_matrix_values(camera_matrix: &impl ToInputArray, image_size: core::Size, aperture_width: f64, aperture_height: f64, fovx: &mut f64, fovy: &mut f64, focal_length: &mut f64, principal_point: &mut core::Point2d, aspect_ratio: &mut f64) -> Result<()> {
		input_array_arg!(camera_matrix);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_calibrationMatrixValues_const__InputArrayR_Size_double_double_doubleR_doubleR_doubleR_Point2dR_doubleR(camera_matrix.as_raw__InputArray(), &image_size, aperture_width, aperture_height, fovx, fovy, focal_length, principal_point, aspect_ratio, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	#[inline]
	pub fn check_chessboard(img: &impl ToInputArray, size: core::Size) -> Result<bool> {
		input_array_arg!(img);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_checkChessboard_const__InputArrayR_Size(img.as_raw__InputArray(), &size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Combines two rotation-and-shift transformations.
	///
	/// ## Parameters
	/// * rvec1: First rotation vector.
	/// * tvec1: First translation vector.
	/// * rvec2: Second rotation vector.
	/// * tvec2: Second translation vector.
	/// * rvec3: Output rotation vector of the superposition.
	/// * tvec3: Output translation vector of the superposition.
	/// * dr3dr1: Optional output derivative of rvec3 with regard to rvec1
	/// * dr3dt1: Optional output derivative of rvec3 with regard to tvec1
	/// * dr3dr2: Optional output derivative of rvec3 with regard to rvec2
	/// * dr3dt2: Optional output derivative of rvec3 with regard to tvec2
	/// * dt3dr1: Optional output derivative of tvec3 with regard to rvec1
	/// * dt3dt1: Optional output derivative of tvec3 with regard to tvec1
	/// * dt3dr2: Optional output derivative of tvec3 with regard to rvec2
	/// * dt3dt2: Optional output derivative of tvec3 with regard to tvec2
	///
	/// The functions compute:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctexttt%7Brvec3%7D%20%3D%20%20%5Cmathrm%7Brodrigues%7D%20%5E%7B%2D1%7D%20%5Cleft%20%28%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec2%7D%20%29%20%20%5Ccdot%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec1%7D%20%29%20%5Cright%20%29%20%20%5C%5C%20%5Ctexttt%7Btvec3%7D%20%3D%20%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec2%7D%20%29%20%20%5Ccdot%20%5Ctexttt%7Btvec1%7D%20%2B%20%20%5Ctexttt%7Btvec2%7D%20%5Cend%7Barray%7D%20%2C)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathrm%7Brodrigues%7D) denotes a rotation vector to a rotation matrix transformation, and
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathrm%7Brodrigues%7D%5E%7B%2D1%7D) denotes the inverse transformation. See [rodrigues] for details.
	///
	/// Also, the functions can compute the derivatives of the output vectors with regards to the input
	/// vectors (see [mat_mul_deriv] ). The functions are used inside [stereo_calibrate] but can also be used in
	/// your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
	/// function that contains a matrix multiplication.
	///
	/// ## Note
	/// This alternative version of [compose_rt] function uses the following default values for its arguments:
	/// * dr3dr1: noArray()
	/// * dr3dt1: noArray()
	/// * dr3dr2: noArray()
	/// * dr3dt2: noArray()
	/// * dt3dr1: noArray()
	/// * dt3dt1: noArray()
	/// * dt3dr2: noArray()
	/// * dt3dt2: noArray()
	#[inline]
	pub fn compose_rt_def(rvec1: &impl ToInputArray, tvec1: &impl ToInputArray, rvec2: &impl ToInputArray, tvec2: &impl ToInputArray, rvec3: &mut impl ToOutputArray, tvec3: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(rvec1);
		input_array_arg!(tvec1);
		input_array_arg!(rvec2);
		input_array_arg!(tvec2);
		output_array_arg!(rvec3);
		output_array_arg!(tvec3);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_composeRT_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(rvec1.as_raw__InputArray(), tvec1.as_raw__InputArray(), rvec2.as_raw__InputArray(), tvec2.as_raw__InputArray(), rvec3.as_raw__OutputArray(), tvec3.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Combines two rotation-and-shift transformations.
	///
	/// ## Parameters
	/// * rvec1: First rotation vector.
	/// * tvec1: First translation vector.
	/// * rvec2: Second rotation vector.
	/// * tvec2: Second translation vector.
	/// * rvec3: Output rotation vector of the superposition.
	/// * tvec3: Output translation vector of the superposition.
	/// * dr3dr1: Optional output derivative of rvec3 with regard to rvec1
	/// * dr3dt1: Optional output derivative of rvec3 with regard to tvec1
	/// * dr3dr2: Optional output derivative of rvec3 with regard to rvec2
	/// * dr3dt2: Optional output derivative of rvec3 with regard to tvec2
	/// * dt3dr1: Optional output derivative of tvec3 with regard to rvec1
	/// * dt3dt1: Optional output derivative of tvec3 with regard to tvec1
	/// * dt3dr2: Optional output derivative of tvec3 with regard to rvec2
	/// * dt3dt2: Optional output derivative of tvec3 with regard to tvec2
	///
	/// The functions compute:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Barray%7D%7Bl%7D%20%5Ctexttt%7Brvec3%7D%20%3D%20%20%5Cmathrm%7Brodrigues%7D%20%5E%7B%2D1%7D%20%5Cleft%20%28%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec2%7D%20%29%20%20%5Ccdot%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec1%7D%20%29%20%5Cright%20%29%20%20%5C%5C%20%5Ctexttt%7Btvec3%7D%20%3D%20%20%5Cmathrm%7Brodrigues%7D%20%28%20%5Ctexttt%7Brvec2%7D%20%29%20%20%5Ccdot%20%5Ctexttt%7Btvec1%7D%20%2B%20%20%5Ctexttt%7Btvec2%7D%20%5Cend%7Barray%7D%20%2C)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathrm%7Brodrigues%7D) denotes a rotation vector to a rotation matrix transformation, and
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cmathrm%7Brodrigues%7D%5E%7B%2D1%7D) denotes the inverse transformation. See [rodrigues] for details.
	///
	/// Also, the functions can compute the derivatives of the output vectors with regards to the input
	/// vectors (see [mat_mul_deriv] ). The functions are used inside [stereo_calibrate] but can also be used in
	/// your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
	/// function that contains a matrix multiplication.
	///
	/// ## C++ default parameters
	/// * dr3dr1: noArray()
	/// * dr3dt1: noArray()
	/// * dr3dr2: noArray()
	/// * dr3dt2: noArray()
	/// * dt3dr1: noArray()
	/// * dt3dt1: noArray()
	/// * dt3dr2: noArray()
	/// * dt3dt2: noArray()
	#[inline]
	pub fn compose_rt(rvec1: &impl ToInputArray, tvec1: &impl ToInputArray, rvec2: &impl ToInputArray, tvec2: &impl ToInputArray, rvec3: &mut impl ToOutputArray, tvec3: &mut impl ToOutputArray, dr3dr1: &mut impl ToOutputArray, dr3dt1: &mut impl ToOutputArray, dr3dr2: &mut impl ToOutputArray, dr3dt2: &mut impl ToOutputArray, dt3dr1: &mut impl ToOutputArray, dt3dt1: &mut impl ToOutputArray, dt3dr2: &mut impl ToOutputArray, dt3dt2: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(rvec1);
		input_array_arg!(tvec1);
		input_array_arg!(rvec2);
		input_array_arg!(tvec2);
		output_array_arg!(rvec3);
		output_array_arg!(tvec3);
		output_array_arg!(dr3dr1);
		output_array_arg!(dr3dt1);
		output_array_arg!(dr3dr2);
		output_array_arg!(dr3dt2);
		output_array_arg!(dt3dr1);
		output_array_arg!(dt3dt1);
		output_array_arg!(dt3dr2);
		output_array_arg!(dt3dt2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_composeRT_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(rvec1.as_raw__InputArray(), tvec1.as_raw__InputArray(), rvec2.as_raw__InputArray(), tvec2.as_raw__InputArray(), rvec3.as_raw__OutputArray(), tvec3.as_raw__OutputArray(), dr3dr1.as_raw__OutputArray(), dr3dt1.as_raw__OutputArray(), dr3dr2.as_raw__OutputArray(), dr3dt2.as_raw__OutputArray(), dt3dr1.as_raw__OutputArray(), dt3dt1.as_raw__OutputArray(), dt3dr2.as_raw__OutputArray(), dt3dt2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// For points in an image of a stereo pair, computes the corresponding epilines in the other image.
	///
	/// ## Parameters
	/// * points: Input points. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Ctimes%201) or ![inline formula](https://latex.codecogs.com/png.latex?1%20%5Ctimes%20N) matrix of type CV_32FC2 or
	/// vector\<Point2f\> .
	/// * whichImage: Index of the image (1 or 2) that contains the points .
	/// * F: Fundamental matrix that can be estimated using [find_fundamental_mat] or [stereo_rectify] .
	/// * lines: Output vector of the epipolar lines corresponding to the points in the other image.
	/// Each line ![inline formula](https://latex.codecogs.com/png.latex?ax%20%2B%20by%20%2B%20c%3D0) is encoded by 3 numbers ![inline formula](https://latex.codecogs.com/png.latex?%28a%2C%20b%2C%20c%29) .
	///
	/// For every point in one of the two images of a stereo pair, the function finds the equation of the
	/// corresponding epipolar line in the other image.
	///
	/// From the fundamental matrix definition (see [find_fundamental_mat] ), line ![inline formula](https://latex.codecogs.com/png.latex?l%5E%7B%282%29%7D%5Fi) in the second
	/// image for the point ![inline formula](https://latex.codecogs.com/png.latex?p%5E%7B%281%29%7D%5Fi) in the first image (when whichImage=1 ) is computed as:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?l%5E%7B%282%29%7D%5Fi%20%3D%20F%20p%5E%7B%281%29%7D%5Fi)
	///
	/// And vice versa, when whichImage=2, ![inline formula](https://latex.codecogs.com/png.latex?l%5E%7B%281%29%7D%5Fi) is computed from ![inline formula](https://latex.codecogs.com/png.latex?p%5E%7B%282%29%7D%5Fi) as:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?l%5E%7B%281%29%7D%5Fi%20%3D%20F%5ET%20p%5E%7B%282%29%7D%5Fi)
	///
	/// Line coefficients are defined up to a scale. They are normalized so that ![inline formula](https://latex.codecogs.com/png.latex?a%5Fi%5E2%2Bb%5Fi%5E2%3D1) .
	#[inline]
	pub fn compute_correspond_epilines(points: &impl ToInputArray, which_image: i32, f: &impl ToInputArray, lines: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(points);
		input_array_arg!(f);
		output_array_arg!(lines);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_computeCorrespondEpilines_const__InputArrayR_int_const__InputArrayR_const__OutputArrayR(points.as_raw__InputArray(), which_image, f.as_raw__InputArray(), lines.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Converts points from homogeneous to Euclidean space.
	///
	/// ## Parameters
	/// * src: Input vector of N-dimensional points.
	/// * dst: Output vector of N-1-dimensional points.
	///
	/// The function converts points homogeneous to Euclidean space using perspective projection. That is,
	/// each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
	/// output point coordinates will be (0,0,0,...).
	#[inline]
	pub fn convert_points_from_homogeneous(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_convertPointsFromHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Converts points to/from homogeneous coordinates.
	///
	/// ## Parameters
	/// * src: Input array or vector of 2D, 3D, or 4D points.
	/// * dst: Output vector of 2D, 3D, or 4D points.
	///
	/// The function converts 2D or 3D points from/to homogeneous coordinates by calling either
	/// [convert_points_to_homogeneous] or #convertPointsFromHomogeneous.
	///
	///
	/// Note: The function is obsolete. Use one of the previous two functions instead.
	#[inline]
	pub fn convert_points_homogeneous(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_convertPointsHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Converts points from Euclidean to homogeneous space.
	///
	/// ## Parameters
	/// * src: Input vector of N-dimensional points.
	/// * dst: Output vector of N+1-dimensional points.
	///
	/// The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
	/// point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
	#[inline]
	pub fn convert_points_to_homogeneous(src: &impl ToInputArray, dst: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_convertPointsToHomogeneous_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Refines coordinates of corresponding points.
	///
	/// ## Parameters
	/// * F: 3x3 fundamental matrix.
	/// * points1: 1xN array containing the first set of points.
	/// * points2: 1xN array containing the second set of points.
	/// * newPoints1: The optimized points1.
	/// * newPoints2: The optimized points2.
	///
	/// The function implements the Optimal Triangulation Method (see Multiple View Geometry [HartleyZ00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_HartleyZ00) for details).
	/// For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
	/// computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
	/// error ![inline formula](https://latex.codecogs.com/png.latex?d%28points1%5Bi%5D%2C%20newPoints1%5Bi%5D%29%5E2%20%2B%20d%28points2%5Bi%5D%2CnewPoints2%5Bi%5D%29%5E2) (where ![inline formula](https://latex.codecogs.com/png.latex?d%28a%2Cb%29) is the
	/// geometric distance between points ![inline formula](https://latex.codecogs.com/png.latex?a) and ![inline formula](https://latex.codecogs.com/png.latex?b) ) subject to the epipolar constraint
	/// ![inline formula](https://latex.codecogs.com/png.latex?newPoints2%5ET%20%5Ccdot%20F%20%5Ccdot%20newPoints1%20%3D%200) .
	#[inline]
	pub fn correct_matches(f: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, new_points1: &mut impl ToOutputArray, new_points2: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(f);
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(new_points1);
		output_array_arg!(new_points2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_correctMatches_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(f.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), new_points1.as_raw__OutputArray(), new_points2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Decompose an essential matrix to possible rotations and translation.
	///
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * R1: One possible rotation matrix.
	/// * R2: Another possible rotation matrix.
	/// * t: One possible translation.
	///
	/// This function decomposes the essential matrix E using svd decomposition [HartleyZ00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_HartleyZ00). In
	/// general, four possible poses exist for the decomposition of E. They are ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20t%5D),
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20%2Dt%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20t%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20%2Dt%5D).
	///
	/// If E gives the epipolar constraint ![inline formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20A%5E%7B%2DT%7D%20E%20A%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200) between the image
	/// points ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) in the first image and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) in second image, then any of the tuples
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20t%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F1%2C%20%2Dt%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20t%5D), ![inline formula](https://latex.codecogs.com/png.latex?%5BR%5F2%2C%20%2Dt%5D) is a change of basis from the first
	/// camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
	/// can only get the direction of the translation. For this reason, the translation t is returned with
	/// unit length.
	#[inline]
	pub fn decompose_essential_mat(e: &impl ToInputArray, r1: &mut impl ToOutputArray, r2: &mut impl ToOutputArray, t: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(e);
		output_array_arg!(r1);
		output_array_arg!(r2);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_decomposeEssentialMat_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
	///
	/// ## Parameters
	/// * H: The input homography matrix between two images.
	/// * K: The input camera intrinsic matrix.
	/// * rotations: Array of rotation matrices.
	/// * translations: Array of translation matrices.
	/// * normals: Array of plane normal matrices.
	///
	/// This function extracts relative camera motion between two views of a planar object and returns up to
	/// four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
	/// the homography matrix H is described in detail in [Malis2007](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Malis2007).
	///
	/// If the homography H, induced by the plane, gives the constraint
	/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D) on the source image points
	/// ![inline formula](https://latex.codecogs.com/png.latex?p%5Fi) and the destination image points ![inline formula](https://latex.codecogs.com/png.latex?p%27%5Fi), then the tuple of rotations[k] and
	/// translations[k] is a change of basis from the source camera's coordinate system to the destination
	/// camera's coordinate system. However, by decomposing H, one can only get the translation normalized
	/// by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
	///
	/// If point correspondences are available, at least two solutions may further be invalidated, by
	/// applying positive depth constraint, i.e. all points must be in front of the camera.
	#[inline]
	pub fn decompose_homography_mat(h: &impl ToInputArray, k: &impl ToInputArray, rotations: &mut impl ToOutputArray, translations: &mut impl ToOutputArray, normals: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(h);
		input_array_arg!(k);
		output_array_arg!(rotations);
		output_array_arg!(translations);
		output_array_arg!(normals);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_decomposeHomographyMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(h.as_raw__InputArray(), k.as_raw__InputArray(), rotations.as_raw__OutputArray(), translations.as_raw__OutputArray(), normals.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
	///
	/// ## Parameters
	/// * projMatrix: 3x4 input projection matrix P.
	/// * cameraMatrix: Output 3x3 camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D).
	/// * rotMatrix: Output 3x3 external rotation matrix R.
	/// * transVect: Output 4x1 translation vector T.
	/// * rotMatrixX: Optional 3x3 rotation matrix around x-axis.
	/// * rotMatrixY: Optional 3x3 rotation matrix around y-axis.
	/// * rotMatrixZ: Optional 3x3 rotation matrix around z-axis.
	/// * eulerAngles: Optional three-element vector containing three Euler angles of rotation in
	/// degrees.
	///
	/// The function computes a decomposition of a projection matrix into a calibration and a rotation
	/// matrix and the position of a camera.
	///
	/// It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
	/// be used in OpenGL. Note, there is always more than one sequence of rotations about the three
	/// principal axes that results in the same orientation of an object, e.g. see [Slabaugh](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Slabaugh) . Returned
	/// three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
	///
	/// The function is based on [rq_decomp3x3] .
	///
	/// ## Note
	/// This alternative version of [decompose_projection_matrix] function uses the following default values for its arguments:
	/// * rot_matrix_x: noArray()
	/// * rot_matrix_y: noArray()
	/// * rot_matrix_z: noArray()
	/// * euler_angles: noArray()
	#[inline]
	pub fn decompose_projection_matrix_def(proj_matrix: &impl ToInputArray, camera_matrix: &mut impl ToOutputArray, rot_matrix: &mut impl ToOutputArray, trans_vect: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(proj_matrix);
		output_array_arg!(camera_matrix);
		output_array_arg!(rot_matrix);
		output_array_arg!(trans_vect);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_decomposeProjectionMatrix_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(proj_matrix.as_raw__InputArray(), camera_matrix.as_raw__OutputArray(), rot_matrix.as_raw__OutputArray(), trans_vect.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
	///
	/// ## Parameters
	/// * projMatrix: 3x4 input projection matrix P.
	/// * cameraMatrix: Output 3x3 camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D).
	/// * rotMatrix: Output 3x3 external rotation matrix R.
	/// * transVect: Output 4x1 translation vector T.
	/// * rotMatrixX: Optional 3x3 rotation matrix around x-axis.
	/// * rotMatrixY: Optional 3x3 rotation matrix around y-axis.
	/// * rotMatrixZ: Optional 3x3 rotation matrix around z-axis.
	/// * eulerAngles: Optional three-element vector containing three Euler angles of rotation in
	/// degrees.
	///
	/// The function computes a decomposition of a projection matrix into a calibration and a rotation
	/// matrix and the position of a camera.
	///
	/// It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
	/// be used in OpenGL. Note, there is always more than one sequence of rotations about the three
	/// principal axes that results in the same orientation of an object, e.g. see [Slabaugh](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Slabaugh) . Returned
	/// three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
	///
	/// The function is based on [rq_decomp3x3] .
	///
	/// ## C++ default parameters
	/// * rot_matrix_x: noArray()
	/// * rot_matrix_y: noArray()
	/// * rot_matrix_z: noArray()
	/// * euler_angles: noArray()
	#[inline]
	pub fn decompose_projection_matrix(proj_matrix: &impl ToInputArray, camera_matrix: &mut impl ToOutputArray, rot_matrix: &mut impl ToOutputArray, trans_vect: &mut impl ToOutputArray, rot_matrix_x: &mut impl ToOutputArray, rot_matrix_y: &mut impl ToOutputArray, rot_matrix_z: &mut impl ToOutputArray, euler_angles: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(proj_matrix);
		output_array_arg!(camera_matrix);
		output_array_arg!(rot_matrix);
		output_array_arg!(trans_vect);
		output_array_arg!(rot_matrix_x);
		output_array_arg!(rot_matrix_y);
		output_array_arg!(rot_matrix_z);
		output_array_arg!(euler_angles);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_decomposeProjectionMatrix_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(proj_matrix.as_raw__InputArray(), camera_matrix.as_raw__OutputArray(), rot_matrix.as_raw__OutputArray(), trans_vect.as_raw__OutputArray(), rot_matrix_x.as_raw__OutputArray(), rot_matrix_y.as_raw__OutputArray(), rot_matrix_z.as_raw__OutputArray(), euler_angles.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Renders the detected chessboard corners.
	///
	/// ## Parameters
	/// * image: Destination image. It must be an 8-bit color image.
	/// * patternSize: Number of inner corners per a chessboard row and column
	/// (patternSize = cv::Size(points_per_row,points_per_column)).
	/// * corners: Array of detected corners, the output of #findChessboardCorners.
	/// * patternWasFound: Parameter indicating whether the complete board was found or not. The
	/// return value of [find_chessboard_corners] should be passed here.
	///
	/// The function draws individual chessboard corners detected either as red circles if the board was not
	/// found, or as colored corners connected with lines if the board was found.
	#[inline]
	pub fn draw_chessboard_corners(image: &mut impl ToInputOutputArray, pattern_size: core::Size, corners: &impl ToInputArray, pattern_was_found: bool) -> Result<()> {
		input_output_array_arg!(image);
		input_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_drawChessboardCorners_const__InputOutputArrayR_Size_const__InputArrayR_bool(image.as_raw__InputOutputArray(), &pattern_size, corners.as_raw__InputArray(), pattern_was_found, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Draw axes of the world/object coordinate system from pose estimation. see also: solvePnP
	///
	/// ## Parameters
	/// * image: Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
	/// * cameraMatrix: Input 3x3 floating-point matrix of camera intrinsic parameters.
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D)
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is empty, the zero distortion coefficients are assumed.
	/// * rvec: Rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Translation vector.
	/// * length: Length of the painted axes in the same unit than tvec (usually in meters).
	/// * thickness: Line thickness of the painted axes.
	///
	/// This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
	/// OX is drawn in red, OY in green and OZ in blue.
	///
	/// ## Note
	/// This alternative version of [draw_frame_axes] function uses the following default values for its arguments:
	/// * thickness: 3
	#[inline]
	pub fn draw_frame_axes_def(image: &mut impl ToInputOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &impl ToInputArray, tvec: &impl ToInputArray, length: f32) -> Result<()> {
		input_output_array_arg!(image);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_drawFrameAxes_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_float(image.as_raw__InputOutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), length, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Draw axes of the world/object coordinate system from pose estimation. see also: solvePnP
	///
	/// ## Parameters
	/// * image: Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
	/// * cameraMatrix: Input 3x3 floating-point matrix of camera intrinsic parameters.
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D)
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is empty, the zero distortion coefficients are assumed.
	/// * rvec: Rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Translation vector.
	/// * length: Length of the painted axes in the same unit than tvec (usually in meters).
	/// * thickness: Line thickness of the painted axes.
	///
	/// This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
	/// OX is drawn in red, OY in green and OZ in blue.
	///
	/// ## C++ default parameters
	/// * thickness: 3
	#[inline]
	pub fn draw_frame_axes(image: &mut impl ToInputOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &impl ToInputArray, tvec: &impl ToInputArray, length: f32, thickness: i32) -> Result<()> {
		input_output_array_arg!(image);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_drawFrameAxes_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_float_int(image.as_raw__InputOutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), length, thickness, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes an optimal affine transformation between two 2D point sets.
	///
	/// It computes
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Parameters
	/// * from: First input 2D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%29).
	/// * to: Second input 2D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%29).
	/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
	/// * method: Robust method used to compute transformation. The following methods are possible:
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// RANSAC is the default method.
	/// * ransacReprojThreshold: Maximum reprojection error in the RANSAC algorithm to consider
	/// a point as an inlier. Applies only to RANSAC.
	/// * maxIters: The maximum number of robust method iterations.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	/// * refineIters: Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
	/// Passing 0 will disable refining, so the output matrix will be output of robust method.
	///
	/// ## Returns
	/// Output 2D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?2%20%5Ctimes%203) or empty matrix if transformation
	/// could not be estimated. The returned matrix has the following form:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20b%5F1%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20b%5F2%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// The function estimates an optimal 2D affine transformation between two 2D point sets using the
	/// selected robust algorithm.
	///
	/// The computed transformation is then refined further (using only inliers) with the
	/// Levenberg-Marquardt method to reduce the re-projection error even more.
	///
	///
	/// Note:
	/// The RANSAC method can handle practically any ratio of outliers but needs a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers.
	/// ## See also
	/// estimateAffinePartial2D, getAffineTransform
	///
	/// ## Note
	/// This alternative version of [estimate_affine_2d] function uses the following default values for its arguments:
	/// * inliers: noArray()
	/// * method: RANSAC
	/// * ransac_reproj_threshold: 3
	/// * max_iters: 2000
	/// * confidence: 0.99
	/// * refine_iters: 10
	#[inline]
	pub fn estimate_affine_2d_def(from: &impl ToInputArray, to: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(from);
		input_array_arg!(to);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine2D_const__InputArrayR_const__InputArrayR(from.as_raw__InputArray(), to.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	#[inline]
	pub fn estimate_affine_2d_1(pts1: &impl ToInputArray, pts2: &impl ToInputArray, inliers: &mut impl ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
		input_array_arg!(pts1);
		input_array_arg!(pts2);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine2D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(pts1.as_raw__InputArray(), pts2.as_raw__InputArray(), inliers.as_raw__OutputArray(), &params, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Computes an optimal affine transformation between two 2D point sets.
	///
	/// It computes
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Parameters
	/// * from: First input 2D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%29).
	/// * to: Second input 2D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%29).
	/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
	/// * method: Robust method used to compute transformation. The following methods are possible:
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// RANSAC is the default method.
	/// * ransacReprojThreshold: Maximum reprojection error in the RANSAC algorithm to consider
	/// a point as an inlier. Applies only to RANSAC.
	/// * maxIters: The maximum number of robust method iterations.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	/// * refineIters: Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
	/// Passing 0 will disable refining, so the output matrix will be output of robust method.
	///
	/// ## Returns
	/// Output 2D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?2%20%5Ctimes%203) or empty matrix if transformation
	/// could not be estimated. The returned matrix has the following form:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20b%5F1%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20b%5F2%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// The function estimates an optimal 2D affine transformation between two 2D point sets using the
	/// selected robust algorithm.
	///
	/// The computed transformation is then refined further (using only inliers) with the
	/// Levenberg-Marquardt method to reduce the re-projection error even more.
	///
	///
	/// Note:
	/// The RANSAC method can handle practically any ratio of outliers but needs a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers.
	/// ## See also
	/// estimateAffinePartial2D, getAffineTransform
	///
	/// ## C++ default parameters
	/// * inliers: noArray()
	/// * method: RANSAC
	/// * ransac_reproj_threshold: 3
	/// * max_iters: 2000
	/// * confidence: 0.99
	/// * refine_iters: 10
	#[inline]
	pub fn estimate_affine_2d(from: &impl ToInputArray, to: &impl ToInputArray, inliers: &mut impl ToOutputArray, method: i32, ransac_reproj_threshold: f64, max_iters: size_t, confidence: f64, refine_iters: size_t) -> Result<core::Mat> {
		input_array_arg!(from);
		input_array_arg!(to);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine2D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_size_t_double_size_t(from.as_raw__InputArray(), to.as_raw__InputArray(), inliers.as_raw__OutputArray(), method, ransac_reproj_threshold, max_iters, confidence, refine_iters, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Computes an optimal affine transformation between two 3D point sets.
	///
	/// It computes ![inline formula](https://latex.codecogs.com/png.latex?R%2Cs%2Ct) minimizing ![inline formula](https://latex.codecogs.com/png.latex?%5Csum%7Bi%7D%20dst%5Fi%20%2D%20c%20%5Ccdot%20R%20%5Ccdot%20src%5Fi%20)
	/// where ![inline formula](https://latex.codecogs.com/png.latex?R) is a 3x3 rotation matrix, ![inline formula](https://latex.codecogs.com/png.latex?t) is a 3x1 translation vector and ![inline formula](https://latex.codecogs.com/png.latex?s) is a
	/// scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
	/// The estimated affine transform has a homogeneous scale which is a subclass of affine
	/// transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
	/// points each.
	///
	/// ## Parameters
	/// * src: First input 3D point set.
	/// * dst: Second input 3D point set.
	/// * scale: If null is passed, the scale parameter c will be assumed to be 1.0.
	/// Else the pointed-to variable will be set to the optimal scale.
	/// * force_rotation: If true, the returned rotation will never be a reflection.
	/// This might be unwanted, e.g. when optimizing a transform between a right- and a
	/// left-handed coordinate system.
	/// ## Returns
	/// 3D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%204) of the form
	/// ![block formula](https://latex.codecogs.com/png.latex?T%20%3D%0A%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Note
	/// This alternative version of [estimate_affine_3d_1] function uses the following default values for its arguments:
	/// * scale: nullptr
	/// * force_rotation: true
	#[inline]
	pub fn estimate_affine_3d_1_def(src: &impl ToInputArray, dst: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(src);
		input_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine3D_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Computes an optimal affine transformation between two 3D point sets.
	///
	/// It computes
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0Az%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20a%5F%7B13%7D%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20a%5F%7B23%7D%5C%5C%0Aa%5F%7B31%7D%20%26%20a%5F%7B32%7D%20%26%20a%5F%7B33%7D%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0AZ%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0Ab%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Parameters
	/// * src: First input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%2CZ%29).
	/// * dst: Second input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%2Cz%29).
	/// * out: Output 3D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%204) of the form
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20a%5F%7B13%7D%20%26%20b%5F1%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20a%5F%7B23%7D%20%26%20b%5F2%5C%5C%0Aa%5F%7B31%7D%20%26%20a%5F%7B32%7D%20%26%20a%5F%7B33%7D%20%26%20b%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
	/// * ransacThreshold: Maximum reprojection error in the RANSAC algorithm to consider a point as
	/// an inlier.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	///
	/// The function estimates an optimal 3D affine transformation between two 3D point sets using the
	/// RANSAC algorithm.
	///
	/// ## Note
	/// This alternative version of [estimate_affine_3d] function uses the following default values for its arguments:
	/// * ransac_threshold: 3
	/// * confidence: 0.99
	#[inline]
	pub fn estimate_affine_3d_def(src: &impl ToInputArray, dst: &impl ToInputArray, out: &mut impl ToOutputArray, inliers: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(src);
		input_array_arg!(dst);
		output_array_arg!(out);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine3D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__InputArray(), out.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes an optimal affine transformation between two 3D point sets.
	///
	/// It computes
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0Az%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20a%5F%7B13%7D%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20a%5F%7B23%7D%5C%5C%0Aa%5F%7B31%7D%20%26%20a%5F%7B32%7D%20%26%20a%5F%7B33%7D%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0AZ%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0Ab%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Parameters
	/// * src: First input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%2CZ%29).
	/// * dst: Second input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%2Cz%29).
	/// * out: Output 3D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%204) of the form
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Aa%5F%7B11%7D%20%26%20a%5F%7B12%7D%20%26%20a%5F%7B13%7D%20%26%20b%5F1%5C%5C%0Aa%5F%7B21%7D%20%26%20a%5F%7B22%7D%20%26%20a%5F%7B23%7D%20%26%20b%5F2%5C%5C%0Aa%5F%7B31%7D%20%26%20a%5F%7B32%7D%20%26%20a%5F%7B33%7D%20%26%20b%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
	/// * ransacThreshold: Maximum reprojection error in the RANSAC algorithm to consider a point as
	/// an inlier.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	///
	/// The function estimates an optimal 3D affine transformation between two 3D point sets using the
	/// RANSAC algorithm.
	///
	/// ## C++ default parameters
	/// * ransac_threshold: 3
	/// * confidence: 0.99
	#[inline]
	pub fn estimate_affine_3d(src: &impl ToInputArray, dst: &impl ToInputArray, out: &mut impl ToOutputArray, inliers: &mut impl ToOutputArray, ransac_threshold: f64, confidence: f64) -> Result<i32> {
		input_array_arg!(src);
		input_array_arg!(dst);
		output_array_arg!(out);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine3D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_double(src.as_raw__InputArray(), dst.as_raw__InputArray(), out.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ransac_threshold, confidence, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes an optimal affine transformation between two 3D point sets.
	///
	/// It computes ![inline formula](https://latex.codecogs.com/png.latex?R%2Cs%2Ct) minimizing ![inline formula](https://latex.codecogs.com/png.latex?%5Csum%7Bi%7D%20dst%5Fi%20%2D%20c%20%5Ccdot%20R%20%5Ccdot%20src%5Fi%20)
	/// where ![inline formula](https://latex.codecogs.com/png.latex?R) is a 3x3 rotation matrix, ![inline formula](https://latex.codecogs.com/png.latex?t) is a 3x1 translation vector and ![inline formula](https://latex.codecogs.com/png.latex?s) is a
	/// scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
	/// The estimated affine transform has a homogeneous scale which is a subclass of affine
	/// transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
	/// points each.
	///
	/// ## Parameters
	/// * src: First input 3D point set.
	/// * dst: Second input 3D point set.
	/// * scale: If null is passed, the scale parameter c will be assumed to be 1.0.
	/// Else the pointed-to variable will be set to the optimal scale.
	/// * force_rotation: If true, the returned rotation will never be a reflection.
	/// This might be unwanted, e.g. when optimizing a transform between a right- and a
	/// left-handed coordinate system.
	/// ## Returns
	/// 3D affine transformation matrix ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%204) of the form
	/// ![block formula](https://latex.codecogs.com/png.latex?T%20%3D%0A%5Cbegin%7Bbmatrix%7D%0AR%20%26%20t%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## C++ default parameters
	/// * scale: nullptr
	/// * force_rotation: true
	#[inline]
	pub fn estimate_affine_3d_1(src: &impl ToInputArray, dst: &impl ToInputArray, scale: &mut f64, force_rotation: bool) -> Result<core::Mat> {
		input_array_arg!(src);
		input_array_arg!(dst);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffine3D_const__InputArrayR_const__InputArrayR_doubleX_bool(src.as_raw__InputArray(), dst.as_raw__InputArray(), scale, force_rotation, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Computes an optimal limited affine transformation with 4 degrees of freedom between
	/// two 2D point sets.
	///
	/// ## Parameters
	/// * from: First input 2D point set.
	/// * to: Second input 2D point set.
	/// * inliers: Output vector indicating which points are inliers.
	/// * method: Robust method used to compute transformation. The following methods are possible:
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// RANSAC is the default method.
	/// * ransacReprojThreshold: Maximum reprojection error in the RANSAC algorithm to consider
	/// a point as an inlier. Applies only to RANSAC.
	/// * maxIters: The maximum number of robust method iterations.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	/// * refineIters: Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
	/// Passing 0 will disable refining, so the output matrix will be output of robust method.
	///
	/// ## Returns
	/// Output 2D affine transformation (4 degrees of freedom) matrix ![inline formula](https://latex.codecogs.com/png.latex?2%20%5Ctimes%203) or
	/// empty matrix if transformation could not be estimated.
	///
	/// The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
	/// combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
	/// estimation.
	///
	/// The computed transformation is then refined further (using only inliers) with the
	/// Levenberg-Marquardt method to reduce the re-projection error even more.
	///
	/// Estimated transformation matrix is:
	/// ![block formula](https://latex.codecogs.com/png.latex?%20%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctheta%29%20%5Ccdot%20s%20%26%20%2D%5Csin%28%5Ctheta%29%20%5Ccdot%20s%20%26%20t%5Fx%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Csin%28%5Ctheta%29%20%5Ccdot%20s%20%26%20%5Ccos%28%5Ctheta%29%20%5Ccdot%20s%20%26%20t%5Fy%0A%5Cend%7Bbmatrix%7D%20)
	/// Where ![inline formula](https://latex.codecogs.com/png.latex?%20%5Ctheta%20) is the rotation angle, ![inline formula](https://latex.codecogs.com/png.latex?%20s%20) the scaling factor and ![inline formula](https://latex.codecogs.com/png.latex?%20t%5Fx%2C%20t%5Fy%20) are
	/// translations in ![inline formula](https://latex.codecogs.com/png.latex?%20x%2C%20y%20) axes respectively.
	///
	///
	/// Note:
	/// The RANSAC method can handle practically any ratio of outliers but need a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers.
	/// ## See also
	/// estimateAffine2D, getAffineTransform
	///
	/// ## Note
	/// This alternative version of [estimate_affine_partial_2d] function uses the following default values for its arguments:
	/// * inliers: noArray()
	/// * method: RANSAC
	/// * ransac_reproj_threshold: 3
	/// * max_iters: 2000
	/// * confidence: 0.99
	/// * refine_iters: 10
	#[inline]
	pub fn estimate_affine_partial_2d_def(from: &impl ToInputArray, to: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(from);
		input_array_arg!(to);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffinePartial2D_const__InputArrayR_const__InputArrayR(from.as_raw__InputArray(), to.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Computes an optimal limited affine transformation with 4 degrees of freedom between
	/// two 2D point sets.
	///
	/// ## Parameters
	/// * from: First input 2D point set.
	/// * to: Second input 2D point set.
	/// * inliers: Output vector indicating which points are inliers.
	/// * method: Robust method used to compute transformation. The following methods are possible:
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// RANSAC is the default method.
	/// * ransacReprojThreshold: Maximum reprojection error in the RANSAC algorithm to consider
	/// a point as an inlier. Applies only to RANSAC.
	/// * maxIters: The maximum number of robust method iterations.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	/// * refineIters: Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
	/// Passing 0 will disable refining, so the output matrix will be output of robust method.
	///
	/// ## Returns
	/// Output 2D affine transformation (4 degrees of freedom) matrix ![inline formula](https://latex.codecogs.com/png.latex?2%20%5Ctimes%203) or
	/// empty matrix if transformation could not be estimated.
	///
	/// The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
	/// combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
	/// estimation.
	///
	/// The computed transformation is then refined further (using only inliers) with the
	/// Levenberg-Marquardt method to reduce the re-projection error even more.
	///
	/// Estimated transformation matrix is:
	/// ![block formula](https://latex.codecogs.com/png.latex?%20%5Cbegin%7Bbmatrix%7D%20%5Ccos%28%5Ctheta%29%20%5Ccdot%20s%20%26%20%2D%5Csin%28%5Ctheta%29%20%5Ccdot%20s%20%26%20t%5Fx%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Csin%28%5Ctheta%29%20%5Ccdot%20s%20%26%20%5Ccos%28%5Ctheta%29%20%5Ccdot%20s%20%26%20t%5Fy%0A%5Cend%7Bbmatrix%7D%20)
	/// Where ![inline formula](https://latex.codecogs.com/png.latex?%20%5Ctheta%20) is the rotation angle, ![inline formula](https://latex.codecogs.com/png.latex?%20s%20) the scaling factor and ![inline formula](https://latex.codecogs.com/png.latex?%20t%5Fx%2C%20t%5Fy%20) are
	/// translations in ![inline formula](https://latex.codecogs.com/png.latex?%20x%2C%20y%20) axes respectively.
	///
	///
	/// Note:
	/// The RANSAC method can handle practically any ratio of outliers but need a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers.
	/// ## See also
	/// estimateAffine2D, getAffineTransform
	///
	/// ## C++ default parameters
	/// * inliers: noArray()
	/// * method: RANSAC
	/// * ransac_reproj_threshold: 3
	/// * max_iters: 2000
	/// * confidence: 0.99
	/// * refine_iters: 10
	#[inline]
	pub fn estimate_affine_partial_2d(from: &impl ToInputArray, to: &impl ToInputArray, inliers: &mut impl ToOutputArray, method: i32, ransac_reproj_threshold: f64, max_iters: size_t, confidence: f64, refine_iters: size_t) -> Result<core::Mat> {
		input_array_arg!(from);
		input_array_arg!(to);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateAffinePartial2D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_size_t_double_size_t(from.as_raw__InputArray(), to.as_raw__InputArray(), inliers.as_raw__OutputArray(), method, ransac_reproj_threshold, max_iters, confidence, refine_iters, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Estimates the sharpness of a detected chessboard.
	///
	/// Image sharpness, as well as brightness, are a critical parameter for accuracte
	/// camera calibration. For accessing these parameters for filtering out
	/// problematic calibraiton images, this method calculates edge profiles by traveling from
	/// black to white chessboard cell centers. Based on this, the number of pixels is
	/// calculated required to transit from black to white. This width of the
	/// transition area is a good indication of how sharp the chessboard is imaged
	/// and should be below ~3.0 pixels.
	///
	/// ## Parameters
	/// * image: Gray image used to find chessboard corners
	/// * patternSize: Size of a found chessboard pattern
	/// * corners: Corners found by [find_chessboard_corners_sb]
	/// * rise_distance: Rise distance 0.8 means 10% ... 90% of the final signal strength
	/// * vertical: By default edge responses for horizontal lines are calculated
	/// * sharpness: Optional output array with a sharpness value for calculated edge responses (see description)
	///
	/// The optional sharpness array is of type CV_32FC1 and has for each calculated
	/// profile one row with the following five entries:
	/// * 0 = x coordinate of the underlying edge in the image
	/// * 1 = y coordinate of the underlying edge in the image
	/// * 2 = width of the transition area (sharpness)
	/// * 3 = signal strength in the black cell (min brightness)
	/// * 4 = signal strength in the white cell (max brightness)
	///
	/// ## Returns
	/// Scalar(average sharpness, average min brightness, average max brightness,0)
	///
	/// ## Note
	/// This alternative version of [estimate_chessboard_sharpness] function uses the following default values for its arguments:
	/// * rise_distance: 0.8F
	/// * vertical: false
	/// * sharpness: noArray()
	#[inline]
	pub fn estimate_chessboard_sharpness_def(image: &impl ToInputArray, pattern_size: core::Size, corners: &impl ToInputArray) -> Result<core::Scalar> {
		input_array_arg!(image);
		input_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateChessboardSharpness_const__InputArrayR_Size_const__InputArrayR(image.as_raw__InputArray(), &pattern_size, corners.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Estimates the sharpness of a detected chessboard.
	///
	/// Image sharpness, as well as brightness, are a critical parameter for accuracte
	/// camera calibration. For accessing these parameters for filtering out
	/// problematic calibraiton images, this method calculates edge profiles by traveling from
	/// black to white chessboard cell centers. Based on this, the number of pixels is
	/// calculated required to transit from black to white. This width of the
	/// transition area is a good indication of how sharp the chessboard is imaged
	/// and should be below ~3.0 pixels.
	///
	/// ## Parameters
	/// * image: Gray image used to find chessboard corners
	/// * patternSize: Size of a found chessboard pattern
	/// * corners: Corners found by [find_chessboard_corners_sb]
	/// * rise_distance: Rise distance 0.8 means 10% ... 90% of the final signal strength
	/// * vertical: By default edge responses for horizontal lines are calculated
	/// * sharpness: Optional output array with a sharpness value for calculated edge responses (see description)
	///
	/// The optional sharpness array is of type CV_32FC1 and has for each calculated
	/// profile one row with the following five entries:
	/// * 0 = x coordinate of the underlying edge in the image
	/// * 1 = y coordinate of the underlying edge in the image
	/// * 2 = width of the transition area (sharpness)
	/// * 3 = signal strength in the black cell (min brightness)
	/// * 4 = signal strength in the white cell (max brightness)
	///
	/// ## Returns
	/// Scalar(average sharpness, average min brightness, average max brightness,0)
	///
	/// ## C++ default parameters
	/// * rise_distance: 0.8F
	/// * vertical: false
	/// * sharpness: noArray()
	#[inline]
	pub fn estimate_chessboard_sharpness(image: &impl ToInputArray, pattern_size: core::Size, corners: &impl ToInputArray, rise_distance: f32, vertical: bool, sharpness: &mut impl ToOutputArray) -> Result<core::Scalar> {
		input_array_arg!(image);
		input_array_arg!(corners);
		output_array_arg!(sharpness);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateChessboardSharpness_const__InputArrayR_Size_const__InputArrayR_float_bool_const__OutputArrayR(image.as_raw__InputArray(), &pattern_size, corners.as_raw__InputArray(), rise_distance, vertical, sharpness.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes an optimal translation between two 3D point sets.
	///
	/// It computes
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0Az%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0AZ%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0Ab%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Parameters
	/// * src: First input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%2CZ%29).
	/// * dst: Second input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%2Cz%29).
	/// * out: Output 3D translation vector ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%201) of the form
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%20%5C%5C%0Ab%5F2%20%5C%5C%0Ab%5F3%20%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
	/// * ransacThreshold: Maximum reprojection error in the RANSAC algorithm to consider a point as
	/// an inlier.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	///
	/// The function estimates an optimal 3D translation between two 3D point sets using the
	/// RANSAC algorithm.
	///
	/// ## Note
	/// This alternative version of [estimate_translation_3d] function uses the following default values for its arguments:
	/// * ransac_threshold: 3
	/// * confidence: 0.99
	#[inline]
	pub fn estimate_translation_3d_def(src: &impl ToInputArray, dst: &impl ToInputArray, out: &mut impl ToOutputArray, inliers: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(src);
		input_array_arg!(dst);
		output_array_arg!(out);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateTranslation3D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__InputArray(), out.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes an optimal translation between two 3D point sets.
	///
	/// It computes
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ax%5C%5C%0Ay%5C%5C%0Az%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%3D%0A%5Cbegin%7Bbmatrix%7D%0AX%5C%5C%0AY%5C%5C%0AZ%5C%5C%0A%5Cend%7Bbmatrix%7D%0A%2B%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%5C%5C%0Ab%5F2%5C%5C%0Ab%5F3%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	///
	/// ## Parameters
	/// * src: First input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28X%2CY%2CZ%29).
	/// * dst: Second input 3D point set containing ![inline formula](https://latex.codecogs.com/png.latex?%28x%2Cy%2Cz%29).
	/// * out: Output 3D translation vector ![inline formula](https://latex.codecogs.com/png.latex?3%20%5Ctimes%201) of the form
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Bbmatrix%7D%0Ab%5F1%20%5C%5C%0Ab%5F2%20%5C%5C%0Ab%5F3%20%5C%5C%0A%5Cend%7Bbmatrix%7D%0A)
	/// * inliers: Output vector indicating which points are inliers (1-inlier, 0-outlier).
	/// * ransacThreshold: Maximum reprojection error in the RANSAC algorithm to consider a point as
	/// an inlier.
	/// * confidence: Confidence level, between 0 and 1, for the estimated transformation. Anything
	/// between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
	/// significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
	///
	/// The function estimates an optimal 3D translation between two 3D point sets using the
	/// RANSAC algorithm.
	///
	/// ## C++ default parameters
	/// * ransac_threshold: 3
	/// * confidence: 0.99
	#[inline]
	pub fn estimate_translation_3d(src: &impl ToInputArray, dst: &impl ToInputArray, out: &mut impl ToOutputArray, inliers: &mut impl ToOutputArray, ransac_threshold: f64, confidence: f64) -> Result<i32> {
		input_array_arg!(src);
		input_array_arg!(dst);
		output_array_arg!(out);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_estimateTranslation3D_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_double(src.as_raw__InputArray(), dst.as_raw__InputArray(), out.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ransac_threshold, confidence, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Filters homography decompositions based on additional information.
	///
	/// ## Parameters
	/// * rotations: Vector of rotation matrices.
	/// * normals: Vector of plane normal matrices.
	/// * beforePoints: Vector of (rectified) visible reference points before the homography is applied
	/// * afterPoints: Vector of (rectified) visible reference points after the homography is applied
	/// * possibleSolutions: Vector of int indices representing the viable solution set after filtering
	/// * pointsMask: optional Mat/Vector of 8u type representing the mask for the inliers as given by the [find_homography] function
	///
	/// This function is intended to filter the output of the [decompose_homography_mat] based on additional
	/// information as described in [Malis2007](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Malis2007) . The summary of the method: the [decompose_homography_mat] function
	/// returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
	/// sets of points visible in the camera frame before and after the homography transformation is applied,
	/// we can determine which are the true potential solutions and which are the opposites by verifying which
	/// homographies are consistent with all visible reference points being in front of the camera. The inputs
	/// are left unchanged; the filtered solution set is returned as indices into the existing one.
	///
	/// ## Note
	/// This alternative version of [filter_homography_decomp_by_visible_refpoints] function uses the following default values for its arguments:
	/// * points_mask: noArray()
	#[inline]
	pub fn filter_homography_decomp_by_visible_refpoints_def(rotations: &impl ToInputArray, normals: &impl ToInputArray, before_points: &impl ToInputArray, after_points: &impl ToInputArray, possible_solutions: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(rotations);
		input_array_arg!(normals);
		input_array_arg!(before_points);
		input_array_arg!(after_points);
		output_array_arg!(possible_solutions);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_filterHomographyDecompByVisibleRefpoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(rotations.as_raw__InputArray(), normals.as_raw__InputArray(), before_points.as_raw__InputArray(), after_points.as_raw__InputArray(), possible_solutions.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Filters homography decompositions based on additional information.
	///
	/// ## Parameters
	/// * rotations: Vector of rotation matrices.
	/// * normals: Vector of plane normal matrices.
	/// * beforePoints: Vector of (rectified) visible reference points before the homography is applied
	/// * afterPoints: Vector of (rectified) visible reference points after the homography is applied
	/// * possibleSolutions: Vector of int indices representing the viable solution set after filtering
	/// * pointsMask: optional Mat/Vector of 8u type representing the mask for the inliers as given by the [find_homography] function
	///
	/// This function is intended to filter the output of the [decompose_homography_mat] based on additional
	/// information as described in [Malis2007](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Malis2007) . The summary of the method: the [decompose_homography_mat] function
	/// returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
	/// sets of points visible in the camera frame before and after the homography transformation is applied,
	/// we can determine which are the true potential solutions and which are the opposites by verifying which
	/// homographies are consistent with all visible reference points being in front of the camera. The inputs
	/// are left unchanged; the filtered solution set is returned as indices into the existing one.
	///
	/// ## C++ default parameters
	/// * points_mask: noArray()
	#[inline]
	pub fn filter_homography_decomp_by_visible_refpoints(rotations: &impl ToInputArray, normals: &impl ToInputArray, before_points: &impl ToInputArray, after_points: &impl ToInputArray, possible_solutions: &mut impl ToOutputArray, points_mask: &impl ToInputArray) -> Result<()> {
		input_array_arg!(rotations);
		input_array_arg!(normals);
		input_array_arg!(before_points);
		input_array_arg!(after_points);
		output_array_arg!(possible_solutions);
		input_array_arg!(points_mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_filterHomographyDecompByVisibleRefpoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR(rotations.as_raw__InputArray(), normals.as_raw__InputArray(), before_points.as_raw__InputArray(), after_points.as_raw__InputArray(), possible_solutions.as_raw__OutputArray(), points_mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Filters off small noise blobs (speckles) in the disparity map
	///
	/// ## Parameters
	/// * img: The input 16-bit signed disparity image
	/// * newVal: The disparity value used to paint-off the speckles
	/// * maxSpeckleSize: The maximum speckle size to consider it a speckle. Larger blobs are not
	/// affected by the algorithm
	/// * maxDiff: Maximum difference between neighbor disparity pixels to put them into the same
	/// blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
	/// disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
	/// account when specifying this parameter value.
	/// * buf: The optional temporary buffer to avoid memory allocation within the function.
	///
	/// ## Note
	/// This alternative version of [filter_speckles] function uses the following default values for its arguments:
	/// * buf: noArray()
	#[inline]
	pub fn filter_speckles_def(img: &mut impl ToInputOutputArray, new_val: f64, max_speckle_size: i32, max_diff: f64) -> Result<()> {
		input_output_array_arg!(img);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_filterSpeckles_const__InputOutputArrayR_double_int_double(img.as_raw__InputOutputArray(), new_val, max_speckle_size, max_diff, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Filters off small noise blobs (speckles) in the disparity map
	///
	/// ## Parameters
	/// * img: The input 16-bit signed disparity image
	/// * newVal: The disparity value used to paint-off the speckles
	/// * maxSpeckleSize: The maximum speckle size to consider it a speckle. Larger blobs are not
	/// affected by the algorithm
	/// * maxDiff: Maximum difference between neighbor disparity pixels to put them into the same
	/// blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
	/// disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
	/// account when specifying this parameter value.
	/// * buf: The optional temporary buffer to avoid memory allocation within the function.
	///
	/// ## C++ default parameters
	/// * buf: noArray()
	#[inline]
	pub fn filter_speckles(img: &mut impl ToInputOutputArray, new_val: f64, max_speckle_size: i32, max_diff: f64, buf: &mut impl ToInputOutputArray) -> Result<()> {
		input_output_array_arg!(img);
		input_output_array_arg!(buf);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_filterSpeckles_const__InputOutputArrayR_double_int_double_const__InputOutputArrayR(img.as_raw__InputOutputArray(), new_val, max_speckle_size, max_diff, buf.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// finds subpixel-accurate positions of the chessboard corners
	#[inline]
	pub fn find4_quad_corner_subpix(img: &impl ToInputArray, corners: &mut impl ToInputOutputArray, region_size: core::Size) -> Result<bool> {
		input_array_arg!(img);
		input_output_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_find4QuadCornerSubpix_const__InputArrayR_const__InputOutputArrayR_Size(img.as_raw__InputArray(), corners.as_raw__InputOutputArray(), &region_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [find_chessboard_corners_sb] function uses the following default values for its arguments:
	/// * flags: 0
	#[inline]
	pub fn find_chessboard_corners_sb_def(image: &impl ToInputArray, pattern_size: core::Size, corners: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findChessboardCornersSB_const__InputArrayR_Size_const__OutputArrayR(image.as_raw__InputArray(), &pattern_size, corners.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the positions of internal corners of the chessboard using a sector based approach.
	///
	/// ## Parameters
	/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
	/// * patternSize: Number of inner corners per a chessboard row and column
	/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
	/// * corners: Output array of detected corners.
	/// * flags: Various operation flags that can be zero or a combination of the following values:
	/// *   [CALIB_CB_NORMALIZE_IMAGE] Normalize the image gamma with equalizeHist before detection.
	/// *   [CALIB_CB_EXHAUSTIVE] Run an exhaustive search to improve detection rate.
	/// *   [CALIB_CB_ACCURACY] Up sample input image to improve sub-pixel accuracy due to aliasing effects.
	/// *   [CALIB_CB_LARGER] The detected pattern is allowed to be larger than patternSize (see description).
	/// *   [CALIB_CB_MARKER] The detected pattern must have a marker (see description).
	/// This should be used if an accurate camera calibration is required.
	/// * meta: Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
	/// Each entry stands for one corner of the pattern and can have one of the following values:
	/// *   0 = no meta data attached
	/// *   1 = left-top corner of a black cell
	/// *   2 = left-top corner of a white cell
	/// *   3 = left-top corner of a black cell with a white marker dot
	/// *   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
	///
	/// The function is analog to [find_chessboard_corners] but uses a localized radon
	/// transformation approximated by box filters being more robust to all sort of
	/// noise, faster on larger images and is able to directly return the sub-pixel
	/// position of the internal chessboard corners. The Method is based on the paper
	/// [duda2018](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_duda2018) "Accurate Detection and Localization of Checkerboard Corners for
	/// Calibration" demonstrating that the returned sub-pixel positions are more
	/// accurate than the one returned by cornerSubPix allowing a precise camera
	/// calibration for demanding applications.
	///
	/// In the case, the flags [CALIB_CB_LARGER] or [CALIB_CB_MARKER] are given,
	/// the result can be recovered from the optional meta array. Both flags are
	/// helpful to use calibration patterns exceeding the field of view of the camera.
	/// These oversized patterns allow more accurate calibrations as corners can be
	/// utilized, which are as close as possible to the image borders.  For a
	/// consistent coordinate system across all images, the optional marker (see image
	/// below) can be used to move the origin of the board to the location where the
	/// black circle is located.
	///
	///
	/// Note: The function requires a white boarder with roughly the same width as one
	/// of the checkerboard fields around the whole board to improve the detection in
	/// various environments. In addition, because of the localized radon
	/// transformation it is beneficial to use round corners for the field corners
	/// which are located on the outside of the board. The following figure illustrates
	/// a sample checkerboard optimized for the detection. However, any other checkerboard
	/// can be used as well.
	///
	/// Use gen_pattern.py ([tutorial_camera_calibration_pattern]) to create checkerboard.
	/// ![Checkerboard](https://docs.opencv.org/4.11.0/checkerboard_radon.png)
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: 0
	#[inline]
	pub fn find_chessboard_corners_sb(image: &impl ToInputArray, pattern_size: core::Size, corners: &mut impl ToOutputArray, flags: i32) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findChessboardCornersSB_const__InputArrayR_Size_const__OutputArrayR_int(image.as_raw__InputArray(), &pattern_size, corners.as_raw__OutputArray(), flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the positions of internal corners of the chessboard using a sector based approach.
	///
	/// ## Parameters
	/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
	/// * patternSize: Number of inner corners per a chessboard row and column
	/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
	/// * corners: Output array of detected corners.
	/// * flags: Various operation flags that can be zero or a combination of the following values:
	/// *   [CALIB_CB_NORMALIZE_IMAGE] Normalize the image gamma with equalizeHist before detection.
	/// *   [CALIB_CB_EXHAUSTIVE] Run an exhaustive search to improve detection rate.
	/// *   [CALIB_CB_ACCURACY] Up sample input image to improve sub-pixel accuracy due to aliasing effects.
	/// *   [CALIB_CB_LARGER] The detected pattern is allowed to be larger than patternSize (see description).
	/// *   [CALIB_CB_MARKER] The detected pattern must have a marker (see description).
	/// This should be used if an accurate camera calibration is required.
	/// * meta: Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
	/// Each entry stands for one corner of the pattern and can have one of the following values:
	/// *   0 = no meta data attached
	/// *   1 = left-top corner of a black cell
	/// *   2 = left-top corner of a white cell
	/// *   3 = left-top corner of a black cell with a white marker dot
	/// *   4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
	///
	/// The function is analog to [find_chessboard_corners] but uses a localized radon
	/// transformation approximated by box filters being more robust to all sort of
	/// noise, faster on larger images and is able to directly return the sub-pixel
	/// position of the internal chessboard corners. The Method is based on the paper
	/// [duda2018](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_duda2018) "Accurate Detection and Localization of Checkerboard Corners for
	/// Calibration" demonstrating that the returned sub-pixel positions are more
	/// accurate than the one returned by cornerSubPix allowing a precise camera
	/// calibration for demanding applications.
	///
	/// In the case, the flags [CALIB_CB_LARGER] or [CALIB_CB_MARKER] are given,
	/// the result can be recovered from the optional meta array. Both flags are
	/// helpful to use calibration patterns exceeding the field of view of the camera.
	/// These oversized patterns allow more accurate calibrations as corners can be
	/// utilized, which are as close as possible to the image borders.  For a
	/// consistent coordinate system across all images, the optional marker (see image
	/// below) can be used to move the origin of the board to the location where the
	/// black circle is located.
	///
	///
	/// Note: The function requires a white boarder with roughly the same width as one
	/// of the checkerboard fields around the whole board to improve the detection in
	/// various environments. In addition, because of the localized radon
	/// transformation it is beneficial to use round corners for the field corners
	/// which are located on the outside of the board. The following figure illustrates
	/// a sample checkerboard optimized for the detection. However, any other checkerboard
	/// can be used as well.
	///
	/// Use gen_pattern.py ([tutorial_camera_calibration_pattern]) to create checkerboard.
	/// ![Checkerboard](https://docs.opencv.org/4.11.0/checkerboard_radon.png)
	#[inline]
	pub fn find_chessboard_corners_sb_with_meta(image: &impl ToInputArray, pattern_size: core::Size, corners: &mut impl ToOutputArray, flags: i32, meta: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(corners);
		output_array_arg!(meta);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findChessboardCornersSB_const__InputArrayR_Size_const__OutputArrayR_int_const__OutputArrayR(image.as_raw__InputArray(), &pattern_size, corners.as_raw__OutputArray(), flags, meta.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the positions of internal corners of the chessboard.
	///
	/// ## Parameters
	/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
	/// * patternSize: Number of inner corners per a chessboard row and column
	/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
	/// * corners: Output array of detected corners.
	/// * flags: Various operation flags that can be zero or a combination of the following values:
	/// *   [CALIB_CB_ADAPTIVE_THRESH] Use adaptive thresholding to convert the image to black
	/// and white, rather than a fixed threshold level (computed from the average image brightness).
	/// *   [CALIB_CB_NORMALIZE_IMAGE] Normalize the image gamma with [equalize_hist] before
	/// applying fixed or adaptive thresholding.
	/// *   [CALIB_CB_FILTER_QUADS] Use additional criteria (like contour area, perimeter,
	/// square-like shape) to filter out false quads extracted at the contour retrieval stage.
	/// *   [CALIB_CB_FAST_CHECK] Run a fast check on the image that looks for chessboard corners,
	/// and shortcut the call if none is found. This can drastically speed up the call in the
	/// degenerate condition when no chessboard is observed.
	/// *   [CALIB_CB_PLAIN] All other flags are ignored. The input image is taken as is.
	/// No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
	/// execution of the function but could lead to not recognizing the checkerboard if the image
	/// is not previously binarized in the appropriate manner.
	///
	/// The function attempts to determine whether the input image is a view of the chessboard pattern and
	/// locate the internal chessboard corners. The function returns a non-zero value if all of the corners
	/// are found and they are placed in a certain order (row by row, left to right in every row).
	/// Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
	/// a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
	/// squares touch each other. The detected coordinates are approximate, and to determine their positions
	/// more accurately, the function calls #cornerSubPix. You also may use the function [corner_sub_pix] with
	/// different parameters if returned coordinates are not accurate enough.
	///
	/// Sample usage of detecting and drawing chessboard corners: :
	/// ```C++
	///    Size patternsize(8,6); //interior number of corners
	///    Mat gray = ....; //source image
	///    vector<Point2f> corners; //this will be filled by the detected corners
	///
	///    //CALIB_CB_FAST_CHECK saves a lot of time on images
	///    //that do not contain any chessboard corners
	///    bool patternfound = findChessboardCorners(gray, patternsize, corners,
	///            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
	///            + CALIB_CB_FAST_CHECK);
	///
	///    if(patternfound)
	///       cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
	///        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
	///
	///    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
	/// ```
	///
	///
	/// Note: The function requires white space (like a square-thick border, the wider the better) around
	/// the board to make the detection more robust in various environments. Otherwise, if there is no
	/// border and the background is dark, the outer black squares cannot be segmented properly and so the
	/// square grouping and ordering algorithm fails.
	///
	/// Use gen_pattern.py ([tutorial_camera_calibration_pattern]) to create checkerboard.
	///
	/// ## Note
	/// This alternative version of [find_chessboard_corners] function uses the following default values for its arguments:
	/// * flags: CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE
	#[inline]
	pub fn find_chessboard_corners_def(image: &impl ToInputArray, pattern_size: core::Size, corners: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findChessboardCorners_const__InputArrayR_Size_const__OutputArrayR(image.as_raw__InputArray(), &pattern_size, corners.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds the positions of internal corners of the chessboard.
	///
	/// ## Parameters
	/// * image: Source chessboard view. It must be an 8-bit grayscale or color image.
	/// * patternSize: Number of inner corners per a chessboard row and column
	/// ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).
	/// * corners: Output array of detected corners.
	/// * flags: Various operation flags that can be zero or a combination of the following values:
	/// *   [CALIB_CB_ADAPTIVE_THRESH] Use adaptive thresholding to convert the image to black
	/// and white, rather than a fixed threshold level (computed from the average image brightness).
	/// *   [CALIB_CB_NORMALIZE_IMAGE] Normalize the image gamma with [equalize_hist] before
	/// applying fixed or adaptive thresholding.
	/// *   [CALIB_CB_FILTER_QUADS] Use additional criteria (like contour area, perimeter,
	/// square-like shape) to filter out false quads extracted at the contour retrieval stage.
	/// *   [CALIB_CB_FAST_CHECK] Run a fast check on the image that looks for chessboard corners,
	/// and shortcut the call if none is found. This can drastically speed up the call in the
	/// degenerate condition when no chessboard is observed.
	/// *   [CALIB_CB_PLAIN] All other flags are ignored. The input image is taken as is.
	/// No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
	/// execution of the function but could lead to not recognizing the checkerboard if the image
	/// is not previously binarized in the appropriate manner.
	///
	/// The function attempts to determine whether the input image is a view of the chessboard pattern and
	/// locate the internal chessboard corners. The function returns a non-zero value if all of the corners
	/// are found and they are placed in a certain order (row by row, left to right in every row).
	/// Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
	/// a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
	/// squares touch each other. The detected coordinates are approximate, and to determine their positions
	/// more accurately, the function calls #cornerSubPix. You also may use the function [corner_sub_pix] with
	/// different parameters if returned coordinates are not accurate enough.
	///
	/// Sample usage of detecting and drawing chessboard corners: :
	/// ```C++
	///    Size patternsize(8,6); //interior number of corners
	///    Mat gray = ....; //source image
	///    vector<Point2f> corners; //this will be filled by the detected corners
	///
	///    //CALIB_CB_FAST_CHECK saves a lot of time on images
	///    //that do not contain any chessboard corners
	///    bool patternfound = findChessboardCorners(gray, patternsize, corners,
	///            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
	///            + CALIB_CB_FAST_CHECK);
	///
	///    if(patternfound)
	///       cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
	///        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
	///
	///    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
	/// ```
	///
	///
	/// Note: The function requires white space (like a square-thick border, the wider the better) around
	/// the board to make the detection more robust in various environments. Otherwise, if there is no
	/// border and the background is dark, the outer black squares cannot be segmented properly and so the
	/// square grouping and ordering algorithm fails.
	///
	/// Use gen_pattern.py ([tutorial_camera_calibration_pattern]) to create checkerboard.
	///
	/// ## C++ default parameters
	/// * flags: CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE
	#[inline]
	pub fn find_chessboard_corners(image: &impl ToInputArray, pattern_size: core::Size, corners: &mut impl ToOutputArray, flags: i32) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(corners);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findChessboardCorners_const__InputArrayR_Size_const__OutputArrayR_int(image.as_raw__InputArray(), &pattern_size, corners.as_raw__OutputArray(), flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [find_circles_grid_1] function uses the following default values for its arguments:
	/// * flags: CALIB_CB_SYMMETRIC_GRID
	/// * blob_detector: SimpleBlobDetector::create()
	#[inline]
	pub fn find_circles_grid_1_def(image: &impl ToInputArray, pattern_size: core::Size, centers: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(centers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findCirclesGrid_const__InputArrayR_Size_const__OutputArrayR(image.as_raw__InputArray(), &pattern_size, centers.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds centers in the grid of circles.
	///
	/// ## Parameters
	/// * image: grid view of input circles; it must be an 8-bit grayscale or color image.
	/// * patternSize: number of circles per row and column
	/// ( patternSize = Size(points_per_row, points_per_colum) ).
	/// * centers: output array of detected centers.
	/// * flags: various operation flags that can be one of the following values:
	/// *   [CALIB_CB_SYMMETRIC_GRID] uses symmetric pattern of circles.
	/// *   [CALIB_CB_ASYMMETRIC_GRID] uses asymmetric pattern of circles.
	/// *   [CALIB_CB_CLUSTERING] uses a special algorithm for grid detection. It is more robust to
	/// perspective distortions but much more sensitive to background clutter.
	/// * blobDetector: feature detector that finds blobs like dark circles on light background.
	///                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
	/// * parameters: struct for finding circles in a grid pattern.
	///
	/// The function attempts to determine whether the input image contains a grid of circles. If it is, the
	/// function locates centers of the circles. The function returns a non-zero value if all of the centers
	/// have been found and they have been placed in a certain order (row by row, left to right in every
	/// row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
	///
	/// Sample usage of detecting and drawing the centers of circles: :
	/// ```C++
	///    Size patternsize(7,7); //number of centers
	///    Mat gray = ...; //source image
	///    vector<Point2f> centers; //this will be filled by the detected centers
	///
	///    bool patternfound = findCirclesGrid(gray, patternsize, centers);
	///
	///    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
	/// ```
	///
	///
	/// Note: The function requires white space (like a square-thick border, the wider the better) around
	/// the board to make the detection more robust in various environments.
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: CALIB_CB_SYMMETRIC_GRID
	/// * blob_detector: SimpleBlobDetector::create()
	#[inline]
	pub fn find_circles_grid_1(image: &impl ToInputArray, pattern_size: core::Size, centers: &mut impl ToOutputArray, flags: i32, blob_detector: Option<&core::Ptr<crate::features2d::Feature2D>>) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(centers);
		smart_ptr_option_arg!(ref blob_detector);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findCirclesGrid_const__InputArrayR_Size_const__OutputArrayR_int_const_PtrLFeature2DGR(image.as_raw__InputArray(), &pattern_size, centers.as_raw__OutputArray(), flags, blob_detector.as_raw_PtrOfFeature2D(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds centers in the grid of circles.
	///
	/// ## Parameters
	/// * image: grid view of input circles; it must be an 8-bit grayscale or color image.
	/// * patternSize: number of circles per row and column
	/// ( patternSize = Size(points_per_row, points_per_colum) ).
	/// * centers: output array of detected centers.
	/// * flags: various operation flags that can be one of the following values:
	/// *   [CALIB_CB_SYMMETRIC_GRID] uses symmetric pattern of circles.
	/// *   [CALIB_CB_ASYMMETRIC_GRID] uses asymmetric pattern of circles.
	/// *   [CALIB_CB_CLUSTERING] uses a special algorithm for grid detection. It is more robust to
	/// perspective distortions but much more sensitive to background clutter.
	/// * blobDetector: feature detector that finds blobs like dark circles on light background.
	///                    If `blobDetector` is NULL then `image` represents Point2f array of candidates.
	/// * parameters: struct for finding circles in a grid pattern.
	///
	/// The function attempts to determine whether the input image contains a grid of circles. If it is, the
	/// function locates centers of the circles. The function returns a non-zero value if all of the centers
	/// have been found and they have been placed in a certain order (row by row, left to right in every
	/// row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
	///
	/// Sample usage of detecting and drawing the centers of circles: :
	/// ```C++
	///    Size patternsize(7,7); //number of centers
	///    Mat gray = ...; //source image
	///    vector<Point2f> centers; //this will be filled by the detected centers
	///
	///    bool patternfound = findCirclesGrid(gray, patternsize, centers);
	///
	///    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
	/// ```
	///
	///
	/// Note: The function requires white space (like a square-thick border, the wider the better) around
	/// the board to make the detection more robust in various environments.
	#[inline]
	pub fn find_circles_grid(image: &impl ToInputArray, pattern_size: core::Size, centers: &mut impl ToOutputArray, flags: i32, blob_detector: Option<&core::Ptr<crate::features2d::Feature2D>>, parameters: crate::calib3d::CirclesGridFinderParameters) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(centers);
		smart_ptr_option_arg!(ref blob_detector);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findCirclesGrid_const__InputArrayR_Size_const__OutputArrayR_int_const_PtrLFeature2DGR_const_CirclesGridFinderParametersR(image.as_raw__InputArray(), &pattern_size, centers.as_raw__OutputArray(), flags, blob_detector.as_raw_PtrOfFeature2D(), &parameters, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * focal: focal length of the camera. Note that this function assumes that points1 and points2
	/// are feature points from cameras with same focal length and principal point.
	/// * pp: principal point of the camera.
	/// * method: Method for computing a fundamental matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function differs from the one above that it computes camera intrinsic matrix from focal length and
	/// principal point:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%0A%5Cbegin%7Bbmatrix%7D%0Af%20%26%200%20%26%20x%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%20f%20%26%20y%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D)
	///
	/// ## Note
	/// This alternative version of [find_essential_mat_1] function uses the following default values for its arguments:
	/// * focal: 1.0
	/// * pp: Point2d(0,0)
	/// * method: RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * max_iters: 1000
	/// * mask: noArray()
	#[inline]
	pub fn find_essential_mat_1_def(points1: &impl ToInputArray, points2: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix. If this assumption does not hold for your use case, use another
	/// function overload or [undistort_points] with `P = cv::NoArray()` for both cameras to transform image
	/// points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
	/// When passing these coordinates, pass the identity matrix for this parameter.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or [recover_pose] to recover the relative pose between cameras.
	///
	/// ## Note
	/// This alternative version of [find_essential_mat] function uses the following default values for its arguments:
	/// * method: RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * max_iters: 1000
	/// * mask: noArray()
	#[inline]
	pub fn find_essential_mat_def(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix1: Camera matrix for the first camera ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * cameraMatrix2: Camera matrix for the second camera ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs1: Input vector of distortion coefficients for the first camera
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * distCoeffs2: Input vector of distortion coefficients for the second camera
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or  [recover_pose] to recover the relative pose between cameras.
	///
	/// ## Note
	/// This alternative version of [find_essential_mat_3] function uses the following default values for its arguments:
	/// * method: RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * mask: noArray()
	#[inline]
	pub fn find_essential_mat_3_def(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	#[inline]
	pub fn find_essential_mat_4(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeff1: &impl ToInputArray, dist_coeff2: &impl ToInputArray, mask: &mut impl ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeff1);
		input_array_arg!(dist_coeff2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeff1.as_raw__InputArray(), dist_coeff2.as_raw__InputArray(), mask.as_raw__OutputArray(), &params, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix1: Camera matrix for the first camera ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * cameraMatrix2: Camera matrix for the second camera ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs1: Input vector of distortion coefficients for the first camera
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * distCoeffs2: Input vector of distortion coefficients for the second camera
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or  [recover_pose] to recover the relative pose between cameras.
	///
	/// ## C++ default parameters
	/// * method: RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * mask: noArray()
	#[inline]
	pub fn find_essential_mat_3(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray, method: i32, prob: f64, threshold: f64, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), method, prob, threshold, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix. If this assumption does not hold for your use case, use another
	/// function overload or [undistort_points] with `P = cv::NoArray()` for both cameras to transform image
	/// points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
	/// When passing these coordinates, pass the identity matrix for this parameter.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or [recover_pose] to recover the relative pose between cameras.
	///
	/// ## Overloaded parameters
	#[inline]
	pub fn find_essential_mat_matrix(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray, method: i32, prob: f64, threshold: f64, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), method, prob, threshold, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix. If this assumption does not hold for your use case, use another
	/// function overload or [undistort_points] with `P = cv::NoArray()` for both cameras to transform image
	/// points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
	/// When passing these coordinates, pass the identity matrix for this parameter.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or [recover_pose] to recover the relative pose between cameras.
	///
	/// ## C++ default parameters
	/// * method: RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * max_iters: 1000
	/// * mask: noArray()
	#[inline]
	pub fn find_essential_mat(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray, method: i32, prob: f64, threshold: f64, max_iters: i32, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_double_double_int_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), method, prob, threshold, max_iters, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix. If this assumption does not hold for your use case, use another
	/// function overload or [undistort_points] with `P = cv::NoArray()` for both cameras to transform image
	/// points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
	/// When passing these coordinates, pass the identity matrix for this parameter.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or [recover_pose] to recover the relative pose between cameras.
	///
	/// ## Overloaded parameters
	#[inline]
	pub fn find_essential_mat_2(points1: &impl ToInputArray, points2: &impl ToInputArray, focal: f64, pp: core::Point2d, method: i32, prob: f64, threshold: f64, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_double_Point2d_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), focal, &pp, method, prob, threshold, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates an essential matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix. If this assumption does not hold for your use case, use another
	/// function overload or [undistort_points] with `P = cv::NoArray()` for both cameras to transform image
	/// points to normalized image coordinates, which are valid for the identity camera intrinsic matrix.
	/// When passing these coordinates, pass the identity matrix for this parameter.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function estimates essential matrix based on the five-point algorithm solver in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03) .
	/// [SteweniusCFS](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_SteweniusCFS) is also a related. The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20K%5E%7B%2DT%7D%20E%20K%5E%7B%2D1%7D%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?E) is an essential matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively. The result of this function may be passed further to
	/// [decompose_essential_mat] or [recover_pose] to recover the relative pose between cameras.
	///
	/// ## Overloaded parameters
	///
	/// * points1: Array of N (N \>= 5) 2D points from the first image. The point coordinates should
	/// be floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * focal: focal length of the camera. Note that this function assumes that points1 and points2
	/// are feature points from cameras with same focal length and principal point.
	/// * pp: principal point of the camera.
	/// * method: Method for computing a fundamental matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * mask: Output array of N elements, every element of which is set to 0 for outliers and to 1
	/// for the other points. The array is computed only in the RANSAC and LMedS methods.
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// This function differs from the one above that it computes camera intrinsic matrix from focal length and
	/// principal point:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%0A%5Cbegin%7Bbmatrix%7D%0Af%20%26%200%20%26%20x%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%20f%20%26%20y%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D)
	///
	/// ## C++ default parameters
	/// * focal: 1.0
	/// * pp: Point2d(0,0)
	/// * method: RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * max_iters: 1000
	/// * mask: noArray()
	#[inline]
	pub fn find_essential_mat_1(points1: &impl ToInputArray, points2: &impl ToInputArray, focal: f64, pp: core::Point2d, method: i32, prob: f64, threshold: f64, max_iters: i32, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findEssentialMat_const__InputArrayR_const__InputArrayR_double_Point2d_int_double_double_int_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), focal, &pp, method, prob, threshold, max_iters, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [find_fundamental_mat_1] function uses the following default values for its arguments:
	/// * method: FM_RANSAC
	/// * ransac_reproj_threshold: 3.
	/// * confidence: 0.99
	/// * mask: noArray()
	#[inline]
	pub fn find_fundamental_mat_1_def(points1: &impl ToInputArray, points2: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [find_fundamental_mat_mask] function uses the following default values for its arguments:
	/// * method: FM_RANSAC
	/// * ransac_reproj_threshold: 3.
	/// * confidence: 0.99
	#[inline]
	pub fn find_fundamental_mat_mask_def(points1: &impl ToInputArray, points2: &impl ToInputArray, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	#[inline]
	pub fn find_fundamental_mat_2(points1: &impl ToInputArray, points2: &impl ToInputArray, mask: &mut impl ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), mask.as_raw__OutputArray(), &params, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates a fundamental matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * method: Method for computing a fundamental matrix.
	/// *   [FM_7POINT] for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
	/// *   [FM_8POINT] for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_RANSAC] for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_LMEDS] for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
	/// of confidence (probability) that the estimated matrix is correct.
	/// * mask:[out] optional output mask
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively.
	///
	/// The function calculates the fundamental matrix using one of four methods listed above and returns
	/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
	/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
	/// matrices sequentially).
	///
	/// The calculated fundamental matrix may be passed further to [compute_correspond_epilines] that finds the
	/// epipolar lines corresponding to the specified points. It can also be passed to
	/// [stereo_rectify_uncalibrated] to compute the rectification transformation. :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    Mat fundamental_matrix =
	///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
	/// ```
	///
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * method: FM_RANSAC
	/// * ransac_reproj_threshold: 3.
	/// * confidence: 0.99
	#[inline]
	pub fn find_fundamental_mat_mask(points1: &impl ToInputArray, points2: &impl ToInputArray, mask: &mut impl ToOutputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double_double(points1.as_raw__InputArray(), points2.as_raw__InputArray(), mask.as_raw__OutputArray(), method, ransac_reproj_threshold, confidence, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates a fundamental matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * method: Method for computing a fundamental matrix.
	/// *   [FM_7POINT] for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
	/// *   [FM_8POINT] for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_RANSAC] for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_LMEDS] for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
	/// of confidence (probability) that the estimated matrix is correct.
	/// * mask:[out] optional output mask
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively.
	///
	/// The function calculates the fundamental matrix using one of four methods listed above and returns
	/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
	/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
	/// matrices sequentially).
	///
	/// The calculated fundamental matrix may be passed further to [compute_correspond_epilines] that finds the
	/// epipolar lines corresponding to the specified points. It can also be passed to
	/// [stereo_rectify_uncalibrated] to compute the rectification transformation. :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    Mat fundamental_matrix =
	///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
	/// ```
	///
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * method: FM_RANSAC
	/// * ransac_reproj_threshold: 3.
	/// * confidence: 0.99
	/// * mask: noArray()
	#[inline]
	pub fn find_fundamental_mat_1(points1: &impl ToInputArray, points2: &impl ToInputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_int_double_double_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), method, ransac_reproj_threshold, confidence, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates a fundamental matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * method: Method for computing a fundamental matrix.
	/// *   [FM_7POINT] for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
	/// *   [FM_8POINT] for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_RANSAC] for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_LMEDS] for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
	/// of confidence (probability) that the estimated matrix is correct.
	/// * mask:[out] optional output mask
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively.
	///
	/// The function calculates the fundamental matrix using one of four methods listed above and returns
	/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
	/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
	/// matrices sequentially).
	///
	/// The calculated fundamental matrix may be passed further to [compute_correspond_epilines] that finds the
	/// epipolar lines corresponding to the specified points. It can also be passed to
	/// [stereo_rectify_uncalibrated] to compute the rectification transformation. :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    Mat fundamental_matrix =
	///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
	/// ```
	///
	///
	/// ## Note
	/// This alternative version of [find_fundamental_mat] function uses the following default values for its arguments:
	/// * mask: noArray()
	#[inline]
	pub fn find_fundamental_mat_def(points1: &impl ToInputArray, points2: &impl ToInputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64, max_iters: i32) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_int_double_double_int(points1.as_raw__InputArray(), points2.as_raw__InputArray(), method, ransac_reproj_threshold, confidence, max_iters, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Calculates a fundamental matrix from the corresponding points in two images.
	///
	/// ## Parameters
	/// * points1: Array of N points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * method: Method for computing a fundamental matrix.
	/// *   [FM_7POINT] for a 7-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%3D%207)
	/// *   [FM_8POINT] for an 8-point algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_RANSAC] for the RANSAC algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// *   [FM_LMEDS] for the LMedS algorithm. ![inline formula](https://latex.codecogs.com/png.latex?N%20%5Cge%208)
	/// * ransacReprojThreshold: Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * confidence: Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
	/// of confidence (probability) that the estimated matrix is correct.
	/// * mask:[out] optional output mask
	/// * maxIters: The maximum number of robust method iterations.
	///
	/// The epipolar geometry is described by the following equation:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Bp%5F2%3B%201%5D%5ET%20F%20%5Bp%5F1%3B%201%5D%20%3D%200)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?F) is a fundamental matrix, ![inline formula](https://latex.codecogs.com/png.latex?p%5F1) and ![inline formula](https://latex.codecogs.com/png.latex?p%5F2) are corresponding points in the first and the
	/// second images, respectively.
	///
	/// The function calculates the fundamental matrix using one of four methods listed above and returns
	/// the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
	/// algorithm, the function may return up to 3 solutions ( ![inline formula](https://latex.codecogs.com/png.latex?9%20%5Ctimes%203) matrix that stores all 3
	/// matrices sequentially).
	///
	/// The calculated fundamental matrix may be passed further to [compute_correspond_epilines] that finds the
	/// epipolar lines corresponding to the specified points. It can also be passed to
	/// [stereo_rectify_uncalibrated] to compute the rectification transformation. :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    Mat fundamental_matrix =
	///      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
	/// ```
	///
	///
	/// ## C++ default parameters
	/// * mask: noArray()
	#[inline]
	pub fn find_fundamental_mat(points1: &impl ToInputArray, points2: &impl ToInputArray, method: i32, ransac_reproj_threshold: f64, confidence: f64, max_iters: i32, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findFundamentalMat_const__InputArrayR_const__InputArrayR_int_double_double_int_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), method, ransac_reproj_threshold, confidence, max_iters, mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Finds a perspective transformation between two planes.
	///
	/// ## Parameters
	/// * srcPoints: Coordinates of the points in the original plane, a matrix of the type CV_32FC2
	/// or vector\<Point2f\> .
	/// * dstPoints: Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
	/// a vector\<Point2f\> .
	/// * method: Method used to compute a homography matrix. The following methods are possible:
	/// *   **0** - a regular method using all the points, i.e., the least squares method
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// *   [RHO] - PROSAC-based robust method
	/// * ransacReprojThreshold: Maximum allowed reprojection error to treat a point pair as an inlier
	/// (used in the RANSAC and RHO methods only). That is, if
	/// ![block formula](https://latex.codecogs.com/png.latex?%5C%7C%20%5Ctexttt%7BdstPoints%7D%20%5Fi%20%2D%20%20%5Ctexttt%7BconvertPointsHomogeneous%7D%20%28%20%5Ctexttt%7BH%7D%20%5Ccdot%20%5Ctexttt%7BsrcPoints%7D%20%5Fi%29%20%5C%7C%5F2%20%20%3E%20%20%5Ctexttt%7BransacReprojThreshold%7D)
	/// then the point ![inline formula](https://latex.codecogs.com/png.latex?i) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
	/// it usually makes sense to set this parameter somewhere in the range of 1 to 10.
	/// * mask: Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
	/// mask values are ignored.
	/// * maxIters: The maximum number of RANSAC iterations.
	/// * confidence: Confidence level, between 0 and 1.
	///
	/// The function finds and returns the perspective transformation ![inline formula](https://latex.codecogs.com/png.latex?H) between the source and the
	/// destination planes:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D)
	///
	/// so that the back-projection error
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Csum%20%5Fi%20%5Cleft%20%28%20x%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B11%7D%20x%5Fi%20%2B%20h%5F%7B12%7D%20y%5Fi%20%2B%20h%5F%7B13%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2%2B%20%5Cleft%20%28%20y%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B21%7D%20x%5Fi%20%2B%20h%5F%7B22%7D%20y%5Fi%20%2B%20h%5F%7B23%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2)
	///
	/// is minimized. If the parameter method is set to the default value 0, the function uses all the point
	/// pairs to compute an initial homography estimate with a simple least-squares scheme.
	///
	/// However, if not all of the point pairs ( ![inline formula](https://latex.codecogs.com/png.latex?srcPoints%5Fi), ![inline formula](https://latex.codecogs.com/png.latex?dstPoints%5Fi) ) fit the rigid perspective
	/// transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
	/// you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
	/// random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
	/// using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
	/// computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
	/// LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
	/// the mask of inliers/outliers.
	///
	/// Regardless of the method, robust or not, the computed homography matrix is refined further (using
	/// inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
	/// re-projection error even more.
	///
	/// The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
	/// noise is rather small, use the default method (method=0).
	///
	/// The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
	/// determined up to a scale. If ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D) is non-zero, the matrix is normalized so that ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D%3D1).
	///
	/// Note: Whenever an ![inline formula](https://latex.codecogs.com/png.latex?H) matrix cannot be estimated, an empty one will be returned.
	/// ## See also
	/// getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
	/// perspectiveTransform
	///
	/// ## Note
	/// This alternative version of [find_homography_ext] function uses the following default values for its arguments:
	/// * method: 0
	/// * ransac_reproj_threshold: 3
	/// * mask: noArray()
	/// * max_iters: 2000
	/// * confidence: 0.995
	#[inline]
	pub fn find_homography_ext_def(src_points: &impl ToInputArray, dst_points: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(src_points);
		input_array_arg!(dst_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [find_homography] function uses the following default values for its arguments:
	/// * method: 0
	/// * ransac_reproj_threshold: 3
	#[inline]
	pub fn find_homography_def(src_points: &impl ToInputArray, dst_points: &impl ToInputArray, mask: &mut impl ToOutputArray) -> Result<core::Mat> {
		input_array_arg!(src_points);
		input_array_arg!(dst_points);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_const__OutputArrayR(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), mask.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	#[inline]
	pub fn find_homography_1(src_points: &impl ToInputArray, dst_points: &impl ToInputArray, mask: &mut impl ToOutputArray, params: crate::calib3d::UsacParams) -> Result<core::Mat> {
		input_array_arg!(src_points);
		input_array_arg!(dst_points);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const_UsacParamsR(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), mask.as_raw__OutputArray(), &params, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Finds a perspective transformation between two planes.
	///
	/// ## Parameters
	/// * srcPoints: Coordinates of the points in the original plane, a matrix of the type CV_32FC2
	/// or vector\<Point2f\> .
	/// * dstPoints: Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
	/// a vector\<Point2f\> .
	/// * method: Method used to compute a homography matrix. The following methods are possible:
	/// *   **0** - a regular method using all the points, i.e., the least squares method
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// *   [RHO] - PROSAC-based robust method
	/// * ransacReprojThreshold: Maximum allowed reprojection error to treat a point pair as an inlier
	/// (used in the RANSAC and RHO methods only). That is, if
	/// ![block formula](https://latex.codecogs.com/png.latex?%5C%7C%20%5Ctexttt%7BdstPoints%7D%20%5Fi%20%2D%20%20%5Ctexttt%7BconvertPointsHomogeneous%7D%20%28%20%5Ctexttt%7BH%7D%20%5Ccdot%20%5Ctexttt%7BsrcPoints%7D%20%5Fi%29%20%5C%7C%5F2%20%20%3E%20%20%5Ctexttt%7BransacReprojThreshold%7D)
	/// then the point ![inline formula](https://latex.codecogs.com/png.latex?i) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
	/// it usually makes sense to set this parameter somewhere in the range of 1 to 10.
	/// * mask: Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
	/// mask values are ignored.
	/// * maxIters: The maximum number of RANSAC iterations.
	/// * confidence: Confidence level, between 0 and 1.
	///
	/// The function finds and returns the perspective transformation ![inline formula](https://latex.codecogs.com/png.latex?H) between the source and the
	/// destination planes:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D)
	///
	/// so that the back-projection error
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Csum%20%5Fi%20%5Cleft%20%28%20x%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B11%7D%20x%5Fi%20%2B%20h%5F%7B12%7D%20y%5Fi%20%2B%20h%5F%7B13%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2%2B%20%5Cleft%20%28%20y%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B21%7D%20x%5Fi%20%2B%20h%5F%7B22%7D%20y%5Fi%20%2B%20h%5F%7B23%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2)
	///
	/// is minimized. If the parameter method is set to the default value 0, the function uses all the point
	/// pairs to compute an initial homography estimate with a simple least-squares scheme.
	///
	/// However, if not all of the point pairs ( ![inline formula](https://latex.codecogs.com/png.latex?srcPoints%5Fi), ![inline formula](https://latex.codecogs.com/png.latex?dstPoints%5Fi) ) fit the rigid perspective
	/// transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
	/// you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
	/// random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
	/// using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
	/// computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
	/// LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
	/// the mask of inliers/outliers.
	///
	/// Regardless of the method, robust or not, the computed homography matrix is refined further (using
	/// inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
	/// re-projection error even more.
	///
	/// The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
	/// noise is rather small, use the default method (method=0).
	///
	/// The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
	/// determined up to a scale. If ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D) is non-zero, the matrix is normalized so that ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D%3D1).
	///
	/// Note: Whenever an ![inline formula](https://latex.codecogs.com/png.latex?H) matrix cannot be estimated, an empty one will be returned.
	/// ## See also
	/// getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
	/// perspectiveTransform
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * method: 0
	/// * ransac_reproj_threshold: 3
	#[inline]
	pub fn find_homography(src_points: &impl ToInputArray, dst_points: &impl ToInputArray, mask: &mut impl ToOutputArray, method: i32, ransac_reproj_threshold: f64) -> Result<core::Mat> {
		input_array_arg!(src_points);
		input_array_arg!(dst_points);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_double(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), mask.as_raw__OutputArray(), method, ransac_reproj_threshold, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Finds a perspective transformation between two planes.
	///
	/// ## Parameters
	/// * srcPoints: Coordinates of the points in the original plane, a matrix of the type CV_32FC2
	/// or vector\<Point2f\> .
	/// * dstPoints: Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
	/// a vector\<Point2f\> .
	/// * method: Method used to compute a homography matrix. The following methods are possible:
	/// *   **0** - a regular method using all the points, i.e., the least squares method
	/// *   [RANSAC] - RANSAC-based robust method
	/// *   [LMEDS] - Least-Median robust method
	/// *   [RHO] - PROSAC-based robust method
	/// * ransacReprojThreshold: Maximum allowed reprojection error to treat a point pair as an inlier
	/// (used in the RANSAC and RHO methods only). That is, if
	/// ![block formula](https://latex.codecogs.com/png.latex?%5C%7C%20%5Ctexttt%7BdstPoints%7D%20%5Fi%20%2D%20%20%5Ctexttt%7BconvertPointsHomogeneous%7D%20%28%20%5Ctexttt%7BH%7D%20%5Ccdot%20%5Ctexttt%7BsrcPoints%7D%20%5Fi%29%20%5C%7C%5F2%20%20%3E%20%20%5Ctexttt%7BransacReprojThreshold%7D)
	/// then the point ![inline formula](https://latex.codecogs.com/png.latex?i) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
	/// it usually makes sense to set this parameter somewhere in the range of 1 to 10.
	/// * mask: Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
	/// mask values are ignored.
	/// * maxIters: The maximum number of RANSAC iterations.
	/// * confidence: Confidence level, between 0 and 1.
	///
	/// The function finds and returns the perspective transformation ![inline formula](https://latex.codecogs.com/png.latex?H) between the source and the
	/// destination planes:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?s%5Fi%20%20%5Cbegin%7Bbmatrix%7D%20x%27%5Fi%5C%5C%20y%27%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%5Csim%20H%20%20%5Cbegin%7Bbmatrix%7D%20x%5Fi%5C%5C%20y%5Fi%5C%5C%201%20%5Cend%7Bbmatrix%7D)
	///
	/// so that the back-projection error
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Csum%20%5Fi%20%5Cleft%20%28%20x%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B11%7D%20x%5Fi%20%2B%20h%5F%7B12%7D%20y%5Fi%20%2B%20h%5F%7B13%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2%2B%20%5Cleft%20%28%20y%27%5Fi%2D%20%5Cfrac%7Bh%5F%7B21%7D%20x%5Fi%20%2B%20h%5F%7B22%7D%20y%5Fi%20%2B%20h%5F%7B23%7D%7D%7Bh%5F%7B31%7D%20x%5Fi%20%2B%20h%5F%7B32%7D%20y%5Fi%20%2B%20h%5F%7B33%7D%7D%20%5Cright%20%29%5E2)
	///
	/// is minimized. If the parameter method is set to the default value 0, the function uses all the point
	/// pairs to compute an initial homography estimate with a simple least-squares scheme.
	///
	/// However, if not all of the point pairs ( ![inline formula](https://latex.codecogs.com/png.latex?srcPoints%5Fi), ![inline formula](https://latex.codecogs.com/png.latex?dstPoints%5Fi) ) fit the rigid perspective
	/// transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
	/// you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
	/// random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
	/// using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
	/// computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
	/// LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
	/// the mask of inliers/outliers.
	///
	/// Regardless of the method, robust or not, the computed homography matrix is refined further (using
	/// inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
	/// re-projection error even more.
	///
	/// The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
	/// distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
	/// correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
	/// noise is rather small, use the default method (method=0).
	///
	/// The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
	/// determined up to a scale. If ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D) is non-zero, the matrix is normalized so that ![inline formula](https://latex.codecogs.com/png.latex?h%5F%7B33%7D%3D1).
	///
	/// Note: Whenever an ![inline formula](https://latex.codecogs.com/png.latex?H) matrix cannot be estimated, an empty one will be returned.
	/// ## See also
	/// getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
	/// perspectiveTransform
	///
	/// ## C++ default parameters
	/// * method: 0
	/// * ransac_reproj_threshold: 3
	/// * mask: noArray()
	/// * max_iters: 2000
	/// * confidence: 0.995
	#[inline]
	pub fn find_homography_ext(src_points: &impl ToInputArray, dst_points: &impl ToInputArray, method: i32, ransac_reproj_threshold: f64, mask: &mut impl ToOutputArray, max_iters: i32, confidence: f64) -> Result<core::Mat> {
		input_array_arg!(src_points);
		input_array_arg!(dst_points);
		output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_findHomography_const__InputArrayR_const__InputArrayR_int_double_const__OutputArrayR_const_int_const_double(src_points.as_raw__InputArray(), dst_points.as_raw__InputArray(), method, ransac_reproj_threshold, mask.as_raw__OutputArray(), max_iters, confidence, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Performs camera calibration
	///
	/// ## Parameters
	/// * objectPoints: vector of vectors of calibration pattern points in the calibration pattern
	///    coordinate space.
	/// * imagePoints: vector of vectors of the projections of calibration pattern points.
	///    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
	///    objectPoints[i].size() for each i.
	/// * image_size: Size of the image used only to initialize the camera intrinsic matrix.
	/// * K: Output 3x3 floating-point camera intrinsic matrix
	///    ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If
	///    [fisheye::CALIB_USE_INTRINSIC_GUESS] is specified, some or all of fx, fy, cx, cy must be
	///    initialized before calling the function.
	/// * D: Output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * rvecs: Output vector of rotation vectors (see [Rodrigues] ) estimated for each pattern view.
	///    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
	///    the next output parameter description) brings the calibration pattern from the model coordinate
	///    space (in which object points are specified) to the world coordinate space, that is, a real
	///    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
	/// * tvecs: Output vector of translation vectors estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	///    *    [fisheye::CALIB_USE_INTRINSIC_GUESS]  cameraMatrix contains valid initial values of
	///    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	///    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
	///    *    [fisheye::CALIB_RECOMPUTE_EXTRINSIC]  Extrinsic will be recomputed after each iteration
	///    of intrinsic optimization.
	///    *    [fisheye::CALIB_CHECK_COND]  The functions will check validity of condition number.
	///    *    [fisheye::CALIB_FIX_SKEW]  Skew coefficient (alpha) is set to zero and stay zero.
	///    *    [fisheye::CALIB_FIX_K1],..., [fisheye::CALIB_FIX_K4] Selected distortion coefficients
	///    are set to zeros and stay zero.
	///    *    [fisheye::CALIB_FIX_PRINCIPAL_POINT]  The principal point is not changed during the global
	/// optimization. It stays at the center or at a different location specified when [fisheye::CALIB_USE_INTRINSIC_GUESS] is set too.
	///    *    [fisheye::CALIB_FIX_FOCAL_LENGTH] The focal length is not changed during the global
	/// optimization. It is the ![inline formula](https://latex.codecogs.com/png.latex?max%28width%2Cheight%29%2F%5Cpi) or the provided ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx), ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) when [fisheye::CALIB_USE_INTRINSIC_GUESS] is set too.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Note
	/// This alternative version of [calibrate] function uses the following default values for its arguments:
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
	#[inline]
	pub fn calibrate_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, k: &mut impl ToInputOutputArray, d: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(k);
		input_output_array_arg!(d);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_calibrate_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, k.as_raw__InputOutputArray(), d.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Performs camera calibration
	///
	/// ## Parameters
	/// * objectPoints: vector of vectors of calibration pattern points in the calibration pattern
	///    coordinate space.
	/// * imagePoints: vector of vectors of the projections of calibration pattern points.
	///    imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
	///    objectPoints[i].size() for each i.
	/// * image_size: Size of the image used only to initialize the camera intrinsic matrix.
	/// * K: Output 3x3 floating-point camera intrinsic matrix
	///    ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) . If
	///    [fisheye::CALIB_USE_INTRINSIC_GUESS] is specified, some or all of fx, fy, cx, cy must be
	///    initialized before calling the function.
	/// * D: Output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * rvecs: Output vector of rotation vectors (see [Rodrigues] ) estimated for each pattern view.
	///    That is, each k-th rotation vector together with the corresponding k-th translation vector (see
	///    the next output parameter description) brings the calibration pattern from the model coordinate
	///    space (in which object points are specified) to the world coordinate space, that is, a real
	///    position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
	/// * tvecs: Output vector of translation vectors estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	///    *    [fisheye::CALIB_USE_INTRINSIC_GUESS]  cameraMatrix contains valid initial values of
	///    fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	///    center ( imageSize is used), and focal distances are computed in a least-squares fashion.
	///    *    [fisheye::CALIB_RECOMPUTE_EXTRINSIC]  Extrinsic will be recomputed after each iteration
	///    of intrinsic optimization.
	///    *    [fisheye::CALIB_CHECK_COND]  The functions will check validity of condition number.
	///    *    [fisheye::CALIB_FIX_SKEW]  Skew coefficient (alpha) is set to zero and stay zero.
	///    *    [fisheye::CALIB_FIX_K1],..., [fisheye::CALIB_FIX_K4] Selected distortion coefficients
	///    are set to zeros and stay zero.
	///    *    [fisheye::CALIB_FIX_PRINCIPAL_POINT]  The principal point is not changed during the global
	/// optimization. It stays at the center or at a different location specified when [fisheye::CALIB_USE_INTRINSIC_GUESS] is set too.
	///    *    [fisheye::CALIB_FIX_FOCAL_LENGTH] The focal length is not changed during the global
	/// optimization. It is the ![inline formula](https://latex.codecogs.com/png.latex?max%28width%2Cheight%29%2F%5Cpi) or the provided ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx), ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) when [fisheye::CALIB_USE_INTRINSIC_GUESS] is set too.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## C++ default parameters
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
	#[inline]
	pub fn calibrate(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, k: &mut impl ToInputOutputArray, d: &mut impl ToInputOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(k);
		input_output_array_arg!(d);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_calibrate_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, k.as_raw__InputOutputArray(), d.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Distorts 2D points using fisheye model.
	///
	/// ## Parameters
	/// * undistorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
	/// the number of points in the view.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * distorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	///
	/// Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
	/// This means if you want to distort image points you have to multiply them with ![inline formula](https://latex.codecogs.com/png.latex?K%5E%7B%2D1%7D) or
	/// use another function overload.
	///
	/// ## Note
	/// This alternative version of [fisheye_distort_points] function uses the following default values for its arguments:
	/// * alpha: 0
	#[inline]
	pub fn fisheye_distort_points_def(undistorted: &impl ToInputArray, distorted: &mut impl ToOutputArray, k: &impl ToInputArray, d: &impl ToInputArray) -> Result<()> {
		input_array_arg!(undistorted);
		output_array_arg!(distorted);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_distortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(undistorted.as_raw__InputArray(), distorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	/// Overload of distortPoints function to handle cases when undistorted points are obtained with non-identity
	/// camera matrix, e.g. output of #estimateNewCameraMatrixForUndistortRectify.
	/// ## Parameters
	/// * undistorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
	/// the number of points in the view.
	/// * Kundistorted: Camera intrinsic matrix used as new camera matrix for undistortion.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * distorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	/// ## See also
	/// estimateNewCameraMatrixForUndistortRectify
	///
	/// ## Note
	/// This alternative version of [distort_points] function uses the following default values for its arguments:
	/// * alpha: 0
	#[inline]
	pub fn distort_points_def(undistorted: &impl ToInputArray, distorted: &mut impl ToOutputArray, kundistorted: &impl ToInputArray, k: &impl ToInputArray, d: &impl ToInputArray) -> Result<()> {
		input_array_arg!(undistorted);
		output_array_arg!(distorted);
		input_array_arg!(kundistorted);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_distortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(undistorted.as_raw__InputArray(), distorted.as_raw__OutputArray(), kundistorted.as_raw__InputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Distorts 2D points using fisheye model.
	///
	/// ## Parameters
	/// * undistorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
	/// the number of points in the view.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * distorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	///
	/// Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
	/// This means if you want to distort image points you have to multiply them with ![inline formula](https://latex.codecogs.com/png.latex?K%5E%7B%2D1%7D) or
	/// use another function overload.
	///
	/// ## Overloaded parameters
	///
	/// Overload of distortPoints function to handle cases when undistorted points are obtained with non-identity
	/// camera matrix, e.g. output of #estimateNewCameraMatrixForUndistortRectify.
	/// * undistorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
	/// the number of points in the view.
	/// * Kundistorted: Camera intrinsic matrix used as new camera matrix for undistortion.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * distorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	/// ## See also
	/// estimateNewCameraMatrixForUndistortRectify
	///
	/// ## C++ default parameters
	/// * alpha: 0
	#[inline]
	pub fn distort_points(undistorted: &impl ToInputArray, distorted: &mut impl ToOutputArray, kundistorted: &impl ToInputArray, k: &impl ToInputArray, d: &impl ToInputArray, alpha: f64) -> Result<()> {
		input_array_arg!(undistorted);
		output_array_arg!(distorted);
		input_array_arg!(kundistorted);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_distortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_double(undistorted.as_raw__InputArray(), distorted.as_raw__OutputArray(), kundistorted.as_raw__InputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), alpha, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Distorts 2D points using fisheye model.
	///
	/// ## Parameters
	/// * undistorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
	/// the number of points in the view.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * distorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	///
	/// Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
	/// This means if you want to distort image points you have to multiply them with ![inline formula](https://latex.codecogs.com/png.latex?K%5E%7B%2D1%7D) or
	/// use another function overload.
	///
	/// ## C++ default parameters
	/// * alpha: 0
	#[inline]
	pub fn fisheye_distort_points(undistorted: &impl ToInputArray, distorted: &mut impl ToOutputArray, k: &impl ToInputArray, d: &impl ToInputArray, alpha: f64) -> Result<()> {
		input_array_arg!(undistorted);
		output_array_arg!(distorted);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_distortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_double(undistorted.as_raw__InputArray(), distorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), alpha, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Estimates new camera intrinsic matrix for undistortion or rectification.
	///
	/// ## Parameters
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * image_size: Size of the image
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
	/// 1-channel or 1x1 3-channel
	/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
	/// * balance: Sets the new focal length in range between the min focal length and the max focal
	/// length. Balance is in range of [0, 1].
	/// * new_size: the new size
	/// * fov_scale: Divisor for new focal length.
	///
	/// ## Note
	/// This alternative version of [estimate_new_camera_matrix_for_undistort_rectify] function uses the following default values for its arguments:
	/// * balance: 0.0
	/// * new_size: Size()
	/// * fov_scale: 1.0
	#[inline]
	pub fn estimate_new_camera_matrix_for_undistort_rectify_def(k: &impl ToInputArray, d: &impl ToInputArray, image_size: core::Size, r: &impl ToInputArray, p: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(k);
		input_array_arg!(d);
		input_array_arg!(r);
		output_array_arg!(p);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_estimateNewCameraMatrixForUndistortRectify_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputArrayR_const__OutputArrayR(k.as_raw__InputArray(), d.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), p.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Estimates new camera intrinsic matrix for undistortion or rectification.
	///
	/// ## Parameters
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * image_size: Size of the image
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
	/// 1-channel or 1x1 3-channel
	/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
	/// * balance: Sets the new focal length in range between the min focal length and the max focal
	/// length. Balance is in range of [0, 1].
	/// * new_size: the new size
	/// * fov_scale: Divisor for new focal length.
	///
	/// ## C++ default parameters
	/// * balance: 0.0
	/// * new_size: Size()
	/// * fov_scale: 1.0
	#[inline]
	pub fn estimate_new_camera_matrix_for_undistort_rectify(k: &impl ToInputArray, d: &impl ToInputArray, image_size: core::Size, r: &impl ToInputArray, p: &mut impl ToOutputArray, balance: f64, new_size: core::Size, fov_scale: f64) -> Result<()> {
		input_array_arg!(k);
		input_array_arg!(d);
		input_array_arg!(r);
		output_array_arg!(p);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_estimateNewCameraMatrixForUndistortRectify_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputArrayR_const__OutputArrayR_double_const_SizeR_double(k.as_raw__InputArray(), d.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), p.as_raw__OutputArray(), balance, &new_size, fov_scale, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
	/// distortion is used, if R or P is empty identity matrixes are used.
	///
	/// ## Parameters
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
	/// 1-channel or 1x1 3-channel
	/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
	/// * size: Undistorted image size.
	/// * m1type: Type of the first output map that can be CV_32FC1 or CV_16SC2 . See [convert_maps]
	/// for details.
	/// * map1: The first output map.
	/// * map2: The second output map.
	#[inline]
	pub fn fisheye_init_undistort_rectify_map(k: &impl ToInputArray, d: &impl ToInputArray, r: &impl ToInputArray, p: &impl ToInputArray, size: core::Size, m1type: i32, map1: &mut impl ToOutputArray, map2: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(k);
		input_array_arg!(d);
		input_array_arg!(r);
		input_array_arg!(p);
		output_array_arg!(map1);
		output_array_arg!(map2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_initUndistortRectifyMap_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_int_const__OutputArrayR_const__OutputArrayR(k.as_raw__InputArray(), d.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), &size, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Projects points using fisheye model
	///
	/// ## Parameters
	/// * objectPoints: Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
	/// the number of points in the view.
	/// * imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
	/// vector\<Point2f\>.
	/// * affine: 
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
	/// to components of the focal lengths, coordinates of the principal point, distortion coefficients,
	/// rotation vector, translation vector, and the skew. In the old interface different components of
	/// the jacobian are returned via different output parameters.
	///
	/// The function computes projections of 3D points to the image plane given intrinsic and extrinsic
	/// camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
	/// image points coordinates (as functions of all the input parameters) with respect to the particular
	/// parameters, intrinsic and/or extrinsic.
	///
	/// ## Note
	/// This alternative version of [fisheye_project_points] function uses the following default values for its arguments:
	/// * alpha: 0
	/// * jacobian: noArray()
	#[inline]
	pub fn fisheye_project_points_def(object_points: &impl ToInputArray, image_points: &mut impl ToOutputArray, affine: core::Affine3d, k: &impl ToInputArray, d: &impl ToInputArray) -> Result<()> {
		input_array_arg!(object_points);
		output_array_arg!(image_points);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_projectPoints_const__InputArrayR_const__OutputArrayR_const_Affine3dR_const__InputArrayR_const__InputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), &affine, k.as_raw__InputArray(), d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Projects points using fisheye model
	///
	/// ## Parameters
	/// * objectPoints: Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
	/// the number of points in the view.
	/// * imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
	/// vector\<Point2f\>.
	/// * affine: 
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
	/// to components of the focal lengths, coordinates of the principal point, distortion coefficients,
	/// rotation vector, translation vector, and the skew. In the old interface different components of
	/// the jacobian are returned via different output parameters.
	///
	/// The function computes projections of 3D points to the image plane given intrinsic and extrinsic
	/// camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
	/// image points coordinates (as functions of all the input parameters) with respect to the particular
	/// parameters, intrinsic and/or extrinsic.
	///
	/// ## C++ default parameters
	/// * alpha: 0
	/// * jacobian: noArray()
	#[inline]
	pub fn fisheye_project_points(object_points: &impl ToInputArray, image_points: &mut impl ToOutputArray, affine: core::Affine3d, k: &impl ToInputArray, d: &impl ToInputArray, alpha: f64, jacobian: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(object_points);
		output_array_arg!(image_points);
		input_array_arg!(k);
		input_array_arg!(d);
		output_array_arg!(jacobian);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_projectPoints_const__InputArrayR_const__OutputArrayR_const_Affine3dR_const__InputArrayR_const__InputArrayR_double_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), &affine, k.as_raw__InputArray(), d.as_raw__InputArray(), alpha, jacobian.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [fisheye_project_points_vec] function uses the following default values for its arguments:
	/// * alpha: 0
	/// * jacobian: noArray()
	#[inline]
	pub fn fisheye_project_points_vec_def(object_points: &impl ToInputArray, image_points: &mut impl ToOutputArray, rvec: &impl ToInputArray, tvec: &impl ToInputArray, k: &impl ToInputArray, d: &impl ToInputArray) -> Result<()> {
		input_array_arg!(object_points);
		output_array_arg!(image_points);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_projectPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Projects points using fisheye model
	///
	/// ## Parameters
	/// * objectPoints: Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
	/// the number of points in the view.
	/// * imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
	/// vector\<Point2f\>.
	/// * affine: 
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * alpha: The skew coefficient.
	/// * jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
	/// to components of the focal lengths, coordinates of the principal point, distortion coefficients,
	/// rotation vector, translation vector, and the skew. In the old interface different components of
	/// the jacobian are returned via different output parameters.
	///
	/// The function computes projections of 3D points to the image plane given intrinsic and extrinsic
	/// camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
	/// image points coordinates (as functions of all the input parameters) with respect to the particular
	/// parameters, intrinsic and/or extrinsic.
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * alpha: 0
	/// * jacobian: noArray()
	#[inline]
	pub fn fisheye_project_points_vec(object_points: &impl ToInputArray, image_points: &mut impl ToOutputArray, rvec: &impl ToInputArray, tvec: &impl ToInputArray, k: &impl ToInputArray, d: &impl ToInputArray, alpha: f64, jacobian: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(object_points);
		output_array_arg!(image_points);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		input_array_arg!(k);
		input_array_arg!(d);
		output_array_arg!(jacobian);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_projectPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_double_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), alpha, jacobian.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences for fisheye camera moodel.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients (4x1/1x4).
	/// * rvec: Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Output translation vector.
	/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * flags: Method for solving a PnP problem: see [calib3d_solvePnP_flags]
	/// This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
	/// coordinate frame to the camera coordinate frame, using different methods:
	/// - P3P methods ([SOLVEPNP_P3P], [SOLVEPNP_AP3P]): need 4 input points to return a unique solution.
	/// - [SOLVEPNP_IPPE] Input points must be >= 4 and object points must be coplanar.
	/// - [SOLVEPNP_IPPE_SQUARE] Special case suitable for marker pose estimation.
	/// Number of input points must be 4. Object points must be defined in the following order:
	/// - point 0: [-squareLength / 2,  squareLength / 2, 0]
	/// - point 1: [ squareLength / 2,  squareLength / 2, 0]
	/// - point 2: [ squareLength / 2, -squareLength / 2, 0]
	/// - point 3: [-squareLength / 2, -squareLength / 2, 0]
	/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
	/// * criteria: Termination criteria for internal undistortPoints call.
	/// The function interally undistorts points with [undistortPoints] and call [cv::solvePnP],
	/// thus the input are very similar. More information about Perspective-n-Points is described in [calib3d_solvePnP]
	/// for more information.
	///
	/// ## Note
	/// This alternative version of [solve_pnp_1] function uses the following default values for its arguments:
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	/// * criteria: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,10,1e-8)
	#[inline]
	pub fn solve_pnp_1_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_solvePnP_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences for fisheye camera moodel.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients (4x1/1x4).
	/// * rvec: Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Output translation vector.
	/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * flags: Method for solving a PnP problem: see [calib3d_solvePnP_flags]
	/// This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
	/// coordinate frame to the camera coordinate frame, using different methods:
	/// - P3P methods ([SOLVEPNP_P3P], [SOLVEPNP_AP3P]): need 4 input points to return a unique solution.
	/// - [SOLVEPNP_IPPE] Input points must be >= 4 and object points must be coplanar.
	/// - [SOLVEPNP_IPPE_SQUARE] Special case suitable for marker pose estimation.
	/// Number of input points must be 4. Object points must be defined in the following order:
	/// - point 0: [-squareLength / 2,  squareLength / 2, 0]
	/// - point 1: [ squareLength / 2,  squareLength / 2, 0]
	/// - point 2: [ squareLength / 2, -squareLength / 2, 0]
	/// - point 3: [-squareLength / 2, -squareLength / 2, 0]
	/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
	/// * criteria: Termination criteria for internal undistortPoints call.
	/// The function interally undistorts points with [undistortPoints] and call [cv::solvePnP],
	/// thus the input are very similar. More information about Perspective-n-Points is described in [calib3d_solvePnP]
	/// for more information.
	///
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	/// * criteria: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,10,1e-8)
	#[inline]
	pub fn solve_pnp_1(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray, use_extrinsic_guess: bool, flags: i32, criteria: core::TermCriteria) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_solvePnP_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_int_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), use_extrinsic_guess, flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [fisheye_stereo_calibrate] function uses the following default values for its arguments:
	/// * flags: fisheye::CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
	#[inline]
	pub fn fisheye_stereo_calibrate_def(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, k1: &mut impl ToInputOutputArray, d1: &mut impl ToInputOutputArray, k2: &mut impl ToInputOutputArray, d2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(k1);
		input_output_array_arg!(d1);
		input_output_array_arg!(k2);
		input_output_array_arg!(d2);
		output_array_arg!(r);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), k1.as_raw__InputOutputArray(), d1.as_raw__InputOutputArray(), k2.as_raw__InputOutputArray(), d2.as_raw__InputOutputArray(), &image_size, r.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Performs stereo calibration
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera.
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera.
	/// * K1: Input/output first camera intrinsic matrix:
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cvecthreethree%7Bf%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bc%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bf%5Fy%5E%7B%28j%29%7D%7D%7Bc%5Fy%5E%7B%28j%29%7D%7D%7B0%7D%7B0%7D%7B1%7D) , ![inline formula](https://latex.codecogs.com/png.latex?j%20%3D%200%2C%5C%2C%201) . If
	/// any of [fisheye::CALIB_USE_INTRINSIC_GUESS] , [fisheye::CALIB_FIX_INTRINSIC] are specified,
	/// some or all of the matrix components must be initialized.
	/// * D1: Input/output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye) of 4 elements.
	/// * K2: Input/output second camera intrinsic matrix. The parameter is similar to K1 .
	/// * D2: Input/output lens distortion coefficients for the second camera. The parameter is
	/// similar to D1 .
	/// * imageSize: Size of the image used only to initialize camera intrinsic matrix.
	/// * R: Output rotation matrix between the 1st and the 2nd camera coordinate systems.
	/// * T: Output translation vector between the coordinate systems of the cameras.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *    [fisheye::CALIB_FIX_INTRINSIC]  Fix K1, K2? and D1, D2? so that only R, T matrices
	/// are estimated.
	/// *    [fisheye::CALIB_USE_INTRINSIC_GUESS]  K1, K2 contains valid initial values of
	/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	/// center (imageSize is used), and focal distances are computed in a least-squares fashion.
	/// *    [fisheye::CALIB_RECOMPUTE_EXTRINSIC]  Extrinsic will be recomputed after each iteration
	/// of intrinsic optimization.
	/// *    [fisheye::CALIB_CHECK_COND]  The functions will check validity of condition number.
	/// *    [fisheye::CALIB_FIX_SKEW]  Skew coefficient (alpha) is set to zero and stay zero.
	/// *   [fisheye::CALIB_FIX_K1],..., [fisheye::CALIB_FIX_K4] Selected distortion coefficients are set to zeros and stay
	/// zero.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Note
	/// This alternative version of [stereo_calibrate_2] function uses the following default values for its arguments:
	/// * flags: fisheye::CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
	#[inline]
	pub fn stereo_calibrate_2_def(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, k1: &mut impl ToInputOutputArray, d1: &mut impl ToInputOutputArray, k2: &mut impl ToInputOutputArray, d2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(k1);
		input_output_array_arg!(d1);
		input_output_array_arg!(k2);
		input_output_array_arg!(d2);
		output_array_arg!(r);
		output_array_arg!(t);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), k1.as_raw__InputOutputArray(), d1.as_raw__InputOutputArray(), k2.as_raw__InputOutputArray(), d2.as_raw__InputOutputArray(), &image_size, r.as_raw__OutputArray(), t.as_raw__OutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Performs stereo calibration
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera.
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera.
	/// * K1: Input/output first camera intrinsic matrix:
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cvecthreethree%7Bf%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bc%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bf%5Fy%5E%7B%28j%29%7D%7D%7Bc%5Fy%5E%7B%28j%29%7D%7D%7B0%7D%7B0%7D%7B1%7D) , ![inline formula](https://latex.codecogs.com/png.latex?j%20%3D%200%2C%5C%2C%201) . If
	/// any of [fisheye::CALIB_USE_INTRINSIC_GUESS] , [fisheye::CALIB_FIX_INTRINSIC] are specified,
	/// some or all of the matrix components must be initialized.
	/// * D1: Input/output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye) of 4 elements.
	/// * K2: Input/output second camera intrinsic matrix. The parameter is similar to K1 .
	/// * D2: Input/output lens distortion coefficients for the second camera. The parameter is
	/// similar to D1 .
	/// * imageSize: Size of the image used only to initialize camera intrinsic matrix.
	/// * R: Output rotation matrix between the 1st and the 2nd camera coordinate systems.
	/// * T: Output translation vector between the coordinate systems of the cameras.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *    [fisheye::CALIB_FIX_INTRINSIC]  Fix K1, K2? and D1, D2? so that only R, T matrices
	/// are estimated.
	/// *    [fisheye::CALIB_USE_INTRINSIC_GUESS]  K1, K2 contains valid initial values of
	/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	/// center (imageSize is used), and focal distances are computed in a least-squares fashion.
	/// *    [fisheye::CALIB_RECOMPUTE_EXTRINSIC]  Extrinsic will be recomputed after each iteration
	/// of intrinsic optimization.
	/// *    [fisheye::CALIB_CHECK_COND]  The functions will check validity of condition number.
	/// *    [fisheye::CALIB_FIX_SKEW]  Skew coefficient (alpha) is set to zero and stay zero.
	/// *   [fisheye::CALIB_FIX_K1],..., [fisheye::CALIB_FIX_K4] Selected distortion coefficients are set to zeros and stay
	/// zero.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## C++ default parameters
	/// * flags: fisheye::CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
	#[inline]
	pub fn stereo_calibrate_2(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, k1: &mut impl ToInputOutputArray, d1: &mut impl ToInputOutputArray, k2: &mut impl ToInputOutputArray, d2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(k1);
		input_output_array_arg!(d1);
		input_output_array_arg!(k2);
		input_output_array_arg!(d2);
		output_array_arg!(r);
		output_array_arg!(t);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), k1.as_raw__InputOutputArray(), d1.as_raw__InputOutputArray(), k2.as_raw__InputOutputArray(), d2.as_raw__InputOutputArray(), &image_size, r.as_raw__OutputArray(), t.as_raw__OutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Performs stereo calibration
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera.
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera.
	/// * K1: Input/output first camera intrinsic matrix:
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cvecthreethree%7Bf%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bc%5Fx%5E%7B%28j%29%7D%7D%7B0%7D%7Bf%5Fy%5E%7B%28j%29%7D%7D%7Bc%5Fy%5E%7B%28j%29%7D%7D%7B0%7D%7B0%7D%7B1%7D) , ![inline formula](https://latex.codecogs.com/png.latex?j%20%3D%200%2C%5C%2C%201) . If
	/// any of [fisheye::CALIB_USE_INTRINSIC_GUESS] , [fisheye::CALIB_FIX_INTRINSIC] are specified,
	/// some or all of the matrix components must be initialized.
	/// * D1: Input/output vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye) of 4 elements.
	/// * K2: Input/output second camera intrinsic matrix. The parameter is similar to K1 .
	/// * D2: Input/output lens distortion coefficients for the second camera. The parameter is
	/// similar to D1 .
	/// * imageSize: Size of the image used only to initialize camera intrinsic matrix.
	/// * R: Output rotation matrix between the 1st and the 2nd camera coordinate systems.
	/// * T: Output translation vector between the coordinate systems of the cameras.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *    [fisheye::CALIB_FIX_INTRINSIC]  Fix K1, K2? and D1, D2? so that only R, T matrices
	/// are estimated.
	/// *    [fisheye::CALIB_USE_INTRINSIC_GUESS]  K1, K2 contains valid initial values of
	/// fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
	/// center (imageSize is used), and focal distances are computed in a least-squares fashion.
	/// *    [fisheye::CALIB_RECOMPUTE_EXTRINSIC]  Extrinsic will be recomputed after each iteration
	/// of intrinsic optimization.
	/// *    [fisheye::CALIB_CHECK_COND]  The functions will check validity of condition number.
	/// *    [fisheye::CALIB_FIX_SKEW]  Skew coefficient (alpha) is set to zero and stay zero.
	/// *   [fisheye::CALIB_FIX_K1],..., [fisheye::CALIB_FIX_K4] Selected distortion coefficients are set to zeros and stay
	/// zero.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: fisheye::CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,100,DBL_EPSILON)
	#[inline]
	pub fn fisheye_stereo_calibrate(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, k1: &mut impl ToInputOutputArray, d1: &mut impl ToInputOutputArray, k2: &mut impl ToInputOutputArray, d2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(k1);
		input_output_array_arg!(d1);
		input_output_array_arg!(k2);
		input_output_array_arg!(d2);
		output_array_arg!(r);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), k1.as_raw__InputOutputArray(), d1.as_raw__InputOutputArray(), k2.as_raw__InputOutputArray(), d2.as_raw__InputOutputArray(), &image_size, r.as_raw__OutputArray(), t.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Stereo rectification for fisheye camera model
	///
	/// ## Parameters
	/// * K1: First camera intrinsic matrix.
	/// * D1: First camera distortion parameters.
	/// * K2: Second camera intrinsic matrix.
	/// * D2: Second camera distortion parameters.
	/// * imageSize: Size of the image used for stereo calibration.
	/// * R: Rotation matrix between the coordinate systems of the first and the second
	/// cameras.
	/// * tvec: Translation vector between coordinate systems of the cameras.
	/// * R1: Output 3x3 rectification transform (rotation matrix) for the first camera.
	/// * R2: Output 3x3 rectification transform (rotation matrix) for the second camera.
	/// * P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
	/// camera.
	/// * P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
	/// camera.
	/// * Q: Output ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) disparity-to-depth mapping matrix (see [reproject_image_to_3d] ).
	/// * flags: Operation flags that may be zero or [fisheye::CALIB_ZERO_DISPARITY] . If the flag is set,
	/// the function makes the principal points of each camera have the same pixel coordinates in the
	/// rectified views. And if the flag is not set, the function may still shift the images in the
	/// horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
	/// useful image area.
	/// * newImageSize: New image resolution after rectification. The same size should be passed to
	/// [init_undistort_rectify_map] (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
	/// is passed (default), it is set to the original imageSize . Setting it to larger value can help you
	/// preserve details in the original image, especially when there is a big radial distortion.
	/// * balance: Sets the new focal length in range between the min focal length and the max focal
	/// length. Balance is in range of [0, 1].
	/// * fov_scale: Divisor for new focal length.
	///
	/// ## Note
	/// This alternative version of [fisheye_stereo_rectify] function uses the following default values for its arguments:
	/// * new_image_size: Size()
	/// * balance: 0.0
	/// * fov_scale: 1.0
	#[inline]
	pub fn fisheye_stereo_rectify_def(k1: &impl ToInputArray, d1: &impl ToInputArray, k2: &impl ToInputArray, d2: &impl ToInputArray, image_size: core::Size, r: &impl ToInputArray, tvec: &impl ToInputArray, r1: &mut impl ToOutputArray, r2: &mut impl ToOutputArray, p1: &mut impl ToOutputArray, p2: &mut impl ToOutputArray, q: &mut impl ToOutputArray, flags: i32) -> Result<()> {
		input_array_arg!(k1);
		input_array_arg!(d1);
		input_array_arg!(k2);
		input_array_arg!(d2);
		input_array_arg!(r);
		input_array_arg!(tvec);
		output_array_arg!(r1);
		output_array_arg!(r2);
		output_array_arg!(p1);
		output_array_arg!(p2);
		output_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_stereoRectify_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int(k1.as_raw__InputArray(), d1.as_raw__InputArray(), k2.as_raw__InputArray(), d2.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), tvec.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), q.as_raw__OutputArray(), flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Stereo rectification for fisheye camera model
	///
	/// ## Parameters
	/// * K1: First camera intrinsic matrix.
	/// * D1: First camera distortion parameters.
	/// * K2: Second camera intrinsic matrix.
	/// * D2: Second camera distortion parameters.
	/// * imageSize: Size of the image used for stereo calibration.
	/// * R: Rotation matrix between the coordinate systems of the first and the second
	/// cameras.
	/// * tvec: Translation vector between coordinate systems of the cameras.
	/// * R1: Output 3x3 rectification transform (rotation matrix) for the first camera.
	/// * R2: Output 3x3 rectification transform (rotation matrix) for the second camera.
	/// * P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
	/// camera.
	/// * P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
	/// camera.
	/// * Q: Output ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) disparity-to-depth mapping matrix (see [reproject_image_to_3d] ).
	/// * flags: Operation flags that may be zero or [fisheye::CALIB_ZERO_DISPARITY] . If the flag is set,
	/// the function makes the principal points of each camera have the same pixel coordinates in the
	/// rectified views. And if the flag is not set, the function may still shift the images in the
	/// horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
	/// useful image area.
	/// * newImageSize: New image resolution after rectification. The same size should be passed to
	/// [init_undistort_rectify_map] (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
	/// is passed (default), it is set to the original imageSize . Setting it to larger value can help you
	/// preserve details in the original image, especially when there is a big radial distortion.
	/// * balance: Sets the new focal length in range between the min focal length and the max focal
	/// length. Balance is in range of [0, 1].
	/// * fov_scale: Divisor for new focal length.
	///
	/// ## C++ default parameters
	/// * new_image_size: Size()
	/// * balance: 0.0
	/// * fov_scale: 1.0
	#[inline]
	pub fn fisheye_stereo_rectify(k1: &impl ToInputArray, d1: &impl ToInputArray, k2: &impl ToInputArray, d2: &impl ToInputArray, image_size: core::Size, r: &impl ToInputArray, tvec: &impl ToInputArray, r1: &mut impl ToOutputArray, r2: &mut impl ToOutputArray, p1: &mut impl ToOutputArray, p2: &mut impl ToOutputArray, q: &mut impl ToOutputArray, flags: i32, new_image_size: core::Size, balance: f64, fov_scale: f64) -> Result<()> {
		input_array_arg!(k1);
		input_array_arg!(d1);
		input_array_arg!(k2);
		input_array_arg!(d2);
		input_array_arg!(r);
		input_array_arg!(tvec);
		output_array_arg!(r1);
		output_array_arg!(r2);
		output_array_arg!(p1);
		output_array_arg!(p2);
		output_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_stereoRectify_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_const_SizeR_double_double(k1.as_raw__InputArray(), d1.as_raw__InputArray(), k2.as_raw__InputArray(), d2.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), tvec.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), q.as_raw__OutputArray(), flags, &new_image_size, balance, fov_scale, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Transforms an image to compensate for fisheye lens distortion.
	///
	/// ## Parameters
	/// * distorted: image with fisheye lens distortion.
	/// * undistorted: Output image with compensated fisheye lens distortion.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * Knew: Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
	/// may additionally scale and shift the result by using a different matrix.
	/// * new_size: the new size
	///
	/// The function transforms an image to compensate radial and tangential lens distortion.
	///
	/// The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and [remap]
	/// (with bilinear interpolation). See the former function for details of the transformation being
	/// performed.
	///
	/// See below the results of undistortImage.
	///    *   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
	///        k_4, k_5, k_6) of distortion were optimized under calibration)
	///    *   b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
	///        k_3, k_4) of fisheye distortion were optimized under calibration)
	///    *   c\) original image was captured with fisheye lens
	///
	/// Pictures a) and b) almost the same. But if we consider points of image located far from the center
	/// of image, we can notice that on image a) these points are distorted.
	///
	/// ![image](https://docs.opencv.org/4.11.0/fisheye_undistorted.jpg)
	///
	/// ## Note
	/// This alternative version of [fisheye_undistort_image] function uses the following default values for its arguments:
	/// * knew: cv::noArray()
	/// * new_size: Size()
	#[inline]
	pub fn fisheye_undistort_image_def(distorted: &impl ToInputArray, undistorted: &mut impl ToOutputArray, k: &impl ToInputArray, d: &impl ToInputArray) -> Result<()> {
		input_array_arg!(distorted);
		output_array_arg!(undistorted);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_undistortImage_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Transforms an image to compensate for fisheye lens distortion.
	///
	/// ## Parameters
	/// * distorted: image with fisheye lens distortion.
	/// * undistorted: Output image with compensated fisheye lens distortion.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * Knew: Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
	/// may additionally scale and shift the result by using a different matrix.
	/// * new_size: the new size
	///
	/// The function transforms an image to compensate radial and tangential lens distortion.
	///
	/// The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and [remap]
	/// (with bilinear interpolation). See the former function for details of the transformation being
	/// performed.
	///
	/// See below the results of undistortImage.
	///    *   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
	///        k_4, k_5, k_6) of distortion were optimized under calibration)
	///    *   b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
	///        k_3, k_4) of fisheye distortion were optimized under calibration)
	///    *   c\) original image was captured with fisheye lens
	///
	/// Pictures a) and b) almost the same. But if we consider points of image located far from the center
	/// of image, we can notice that on image a) these points are distorted.
	///
	/// ![image](https://docs.opencv.org/4.11.0/fisheye_undistorted.jpg)
	///
	/// ## C++ default parameters
	/// * knew: cv::noArray()
	/// * new_size: Size()
	#[inline]
	pub fn fisheye_undistort_image(distorted: &impl ToInputArray, undistorted: &mut impl ToOutputArray, k: &impl ToInputArray, d: &impl ToInputArray, knew: &impl ToInputArray, new_size: core::Size) -> Result<()> {
		input_array_arg!(distorted);
		output_array_arg!(undistorted);
		input_array_arg!(k);
		input_array_arg!(d);
		input_array_arg!(knew);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_undistortImage_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), knew.as_raw__InputArray(), &new_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Undistorts 2D points using fisheye model
	///
	/// ## Parameters
	/// * distorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
	/// number of points in the view.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
	/// 1-channel or 1x1 3-channel
	/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
	/// * criteria: Termination criteria
	/// * undistorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	///
	/// ## Note
	/// This alternative version of [fisheye_undistort_points] function uses the following default values for its arguments:
	/// * r: noArray()
	/// * p: noArray()
	/// * criteria: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,10,1e-8)
	#[inline]
	pub fn fisheye_undistort_points_def(distorted: &impl ToInputArray, undistorted: &mut impl ToOutputArray, k: &impl ToInputArray, d: &impl ToInputArray) -> Result<()> {
		input_array_arg!(distorted);
		output_array_arg!(undistorted);
		input_array_arg!(k);
		input_array_arg!(d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Undistorts 2D points using fisheye model
	///
	/// ## Parameters
	/// * distorted: Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
	/// number of points in the view.
	/// * K: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BK%7D).
	/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffsfisheye).
	/// * R: Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
	/// 1-channel or 1x1 3-channel
	/// * P: New camera intrinsic matrix (3x3) or new projection matrix (3x4)
	/// * criteria: Termination criteria
	/// * undistorted: Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
	///
	/// ## C++ default parameters
	/// * r: noArray()
	/// * p: noArray()
	/// * criteria: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,10,1e-8)
	#[inline]
	pub fn fisheye_undistort_points(distorted: &impl ToInputArray, undistorted: &mut impl ToOutputArray, k: &impl ToInputArray, d: &impl ToInputArray, r: &impl ToInputArray, p: &impl ToInputArray, criteria: core::TermCriteria) -> Result<()> {
		input_array_arg!(distorted);
		output_array_arg!(undistorted);
		input_array_arg!(k);
		input_array_arg!(d);
		input_array_arg!(r);
		input_array_arg!(p);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_fisheye_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_TermCriteria(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Returns the default new camera matrix.
	///
	/// The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
	/// centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
	///
	/// In the latter case, the new camera matrix will be:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%26%200%20%26%26%20%28%20%5Ctexttt%7BimgSize%2Ewidth%7D%20%2D1%29%2A0%2E5%20%20%5C%5C%200%20%26%26%20f%5Fy%20%26%26%20%28%20%5Ctexttt%7BimgSize%2Eheight%7D%20%2D1%29%2A0%2E5%20%20%5C%5C%200%20%26%26%200%20%26%26%201%20%5Cend%7Bbmatrix%7D%20%2C)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) are ![inline formula](https://latex.codecogs.com/png.latex?%280%2C0%29) and ![inline formula](https://latex.codecogs.com/png.latex?%281%2C1%29) elements of cameraMatrix, respectively.
	///
	/// By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
	/// move the principal point. However, when you work with stereo, it is important to move the principal
	/// points in both views to the same y-coordinate (which is required by most of stereo correspondence
	/// algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
	/// each view where the principal points are located at the center.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera matrix.
	/// * imgsize: Camera view image size in pixels.
	/// * centerPrincipalPoint: Location of the principal point in the new camera matrix. The
	/// parameter indicates whether this location should be at the image center or not.
	///
	/// ## Note
	/// This alternative version of [get_default_new_camera_matrix] function uses the following default values for its arguments:
	/// * imgsize: Size()
	/// * center_principal_point: false
	#[inline]
	pub fn get_default_new_camera_matrix_def(camera_matrix: &impl ToInputArray) -> Result<core::Mat> {
		input_array_arg!(camera_matrix);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_getDefaultNewCameraMatrix_const__InputArrayR(camera_matrix.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Returns the default new camera matrix.
	///
	/// The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
	/// centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
	///
	/// In the latter case, the new camera matrix will be:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%26%200%20%26%26%20%28%20%5Ctexttt%7BimgSize%2Ewidth%7D%20%2D1%29%2A0%2E5%20%20%5C%5C%200%20%26%26%20f%5Fy%20%26%26%20%28%20%5Ctexttt%7BimgSize%2Eheight%7D%20%2D1%29%2A0%2E5%20%20%5C%5C%200%20%26%26%200%20%26%26%201%20%5Cend%7Bbmatrix%7D%20%2C)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) are ![inline formula](https://latex.codecogs.com/png.latex?%280%2C0%29) and ![inline formula](https://latex.codecogs.com/png.latex?%281%2C1%29) elements of cameraMatrix, respectively.
	///
	/// By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
	/// move the principal point. However, when you work with stereo, it is important to move the principal
	/// points in both views to the same y-coordinate (which is required by most of stereo correspondence
	/// algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
	/// each view where the principal points are located at the center.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera matrix.
	/// * imgsize: Camera view image size in pixels.
	/// * centerPrincipalPoint: Location of the principal point in the new camera matrix. The
	/// parameter indicates whether this location should be at the image center or not.
	///
	/// ## C++ default parameters
	/// * imgsize: Size()
	/// * center_principal_point: false
	#[inline]
	pub fn get_default_new_camera_matrix(camera_matrix: &impl ToInputArray, imgsize: core::Size, center_principal_point: bool) -> Result<core::Mat> {
		input_array_arg!(camera_matrix);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_getDefaultNewCameraMatrix_const__InputArrayR_Size_bool(camera_matrix.as_raw__InputArray(), &imgsize, center_principal_point, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Returns the new camera intrinsic matrix based on the free scaling parameter.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera intrinsic matrix.
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * imageSize: Original image size.
	/// * alpha: Free scaling parameter between 0 (when all the pixels in the undistorted image are
	/// valid) and 1 (when all the source image pixels are retained in the undistorted image). See
	/// [stereo_rectify] for details.
	/// * newImgSize: Image size after rectification. By default, it is set to imageSize .
	/// * validPixROI: Optional output rectangle that outlines all-good-pixels region in the
	/// undistorted image. See roi1, roi2 description in [stereo_rectify] .
	/// * centerPrincipalPoint: Optional flag that indicates whether in the new camera intrinsic matrix the
	/// principal point should be at the image center or not. By default, the principal point is chosen to
	/// best fit a subset of the source image (determined by alpha) to the corrected image.
	/// ## Returns
	/// new_camera_matrix Output new camera intrinsic matrix.
	///
	/// The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
	/// By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
	/// image pixels if there is valuable information in the corners alpha=1 , or get something in between.
	/// When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
	/// "virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
	/// coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
	/// [init_undistort_rectify_map] to produce the maps for [remap] .
	///
	/// ## Note
	/// This alternative version of [get_optimal_new_camera_matrix] function uses the following default values for its arguments:
	/// * new_img_size: Size()
	/// * valid_pix_roi: 0
	/// * center_principal_point: false
	#[inline]
	pub fn get_optimal_new_camera_matrix_def(camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, image_size: core::Size, alpha: f64) -> Result<core::Mat> {
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_getOptimalNewCameraMatrix_const__InputArrayR_const__InputArrayR_Size_double(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), &image_size, alpha, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Returns the new camera intrinsic matrix based on the free scaling parameter.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera intrinsic matrix.
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * imageSize: Original image size.
	/// * alpha: Free scaling parameter between 0 (when all the pixels in the undistorted image are
	/// valid) and 1 (when all the source image pixels are retained in the undistorted image). See
	/// [stereo_rectify] for details.
	/// * newImgSize: Image size after rectification. By default, it is set to imageSize .
	/// * validPixROI: Optional output rectangle that outlines all-good-pixels region in the
	/// undistorted image. See roi1, roi2 description in [stereo_rectify] .
	/// * centerPrincipalPoint: Optional flag that indicates whether in the new camera intrinsic matrix the
	/// principal point should be at the image center or not. By default, the principal point is chosen to
	/// best fit a subset of the source image (determined by alpha) to the corrected image.
	/// ## Returns
	/// new_camera_matrix Output new camera intrinsic matrix.
	///
	/// The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
	/// By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
	/// image pixels if there is valuable information in the corners alpha=1 , or get something in between.
	/// When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
	/// "virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
	/// coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
	/// [init_undistort_rectify_map] to produce the maps for [remap] .
	///
	/// ## C++ default parameters
	/// * new_img_size: Size()
	/// * valid_pix_roi: 0
	/// * center_principal_point: false
	#[inline]
	pub fn get_optimal_new_camera_matrix(camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, image_size: core::Size, alpha: f64, new_img_size: core::Size, valid_pix_roi: Option<&mut core::Rect>, center_principal_point: bool) -> Result<core::Mat> {
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_getOptimalNewCameraMatrix_const__InputArrayR_const__InputArrayR_Size_double_Size_RectX_bool(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), &image_size, alpha, &new_img_size, valid_pix_roi.map_or(::core::ptr::null_mut(), |valid_pix_roi| valid_pix_roi), center_principal_point, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by #stereoRectify)
	#[inline]
	pub fn get_valid_disparity_roi(roi1: core::Rect, roi2: core::Rect, min_disparity: i32, number_of_disparities: i32, block_size: i32) -> Result<core::Rect> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_getValidDisparityROI_Rect_Rect_int_int_int(&roi1, &roi2, min_disparity, number_of_disparities, block_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points in the calibration pattern
	/// coordinate space. In the old interface all the per-view vectors are concatenated. See
	/// [calibrate_camera] for details.
	/// * imagePoints: Vector of vectors of the projections of the calibration pattern points. In the
	/// old interface all the per-view vectors are concatenated.
	/// * imageSize: Image size in pixels used to initialize the principal point.
	/// * aspectRatio: If it is zero or negative, both ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) are estimated independently.
	/// Otherwise, ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%20%3D%20f%5Fy%20%5Ccdot%20%5Ctexttt%7BaspectRatio%7D) .
	///
	/// The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
	/// Currently, the function only supports planar calibration patterns, which are patterns where each
	/// object point has z-coordinate =0.
	///
	/// ## Note
	/// This alternative version of [init_camera_matrix_2d] function uses the following default values for its arguments:
	/// * aspect_ratio: 1.0
	#[inline]
	pub fn init_camera_matrix_2d_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size) -> Result<core::Mat> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_initCameraMatrix2D_const__InputArrayR_const__InputArrayR_Size(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points in the calibration pattern
	/// coordinate space. In the old interface all the per-view vectors are concatenated. See
	/// [calibrate_camera] for details.
	/// * imagePoints: Vector of vectors of the projections of the calibration pattern points. In the
	/// old interface all the per-view vectors are concatenated.
	/// * imageSize: Image size in pixels used to initialize the principal point.
	/// * aspectRatio: If it is zero or negative, both ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5Fy) are estimated independently.
	/// Otherwise, ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%20%3D%20f%5Fy%20%5Ccdot%20%5Ctexttt%7BaspectRatio%7D) .
	///
	/// The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
	/// Currently, the function only supports planar calibration patterns, which are patterns where each
	/// object point has z-coordinate =0.
	///
	/// ## C++ default parameters
	/// * aspect_ratio: 1.0
	#[inline]
	pub fn init_camera_matrix_2d(object_points: &impl ToInputArray, image_points: &impl ToInputArray, image_size: core::Size, aspect_ratio: f64) -> Result<core::Mat> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_initCameraMatrix2D_const__InputArrayR_const__InputArrayR_Size_double(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), &image_size, aspect_ratio, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
	/// [init_undistort_rectify_map] to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
	///
	/// The function computes the joint projection and inverse rectification transformation and represents the
	/// result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
	/// once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
	/// is usually equal to cameraMatrix, or it can be computed by
	/// [get_optimal_new_camera_matrix] for a better control over scaling. In case of a projector-camera pair,
	/// newCameraMatrix is normally set to P1 or P2 computed by [stereo_rectify] .
	///
	/// The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
	/// this helps align the projector (in the same manner as [init_undistort_rectify_map] for the camera) to create a stereo-rectified pair. This
	/// allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
	///
	/// The function builds the maps for the inverse mapping algorithm that is used by #remap. That
	/// is, for each pixel ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) in the destination (projected and inverse-rectified) image, the function
	/// computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0A%5Ctext%7BnewCameraMatrix%7D%5C%5C%0Ax%20%20%5Cleftarrow%20%28u%20%2D%20%7Bc%27%7D%5Fx%29%2F%7Bf%27%7D%5Fx%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20%28v%20%2D%20%7Bc%27%7D%5Fy%29%2F%7Bf%27%7D%5Fy%20%20%5C%5C%0A%0A%5C%5C%5Ctext%7BUndistortion%7D%0A%5C%5C%5Cscriptsize%7B%5Ctextit%7Bthough%20equation%20shown%20is%20for%20radial%20undistortion%2C%20function%20implements%20cv%3A%3AundistortPoints%28%29%7D%7D%5C%5C%0Ar%5E2%20%20%5Cleftarrow%20x%5E2%20%2B%20y%5E2%20%5C%5C%0A%5Ctheta%20%5Cleftarrow%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%5C%5C%0Ax%27%20%5Cleftarrow%20%5Cfrac%7Bx%7D%7B%5Ctheta%7D%20%5C%5C%0Ay%27%20%20%5Cleftarrow%20%5Cfrac%7By%7D%7B%5Ctheta%7D%20%5C%5C%0A%0A%5C%5C%5Ctext%7BRectification%7D%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%2A%5Bx%27%20%5C%2C%20y%27%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%27%27%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%27%27%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0A%0A%5C%5C%5Ctext%7BcameraMatrix%7D%5C%5C%0Amap%5Fx%28u%2Cv%29%20%20%5Cleftarrow%20x%27%27%20f%5Fx%20%2B%20c%5Fx%20%20%5C%5C%0Amap%5Fy%28u%2Cv%29%20%20%5Cleftarrow%20y%27%27%20f%5Fy%20%2B%20c%5Fy%0A%5Cend%7Barray%7D%0A)
	/// where ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// are the distortion coefficients vector distCoeffs.
	///
	/// In case of a stereo-rectified projector-camera pair, this function is called for the projector while [init_undistort_rectify_map] is called for the camera head.
	/// This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
	/// is not calibrated, it is still possible to compute the rectification transformations directly from
	/// the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
	/// homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
	/// space. R can be computed from H as
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BR%7D%20%3D%20%5Ctexttt%7BcameraMatrix%7D%20%5E%7B%2D1%7D%20%5Ccdot%20%5Ctexttt%7BH%7D%20%5Ccdot%20%5Ctexttt%7BcameraMatrix%7D)
	/// where cameraMatrix can be chosen arbitrarily.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%3D%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * R: Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
	/// computed by [stereo_rectify] can be passed here. If the matrix is empty, the identity transformation
	/// is assumed.
	/// * newCameraMatrix: New camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%27%3D%5Cbegin%7Bbmatrix%7D%20f%5Fx%27%20%26%200%20%26%20c%5Fx%27%5C%5C%200%20%26%20f%5Fy%27%20%26%20c%5Fy%27%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
	/// * size: Distorted image size.
	/// * m1type: Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see [convert_maps]
	/// * map1: The first output map for #remap.
	/// * map2: The second output map for #remap.
	#[inline]
	pub fn init_inverse_rectification_map(camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, r: &impl ToInputArray, new_camera_matrix: &impl ToInputArray, size: core::Size, m1type: i32, map1: &mut impl ToOutputArray, map2: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(r);
		input_array_arg!(new_camera_matrix);
		output_array_arg!(map1);
		output_array_arg!(map2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_initInverseRectificationMap_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_int_const__OutputArrayR_const__OutputArrayR(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), new_camera_matrix.as_raw__InputArray(), &size, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes the undistortion and rectification transformation map.
	///
	/// The function computes the joint undistortion and rectification transformation and represents the
	/// result in the form of maps for #remap. The undistorted image looks like original, as if it is
	/// captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
	/// monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
	/// [get_optimal_new_camera_matrix] for a better control over scaling. In case of a stereo camera,
	/// newCameraMatrix is normally set to P1 or P2 computed by [stereo_rectify] .
	///
	/// Also, this new camera is oriented differently in the coordinate space, according to R. That, for
	/// example, helps to align two heads of a stereo camera so that the epipolar lines on both images
	/// become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
	///
	/// The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
	/// is, for each pixel ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) in the destination (corrected and rectified) image, the function
	/// computes the corresponding coordinates in the source image (that is, in the original image from
	/// camera). The following process is applied:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%20%20%5Cleftarrow%20%28u%20%2D%20%7Bc%27%7D%5Fx%29%2F%7Bf%27%7D%5Fx%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20%28v%20%2D%20%7Bc%27%7D%5Fy%29%2F%7Bf%27%7D%5Fy%20%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%5E%7B%2D1%7D%2A%5Bx%20%5C%2C%20y%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%27%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%27%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0Ar%5E2%20%20%5Cleftarrow%20x%27%5E2%20%2B%20y%27%5E2%20%5C%5C%0Ax%27%27%20%20%5Cleftarrow%20x%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%0A%2B%202p%5F1%20x%27%20y%27%20%2B%20p%5F2%28r%5E2%20%2B%202%20x%27%5E2%29%20%20%2B%20s%5F1%20r%5E2%20%2B%20s%5F2%20r%5E4%5C%5C%0Ay%27%27%20%20%5Cleftarrow%20y%27%20%5Cfrac%7B1%20%2B%20k%5F1%20r%5E2%20%2B%20k%5F2%20r%5E4%20%2B%20k%5F3%20r%5E6%7D%7B1%20%2B%20k%5F4%20r%5E2%20%2B%20k%5F5%20r%5E4%20%2B%20k%5F6%20r%5E6%7D%0A%2B%20p%5F1%20%28r%5E2%20%2B%202%20y%27%5E2%29%20%2B%202%20p%5F2%20x%27%20y%27%20%2B%20s%5F3%20r%5E2%20%2B%20s%5F4%20r%5E4%20%5C%5C%0As%5Cbegin%7Bbmatrix%7D%20x%27%27%27%5C%5C%20y%27%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D%20%3D%0A%5Cvecthreethree%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B0%7D%7B%2DR%5F%7B13%7D%28%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7BR%5F%7B33%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%7B%2DR%5F%7B23%7D%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%7D%0A%7B0%7D%7B0%7D%7B1%7D%20R%28%5Ctau%5Fx%2C%20%5Ctau%5Fy%29%20%5Cbegin%7Bbmatrix%7D%20x%27%27%5C%5C%20y%27%27%5C%5C%201%20%5Cend%7Bbmatrix%7D%5C%5C%0Amap%5Fx%28u%2Cv%29%20%20%5Cleftarrow%20x%27%27%27%20f%5Fx%20%2B%20c%5Fx%20%20%5C%5C%0Amap%5Fy%28u%2Cv%29%20%20%5Cleftarrow%20y%27%27%27%20f%5Fy%20%2B%20c%5Fy%0A%5Cend%7Barray%7D%0A)
	/// where ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// are the distortion coefficients.
	///
	/// In case of a stereo camera, this function is called twice: once for each camera head, after
	/// #stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
	/// was not calibrated, it is still possible to compute the rectification transformations directly from
	/// the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
	/// homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
	/// space. R can be computed from H as
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BR%7D%20%3D%20%5Ctexttt%7BcameraMatrix%7D%20%5E%7B%2D1%7D%20%5Ccdot%20%5Ctexttt%7BH%7D%20%5Ccdot%20%5Ctexttt%7BcameraMatrix%7D)
	/// where cameraMatrix can be chosen arbitrarily.
	///
	/// ## Parameters
	/// * cameraMatrix: Input camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%3D%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * R: Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
	/// computed by [stereo_rectify] can be passed here. If the matrix is empty, the identity transformation
	/// is assumed. In [init_undistort_rectify_map] R assumed to be an identity matrix.
	/// * newCameraMatrix: New camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%27%3D%5Cbegin%7Bbmatrix%7D%20f%5Fx%27%20%26%200%20%26%20c%5Fx%27%5C%5C%200%20%26%20f%5Fy%27%20%26%20c%5Fy%27%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D).
	/// * size: Undistorted image size.
	/// * m1type: Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see [convert_maps]
	/// * map1: The first output map.
	/// * map2: The second output map.
	#[inline]
	pub fn init_undistort_rectify_map(camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, r: &impl ToInputArray, new_camera_matrix: &impl ToInputArray, size: core::Size, m1type: i32, map1: &mut impl ToOutputArray, map2: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(r);
		input_array_arg!(new_camera_matrix);
		output_array_arg!(map1);
		output_array_arg!(map2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_initUndistortRectifyMap_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_int_const__OutputArrayR_const__OutputArrayR(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), new_camera_matrix.as_raw__InputArray(), &size, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// initializes maps for [remap] for wide-angle
	///
	/// ## Note
	/// This alternative version of [init_wide_angle_proj_map] function uses the following default values for its arguments:
	/// * proj_type: PROJ_SPHERICAL_EQRECT
	/// * alpha: 0
	#[inline]
	pub fn init_wide_angle_proj_map_def(camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, image_size: core::Size, dest_image_width: i32, m1type: i32, map1: &mut impl ToOutputArray, map2: &mut impl ToOutputArray) -> Result<f32> {
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(map1);
		output_array_arg!(map2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_initWideAngleProjMap_const__InputArrayR_const__InputArrayR_Size_int_int_const__OutputArrayR_const__OutputArrayR(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), &image_size, dest_image_width, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// initializes maps for [remap] for wide-angle
	///
	/// ## C++ default parameters
	/// * proj_type: PROJ_SPHERICAL_EQRECT
	/// * alpha: 0
	#[inline]
	pub fn init_wide_angle_proj_map(camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, image_size: core::Size, dest_image_width: i32, m1type: i32, map1: &mut impl ToOutputArray, map2: &mut impl ToOutputArray, proj_type: crate::calib3d::UndistortTypes, alpha: f64) -> Result<f32> {
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(map1);
		output_array_arg!(map2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_initWideAngleProjMap_const__InputArrayR_const__InputArrayR_Size_int_int_const__OutputArrayR_const__OutputArrayR_UndistortTypes_double(camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), &image_size, dest_image_width, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), proj_type, alpha, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes partial derivatives of the matrix product for each multiplied matrix.
	///
	/// ## Parameters
	/// * A: First multiplied matrix.
	/// * B: Second multiplied matrix.
	/// * dABdA: First output derivative matrix d(A\*B)/dA of size
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BA%2Erows%2AB%2Ecols%7D%20%5Ctimes%20%7BA%2Erows%2AA%2Ecols%7D) .
	/// * dABdB: Second output derivative matrix d(A\*B)/dB of size
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BA%2Erows%2AB%2Ecols%7D%20%5Ctimes%20%7BB%2Erows%2AB%2Ecols%7D) .
	///
	/// The function computes partial derivatives of the elements of the matrix product ![inline formula](https://latex.codecogs.com/png.latex?A%2AB) with regard to
	/// the elements of each of the two input matrices. The function is used to compute the Jacobian
	/// matrices in [stereo_calibrate] but can also be used in any other similar optimization function.
	#[inline]
	pub fn mat_mul_deriv(a: &impl ToInputArray, b: &impl ToInputArray, d_a_bd_a: &mut impl ToOutputArray, d_a_bd_b: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(a);
		input_array_arg!(b);
		output_array_arg!(d_a_bd_a);
		output_array_arg!(d_a_bd_b);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_matMulDeriv_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(a.as_raw__InputArray(), b.as_raw__InputArray(), d_a_bd_a.as_raw__OutputArray(), d_a_bd_b.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Projects 3D points to an image plane.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
	/// 1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
	/// * rvec: The rotation vector ([Rodrigues]) that, together with tvec, performs a change of
	/// basis from world to camera coordinate system, see [calibrateCamera] for details.
	/// * tvec: The translation vector, see parameter description above.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs) . If the vector is empty, the zero distortion coefficients are assumed.
	/// * imagePoints: Output array of image points, 1xN/Nx1 2-channel, or
	/// vector\<Point2f\> .
	/// * jacobian: Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
	/// points with respect to components of the rotation vector, translation vector, focal lengths,
	/// coordinates of the principal point and the distortion coefficients. In the old interface different
	/// components of the jacobian are returned via different output parameters.
	/// * aspectRatio: Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
	/// function assumes that the aspect ratio (![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%20%2F%20f%5Fy)) is fixed and correspondingly adjusts the
	/// jacobian matrix.
	///
	/// The function computes the 2D projections of 3D points to the image plane, given intrinsic and
	/// extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
	/// derivatives of image points coordinates (as functions of all the input parameters) with respect to
	/// the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
	/// optimization in [calibrateCamera], [solvePnP], and [stereoCalibrate]. The function itself
	/// can also be used to compute a re-projection error, given the current intrinsic and extrinsic
	/// parameters.
	///
	///
	/// Note: By setting rvec = tvec = ![inline formula](https://latex.codecogs.com/png.latex?%5B0%2C%200%2C%200%5D), or by setting cameraMatrix to a 3x3 identity matrix,
	/// or by passing zero distortion coefficients, one can get various useful partial cases of the
	/// function. This means, one can compute the distorted coordinates for a sparse set of points or apply
	/// a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
	///
	/// ## Note
	/// This alternative version of [project_points] function uses the following default values for its arguments:
	/// * jacobian: noArray()
	/// * aspect_ratio: 0
	#[inline]
	pub fn project_points_def(object_points: &impl ToInputArray, rvec: &impl ToInputArray, tvec: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, image_points: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(object_points);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(image_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_projectPoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), image_points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Projects 3D points to an image plane.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
	/// 1-channel or 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is the number of points in the view.
	/// * rvec: The rotation vector ([Rodrigues]) that, together with tvec, performs a change of
	/// basis from world to camera coordinate system, see [calibrateCamera] for details.
	/// * tvec: The translation vector, see parameter description above.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs) . If the vector is empty, the zero distortion coefficients are assumed.
	/// * imagePoints: Output array of image points, 1xN/Nx1 2-channel, or
	/// vector\<Point2f\> .
	/// * jacobian: Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
	/// points with respect to components of the rotation vector, translation vector, focal lengths,
	/// coordinates of the principal point and the distortion coefficients. In the old interface different
	/// components of the jacobian are returned via different output parameters.
	/// * aspectRatio: Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
	/// function assumes that the aspect ratio (![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%20%2F%20f%5Fy)) is fixed and correspondingly adjusts the
	/// jacobian matrix.
	///
	/// The function computes the 2D projections of 3D points to the image plane, given intrinsic and
	/// extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
	/// derivatives of image points coordinates (as functions of all the input parameters) with respect to
	/// the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
	/// optimization in [calibrateCamera], [solvePnP], and [stereoCalibrate]. The function itself
	/// can also be used to compute a re-projection error, given the current intrinsic and extrinsic
	/// parameters.
	///
	///
	/// Note: By setting rvec = tvec = ![inline formula](https://latex.codecogs.com/png.latex?%5B0%2C%200%2C%200%5D), or by setting cameraMatrix to a 3x3 identity matrix,
	/// or by passing zero distortion coefficients, one can get various useful partial cases of the
	/// function. This means, one can compute the distorted coordinates for a sparse set of points or apply
	/// a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
	///
	/// ## C++ default parameters
	/// * jacobian: noArray()
	/// * aspect_ratio: 0
	#[inline]
	pub fn project_points(object_points: &impl ToInputArray, rvec: &impl ToInputArray, tvec: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, image_points: &mut impl ToOutputArray, jacobian: &mut impl ToOutputArray, aspect_ratio: f64) -> Result<()> {
		input_array_arg!(object_points);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(image_points);
		output_array_arg!(jacobian);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_projectPoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double(object_points.as_raw__InputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), image_points.as_raw__OutputArray(), jacobian.as_raw__OutputArray(), aspect_ratio, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
	/// inliers that pass the check.
	///
	/// ## Parameters
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * cameraMatrix1: Input/output camera matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * cameraMatrix2: Input/output camera matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs2: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * E: The output essential matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// described below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the cheirality check.
	///
	/// This function decomposes an essential matrix using [decomposeEssentialMat] and then verifies
	/// possible pose hypotheses by doing cheirality check. The cheirality check means that the
	/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03).
	///
	/// This function can be used to process the output E and mask from [findEssentialMat]. In this
	/// scenario, points1 and points2 are the same input for findEssentialMat.:
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
	///    Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
	///
	///    // Output: Essential matrix, relative rotation and relative translation.
	///    Mat E, R, t, mask;
	///
	///    recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
	/// ```
	///
	///
	/// ## Note
	/// This alternative version of [recover_pose_2_cameras] function uses the following default values for its arguments:
	/// * method: cv::RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * mask: noArray()
	#[inline]
	pub fn recover_pose_2_cameras_def(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray, e: &mut impl ToOutputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		output_array_arg!(e);
		output_array_arg!(r);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), e.as_raw__OutputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
	/// inliers that pass the check.
	///
	/// ## Parameters
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * cameraMatrix1: Input/output camera matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * cameraMatrix2: Input/output camera matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs2: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * E: The output essential matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// described below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * method: Method for computing an essential matrix.
	/// *   [RANSAC] for the RANSAC algorithm.
	/// *   [LMEDS] for the LMedS algorithm.
	/// * prob: Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
	/// confidence (probability) that the estimated matrix is correct.
	/// * threshold: Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
	/// line in pixels, beyond which the point is considered an outlier and is not used for computing the
	/// final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
	/// point localization, image resolution, and the image noise.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the cheirality check.
	///
	/// This function decomposes an essential matrix using [decomposeEssentialMat] and then verifies
	/// possible pose hypotheses by doing cheirality check. The cheirality check means that the
	/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03).
	///
	/// This function can be used to process the output E and mask from [findEssentialMat]. In this
	/// scenario, points1 and points2 are the same input for findEssentialMat.:
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    // Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
	///    Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
	///
	///    // Output: Essential matrix, relative rotation and relative translation.
	///    Mat E, R, t, mask;
	///
	///    recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
	/// ```
	///
	///
	/// ## C++ default parameters
	/// * method: cv::RANSAC
	/// * prob: 0.999
	/// * threshold: 1.0
	/// * mask: noArray()
	#[inline]
	pub fn recover_pose_2_cameras(points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray, e: &mut impl ToOutputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, method: i32, prob: f64, threshold: f64, mask: &mut impl ToInputOutputArray) -> Result<i32> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		output_array_arg!(e);
		output_array_arg!(r);
		output_array_arg!(t);
		input_output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_double_double_const__InputOutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), e.as_raw__OutputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), method, prob, threshold, mask.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Recovers the relative camera rotation and the translation from an estimated essential
	/// matrix and the corresponding points in two images, using chirality check. Returns the number of
	/// inliers that pass the check.
	///
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// described below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	///
	/// This function decomposes an essential matrix using [decomposeEssentialMat] and then verifies
	/// possible pose hypotheses by doing chirality check. The chirality check means that the
	/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03).
	///
	/// This function can be used to process the output E and mask from [findEssentialMat]. In this
	/// scenario, points1 and points2 are the same input for [find_essential_mat] :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
	///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
	///
	///    Mat E, R, t, mask;
	///
	///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
	///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
	/// ```
	///
	///
	/// ## Note
	/// This alternative version of [recover_pose_estimated] function uses the following default values for its arguments:
	/// * mask: noArray()
	#[inline]
	pub fn recover_pose_estimated_def(e: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(e);
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		output_array_arg!(r);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Recovers the relative camera rotation and the translation from an estimated essential
	/// matrix and the corresponding points in two images, using chirality check. Returns the number of
	/// inliers that pass the check.
	///
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// described below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	///
	/// This function decomposes an essential matrix using [decomposeEssentialMat] and then verifies
	/// possible pose hypotheses by doing chirality check. The chirality check means that the
	/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03).
	///
	/// This function can be used to process the output E and mask from [findEssentialMat]. In this
	/// scenario, points1 and points2 are the same input for [find_essential_mat] :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
	///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
	///
	///    Mat E, R, t, mask;
	///
	///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
	///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
	/// ```
	///
	///
	/// ## C++ default parameters
	/// * mask: noArray()
	#[inline]
	pub fn recover_pose_estimated(e: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, mask: &mut impl ToInputOutputArray) -> Result<i32> {
		input_array_arg!(e);
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		output_array_arg!(r);
		output_array_arg!(t);
		input_output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__InputOutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), mask.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// description below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * distanceThresh: threshold distance which is used to filter out far away points (i.e. infinite
	/// points).
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	/// * triangulatedPoints: 3D points which were reconstructed by triangulation.
	///
	/// This function differs from the one above that it outputs the triangulated 3D point that are used for
	/// the chirality check.
	///
	/// ## Note
	/// This alternative version of [recover_pose_triangulated] function uses the following default values for its arguments:
	/// * mask: noArray()
	/// * triangulated_points: noArray()
	#[inline]
	pub fn recover_pose_triangulated_def(e: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, distance_thresh: f64) -> Result<i32> {
		input_array_arg!(e);
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		output_array_arg!(r);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), distance_thresh, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Recovers the relative camera rotation and the translation from an estimated essential
	/// matrix and the corresponding points in two images, using chirality check. Returns the number of
	/// inliers that pass the check.
	///
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// described below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	///
	/// This function decomposes an essential matrix using [decomposeEssentialMat] and then verifies
	/// possible pose hypotheses by doing chirality check. The chirality check means that the
	/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03).
	///
	/// This function can be used to process the output E and mask from [findEssentialMat]. In this
	/// scenario, points1 and points2 are the same input for [find_essential_mat] :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
	///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
	///
	///    Mat E, R, t, mask;
	///
	///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
	///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
	/// ```
	///
	///
	/// ## Overloaded parameters
	///
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1.
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// description below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * distanceThresh: threshold distance which is used to filter out far away points (i.e. infinite
	/// points).
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	/// * triangulatedPoints: 3D points which were reconstructed by triangulation.
	///
	/// This function differs from the one above that it outputs the triangulated 3D point that are used for
	/// the chirality check.
	///
	/// ## C++ default parameters
	/// * mask: noArray()
	/// * triangulated_points: noArray()
	#[inline]
	pub fn recover_pose_triangulated(e: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, camera_matrix: &impl ToInputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, distance_thresh: f64, mask: &mut impl ToInputOutputArray, triangulated_points: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(e);
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(camera_matrix);
		output_array_arg!(r);
		output_array_arg!(t);
		input_output_array_arg!(mask);
		output_array_arg!(triangulated_points);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_const__InputOutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), distance_thresh, mask.as_raw__InputOutputArray(), triangulated_points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// description below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * focal: Focal length of the camera. Note that this function assumes that points1 and points2
	/// are feature points from cameras with same focal length and principal point.
	/// * pp: principal point of the camera.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	///
	/// This function differs from the one above that it computes camera intrinsic matrix from focal length and
	/// principal point:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%0A%5Cbegin%7Bbmatrix%7D%0Af%20%26%200%20%26%20x%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%20f%20%26%20y%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D)
	///
	/// ## Note
	/// This alternative version of [recover_pose] function uses the following default values for its arguments:
	/// * focal: 1.0
	/// * pp: Point2d(0,0)
	/// * mask: noArray()
	#[inline]
	pub fn recover_pose_def(e: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(e);
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(r);
		output_array_arg!(t);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Recovers the relative camera rotation and the translation from an estimated essential
	/// matrix and the corresponding points in two images, using chirality check. Returns the number of
	/// inliers that pass the check.
	///
	/// ## Parameters
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * cameraMatrix: Camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// Note that this function assumes that points1 and points2 are feature points from cameras with the
	/// same camera intrinsic matrix.
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// described below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	///
	/// This function decomposes an essential matrix using [decomposeEssentialMat] and then verifies
	/// possible pose hypotheses by doing chirality check. The chirality check means that the
	/// triangulated 3D points should have positive depth. Some details can be found in [Nister03](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Nister03).
	///
	/// This function can be used to process the output E and mask from [findEssentialMat]. In this
	/// scenario, points1 and points2 are the same input for [find_essential_mat] :
	/// ```C++
	///    // Example. Estimation of fundamental matrix using the RANSAC algorithm
	///    int point_count = 100;
	///    vector<Point2f> points1(point_count);
	///    vector<Point2f> points2(point_count);
	///
	///    // initialize the points here ...
	///    for( int i = 0; i < point_count; i++ )
	///    {
	///        points1[i] = ...;
	///        points2[i] = ...;
	///    }
	///
	///    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
	///    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
	///
	///    Mat E, R, t, mask;
	///
	///    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
	///    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
	/// ```
	///
	///
	/// ## Overloaded parameters
	///
	/// * E: The input essential matrix.
	/// * points1: Array of N 2D points from the first image. The point coordinates should be
	/// floating-point (single or double precision).
	/// * points2: Array of the second image points of the same size and format as points1 .
	/// * R: Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
	/// that performs a change of basis from the first camera's coordinate system to the second camera's
	/// coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
	/// description below.
	/// * t: Output translation vector. This vector is obtained by [decomposeEssentialMat] and
	/// therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
	/// length.
	/// * focal: Focal length of the camera. Note that this function assumes that points1 and points2
	/// are feature points from cameras with same focal length and principal point.
	/// * pp: principal point of the camera.
	/// * mask: Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
	/// inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
	/// recover pose. In the output mask only inliers which pass the chirality check.
	///
	/// This function differs from the one above that it computes camera intrinsic matrix from focal length and
	/// principal point:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?A%20%3D%0A%5Cbegin%7Bbmatrix%7D%0Af%20%26%200%20%26%20x%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%20f%20%26%20y%5F%7Bpp%7D%20%20%5C%5C%0A0%20%26%200%20%26%201%0A%5Cend%7Bbmatrix%7D)
	///
	/// ## C++ default parameters
	/// * focal: 1.0
	/// * pp: Point2d(0,0)
	/// * mask: noArray()
	#[inline]
	pub fn recover_pose(e: &impl ToInputArray, points1: &impl ToInputArray, points2: &impl ToInputArray, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, focal: f64, pp: core::Point2d, mask: &mut impl ToInputOutputArray) -> Result<i32> {
		input_array_arg!(e);
		input_array_arg!(points1);
		input_array_arg!(points2);
		output_array_arg!(r);
		output_array_arg!(t);
		input_output_array_arg!(mask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_recoverPose_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_Point2d_const__InputOutputArrayR(e.as_raw__InputArray(), points1.as_raw__InputArray(), points2.as_raw__InputArray(), r.as_raw__OutputArray(), t.as_raw__OutputArray(), focal, &pp, mask.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// computes the rectification transformations for 3-head camera, where all the heads are on the same line.
	#[inline]
	pub fn rectify3_collinear(camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray, camera_matrix3: &impl ToInputArray, dist_coeffs3: &impl ToInputArray, imgpt1: &impl ToInputArray, imgpt3: &impl ToInputArray, image_size: core::Size, r12: &impl ToInputArray, t12: &impl ToInputArray, r13: &impl ToInputArray, t13: &impl ToInputArray, r1: &mut impl ToOutputArray, r2: &mut impl ToOutputArray, r3: &mut impl ToOutputArray, p1: &mut impl ToOutputArray, p2: &mut impl ToOutputArray, p3: &mut impl ToOutputArray, q: &mut impl ToOutputArray, alpha: f64, new_img_size: core::Size, roi1: &mut core::Rect, roi2: &mut core::Rect, flags: i32) -> Result<f32> {
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		input_array_arg!(camera_matrix3);
		input_array_arg!(dist_coeffs3);
		input_array_arg!(imgpt1);
		input_array_arg!(imgpt3);
		input_array_arg!(r12);
		input_array_arg!(t12);
		input_array_arg!(r13);
		input_array_arg!(t13);
		output_array_arg!(r1);
		output_array_arg!(r2);
		output_array_arg!(r3);
		output_array_arg!(p1);
		output_array_arg!(p2);
		output_array_arg!(p3);
		output_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_rectify3Collinear_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_double_Size_RectX_RectX_int(camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), camera_matrix3.as_raw__InputArray(), dist_coeffs3.as_raw__InputArray(), imgpt1.as_raw__InputArray(), imgpt3.as_raw__InputArray(), &image_size, r12.as_raw__InputArray(), t12.as_raw__InputArray(), r13.as_raw__InputArray(), t13.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), r3.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), p3.as_raw__OutputArray(), q.as_raw__OutputArray(), alpha, &new_img_size, roi1, roi2, flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Reprojects a disparity image to 3D space.
	///
	/// ## Parameters
	/// * disparity: Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
	/// floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
	/// fractional bits. If the disparity is 16-bit signed format, as computed by [StereoBM] or
	/// [StereoSGBM] and maybe other algorithms, it should be divided by 16 (and scaled to float) before
	/// being used here.
	/// * _3dImage: Output 3-channel floating-point image of the same size as disparity. Each element of
	/// _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
	/// uses Q obtained by [stereoRectify], then the returned points are represented in the first
	/// camera's rectified coordinate system.
	/// * Q: ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) perspective transformation matrix that can be obtained with
	/// [stereoRectify].
	/// * handleMissingValues: Indicates, whether the function should handle missing values (i.e.
	/// points where the disparity was not computed). If handleMissingValues=true, then pixels with the
	/// minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
	/// to 3D points with a very large Z value (currently set to 10000).
	/// * ddepth: The optional output array depth. If it is -1, the output image will have CV_32F
	/// depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
	///
	/// The function transforms a single-channel disparity map to a 3-channel image representing a 3D
	/// surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
	/// computes:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%20%5C%5C%0AW%0A%5Cend%7Bbmatrix%7D%20%3D%20Q%20%5Cbegin%7Bbmatrix%7D%0Ax%20%5C%5C%0Ay%20%5C%5C%0A%5Ctexttt%7Bdisparity%7D%20%28x%2Cy%29%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	/// ## See also
	/// To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
	///
	/// ## Note
	/// This alternative version of [reproject_image_to_3d] function uses the following default values for its arguments:
	/// * handle_missing_values: false
	/// * ddepth: -1
	#[inline]
	pub fn reproject_image_to_3d_def(disparity: &impl ToInputArray, _3d_image: &mut impl ToOutputArray, q: &impl ToInputArray) -> Result<()> {
		input_array_arg!(disparity);
		output_array_arg!(_3d_image);
		input_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_reprojectImageTo3D_const__InputArrayR_const__OutputArrayR_const__InputArrayR(disparity.as_raw__InputArray(), _3d_image.as_raw__OutputArray(), q.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Reprojects a disparity image to 3D space.
	///
	/// ## Parameters
	/// * disparity: Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
	/// floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
	/// fractional bits. If the disparity is 16-bit signed format, as computed by [StereoBM] or
	/// [StereoSGBM] and maybe other algorithms, it should be divided by 16 (and scaled to float) before
	/// being used here.
	/// * _3dImage: Output 3-channel floating-point image of the same size as disparity. Each element of
	/// _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
	/// uses Q obtained by [stereoRectify], then the returned points are represented in the first
	/// camera's rectified coordinate system.
	/// * Q: ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) perspective transformation matrix that can be obtained with
	/// [stereoRectify].
	/// * handleMissingValues: Indicates, whether the function should handle missing values (i.e.
	/// points where the disparity was not computed). If handleMissingValues=true, then pixels with the
	/// minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
	/// to 3D points with a very large Z value (currently set to 10000).
	/// * ddepth: The optional output array depth. If it is -1, the output image will have CV_32F
	/// depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
	///
	/// The function transforms a single-channel disparity map to a 3-channel image representing a 3D
	/// surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
	/// computes:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%20%5C%5C%0AY%20%5C%5C%0AZ%20%5C%5C%0AW%0A%5Cend%7Bbmatrix%7D%20%3D%20Q%20%5Cbegin%7Bbmatrix%7D%0Ax%20%5C%5C%0Ay%20%5C%5C%0A%5Ctexttt%7Bdisparity%7D%20%28x%2Cy%29%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	/// ## See also
	/// To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
	///
	/// ## C++ default parameters
	/// * handle_missing_values: false
	/// * ddepth: -1
	#[inline]
	pub fn reproject_image_to_3d(disparity: &impl ToInputArray, _3d_image: &mut impl ToOutputArray, q: &impl ToInputArray, handle_missing_values: bool, ddepth: i32) -> Result<()> {
		input_array_arg!(disparity);
		output_array_arg!(_3d_image);
		input_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_reprojectImageTo3D_const__InputArrayR_const__OutputArrayR_const__InputArrayR_bool_int(disparity.as_raw__InputArray(), _3d_image.as_raw__OutputArray(), q.as_raw__InputArray(), handle_missing_values, ddepth, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Calculates the Sampson Distance between two points.
	///
	/// The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0Asd%28%20%5Ctexttt%7Bpt1%7D%20%2C%20%5Ctexttt%7Bpt2%7D%20%29%3D%0A%5Cfrac%7B%28%5Ctexttt%7Bpt2%7D%5Et%20%5Ccdot%20%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpt1%7D%29%5E2%7D%0A%7B%28%28%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpt1%7D%29%280%29%29%5E2%20%2B%0A%28%28%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpt1%7D%29%281%29%29%5E2%20%2B%0A%28%28%5Ctexttt%7BF%7D%5Et%20%5Ccdot%20%5Ctexttt%7Bpt2%7D%29%280%29%29%5E2%20%2B%0A%28%28%5Ctexttt%7BF%7D%5Et%20%5Ccdot%20%5Ctexttt%7Bpt2%7D%29%281%29%29%5E2%7D%0A)
	/// The fundamental matrix may be calculated using the [find_fundamental_mat] function. See [HartleyZ00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_HartleyZ00) 11.4.3 for details.
	/// ## Parameters
	/// * pt1: first homogeneous 2d point
	/// * pt2: second homogeneous 2d point
	/// * F: fundamental matrix
	/// ## Returns
	/// The computed Sampson distance.
	#[inline]
	pub fn sampson_distance(pt1: &impl ToInputArray, pt2: &impl ToInputArray, f: &impl ToInputArray) -> Result<f64> {
		input_array_arg!(pt1);
		input_array_arg!(pt2);
		input_array_arg!(f);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_sampsonDistance_const__InputArrayR_const__InputArrayR_const__InputArrayR(pt1.as_raw__InputArray(), pt2.as_raw__InputArray(), f.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3 3D-2D point correspondences.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, 3x3 1-channel or
	/// 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
	///  vector\<Point2f\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvecs: Output rotation vectors (see [Rodrigues] ) that, together with tvecs, brings points from
	/// the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
	/// * tvecs: Output translation vectors.
	/// * flags: Method for solving a P3P problem:
	/// *   [SOLVEPNP_P3P] Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
	/// "Complete Solution Classification for the Perspective-Three-Point Problem" ([gao2003complete](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_gao2003complete)).
	/// *   [SOLVEPNP_AP3P] Method is based on the paper of T. Ke and S. Roumeliotis.
	/// "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" ([Ke17](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Ke17)).
	///
	/// The function estimates the object pose given 3 object points, their corresponding image
	/// projections, as well as the camera intrinsic matrix and the distortion coefficients.
	///
	///
	/// Note:
	/// The solutions are sorted by reprojection errors (lowest to highest).
	#[inline]
	pub fn solve_p3p(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, flags: i32) -> Result<i32> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solveP3P_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
	/// couple), depending on the number of input points and the chosen method:
	/// - P3P methods ([SOLVEPNP_P3P], [SOLVEPNP_AP3P]): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
	/// - [SOLVEPNP_IPPE] Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
	/// - [SOLVEPNP_IPPE_SQUARE] Special case suitable for marker pose estimation.
	/// Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
	///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
	/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
	/// Only 1 solution is returned.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvecs: Vector of output rotation vectors (see [Rodrigues] ) that, together with tvecs, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvecs: Vector of output translation vectors.
	/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * flags: Method for solving a PnP problem: see [calib3d_solvePnP_flags]
	/// * rvec: Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is [SOLVEPNP_ITERATIVE]
	/// and useExtrinsicGuess is set to true.
	/// * tvec: Translation vector used to initialize an iterative PnP refinement algorithm, when flag is [SOLVEPNP_ITERATIVE]
	/// and useExtrinsicGuess is set to true.
	/// * reprojectionError: Optional vector of reprojection error, that is the RMS error
	/// (![inline formula](https://latex.codecogs.com/png.latex?%20%5Ctext%7BRMSE%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum%5F%7Bi%7D%5E%7BN%7D%20%5Cleft%20%28%20%5Chat%7By%5Fi%7D%20%2D%20y%5Fi%20%5Cright%20%29%5E2%7D%7BN%7D%7D%20)) between the input image points
	/// and the 3D object points projected with the estimated pose.
	///
	/// More information is described in [calib3d_solvePnP]
	///
	///
	/// Note:
	///    *   An example of how to use solvePnP for planar augmented reality can be found at
	///        opencv_source_code/samples/python/plane_ar.py
	///    *   If you are using Python:
	///        - Numpy array slices won't work as input because solvePnP requires contiguous
	///        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
	///        modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
	///        to its calling of [undistort_points] (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        which requires 2-channel information.
	///        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
	///        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
	///        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
	///    *   The methods [SOLVEPNP_DLS] and [SOLVEPNP_UPNP] cannot be used as the current implementations are
	///        unstable and sometimes give completely wrong results. If you pass one of these two
	///        flags, [SOLVEPNP_EPNP] method will be used instead.
	///    *   The minimum number of points is 4 in the general case. In the case of [SOLVEPNP_P3P] and [SOLVEPNP_AP3P]
	///        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
	///        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
	///    *   With [SOLVEPNP_ITERATIVE] method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
	///        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
	///        global solution to converge.
	///    *   With [SOLVEPNP_IPPE] input points must be >= 4 and object points must be coplanar.
	///    *   With [SOLVEPNP_IPPE_SQUARE] this is a special case suitable for marker pose estimation.
	///        Number of input points must be 4. Object points must be defined in the following order:
	///          - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///          - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///          - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///          - point 3: [-squareLength / 2, -squareLength / 2, 0]
	///
	/// ## Note
	/// This alternative version of [solve_pnp_generic] function uses the following default values for its arguments:
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	/// * rvec: noArray()
	/// * tvec: noArray()
	/// * reprojection_error: noArray()
	#[inline]
	pub fn solve_pnp_generic_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPGeneric_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
	/// couple), depending on the number of input points and the chosen method:
	/// - P3P methods ([SOLVEPNP_P3P], [SOLVEPNP_AP3P]): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
	/// - [SOLVEPNP_IPPE] Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.
	/// - [SOLVEPNP_IPPE_SQUARE] Special case suitable for marker pose estimation.
	/// Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
	///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
	/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
	/// Only 1 solution is returned.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvecs: Vector of output rotation vectors (see [Rodrigues] ) that, together with tvecs, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvecs: Vector of output translation vectors.
	/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * flags: Method for solving a PnP problem: see [calib3d_solvePnP_flags]
	/// * rvec: Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is [SOLVEPNP_ITERATIVE]
	/// and useExtrinsicGuess is set to true.
	/// * tvec: Translation vector used to initialize an iterative PnP refinement algorithm, when flag is [SOLVEPNP_ITERATIVE]
	/// and useExtrinsicGuess is set to true.
	/// * reprojectionError: Optional vector of reprojection error, that is the RMS error
	/// (![inline formula](https://latex.codecogs.com/png.latex?%20%5Ctext%7BRMSE%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csum%5F%7Bi%7D%5E%7BN%7D%20%5Cleft%20%28%20%5Chat%7By%5Fi%7D%20%2D%20y%5Fi%20%5Cright%20%29%5E2%7D%7BN%7D%7D%20)) between the input image points
	/// and the 3D object points projected with the estimated pose.
	///
	/// More information is described in [calib3d_solvePnP]
	///
	///
	/// Note:
	///    *   An example of how to use solvePnP for planar augmented reality can be found at
	///        opencv_source_code/samples/python/plane_ar.py
	///    *   If you are using Python:
	///        - Numpy array slices won't work as input because solvePnP requires contiguous
	///        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
	///        modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
	///        to its calling of [undistort_points] (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        which requires 2-channel information.
	///        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
	///        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
	///        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
	///    *   The methods [SOLVEPNP_DLS] and [SOLVEPNP_UPNP] cannot be used as the current implementations are
	///        unstable and sometimes give completely wrong results. If you pass one of these two
	///        flags, [SOLVEPNP_EPNP] method will be used instead.
	///    *   The minimum number of points is 4 in the general case. In the case of [SOLVEPNP_P3P] and [SOLVEPNP_AP3P]
	///        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
	///        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
	///    *   With [SOLVEPNP_ITERATIVE] method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
	///        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
	///        global solution to converge.
	///    *   With [SOLVEPNP_IPPE] input points must be >= 4 and object points must be coplanar.
	///    *   With [SOLVEPNP_IPPE_SQUARE] this is a special case suitable for marker pose estimation.
	///        Number of input points must be 4. Object points must be defined in the following order:
	///          - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///          - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///          - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///          - point 3: [-squareLength / 2, -squareLength / 2, 0]
	///
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	/// * rvec: noArray()
	/// * tvec: noArray()
	/// * reprojection_error: noArray()
	#[inline]
	pub fn solve_pnp_generic(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, use_extrinsic_guess: bool, flags: crate::calib3d::SolvePnPMethod, rvec: &impl ToInputArray, tvec: &impl ToInputArray, reprojection_error: &mut impl ToOutputArray) -> Result<i32> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		input_array_arg!(rvec);
		input_array_arg!(tvec);
		output_array_arg!(reprojection_error);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPGeneric_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_SolvePnPMethod_const__InputArrayR_const__InputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), use_extrinsic_guess, flags, rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), reprojection_error.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Output translation vector.
	/// * useExtrinsicGuess: Parameter used for [SOLVEPNP_ITERATIVE]. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * iterationsCount: Number of iterations.
	/// * reprojectionError: Inlier threshold value used by the RANSAC procedure. The parameter value
	/// is the maximum allowed distance between the observed and computed point projections to consider it
	/// an inlier.
	/// * confidence: The probability that the algorithm produces a useful result.
	/// * inliers: Output vector that contains indices of inliers in objectPoints and imagePoints .
	/// * flags: Method for solving a PnP problem (see [solvePnP] ).
	///
	/// The function estimates an object pose given a set of object points, their corresponding image
	/// projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
	/// a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
	/// projections imagePoints and the projected (using [projectPoints] ) objectPoints. The use of RANSAC
	/// makes the function resistant to outliers.
	///
	///
	/// Note:
	///    *   An example of how to use solvePNPRansac for object detection can be found at
	///        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
	///    *   The default method used to estimate the camera pose for the Minimal Sample Sets step
	///        is #SOLVEPNP_EPNP. Exceptions are:
	///          - if you choose [SOLVEPNP_P3P] or #SOLVEPNP_AP3P, these methods will be used.
	///          - if the number of input points is equal to 4, [SOLVEPNP_P3P] is used.
	///    *   The method used to estimate the camera pose using all the inliers is defined by the
	///        flags parameters unless it is equal to [SOLVEPNP_P3P] or #SOLVEPNP_AP3P. In this case,
	///        the method [SOLVEPNP_EPNP] will be used instead.
	///
	/// ## Note
	/// This alternative version of [solve_pnp_ransac] function uses the following default values for its arguments:
	/// * use_extrinsic_guess: false
	/// * iterations_count: 100
	/// * reprojection_error: 8.0
	/// * confidence: 0.99
	/// * inliers: noArray()
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	pub fn solve_pnp_ransac_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRansac_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Output translation vector.
	/// * useExtrinsicGuess: Parameter used for [SOLVEPNP_ITERATIVE]. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * iterationsCount: Number of iterations.
	/// * reprojectionError: Inlier threshold value used by the RANSAC procedure. The parameter value
	/// is the maximum allowed distance between the observed and computed point projections to consider it
	/// an inlier.
	/// * confidence: The probability that the algorithm produces a useful result.
	/// * inliers: Output vector that contains indices of inliers in objectPoints and imagePoints .
	/// * flags: Method for solving a PnP problem (see [solvePnP] ).
	///
	/// The function estimates an object pose given a set of object points, their corresponding image
	/// projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
	/// a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
	/// projections imagePoints and the projected (using [projectPoints] ) objectPoints. The use of RANSAC
	/// makes the function resistant to outliers.
	///
	///
	/// Note:
	///    *   An example of how to use solvePNPRansac for object detection can be found at
	///        opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
	///    *   The default method used to estimate the camera pose for the Minimal Sample Sets step
	///        is #SOLVEPNP_EPNP. Exceptions are:
	///          - if you choose [SOLVEPNP_P3P] or #SOLVEPNP_AP3P, these methods will be used.
	///          - if the number of input points is equal to 4, [SOLVEPNP_P3P] is used.
	///    *   The method used to estimate the camera pose using all the inliers is defined by the
	///        flags parameters unless it is equal to [SOLVEPNP_P3P] or #SOLVEPNP_AP3P. In this case,
	///        the method [SOLVEPNP_EPNP] will be used instead.
	///
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * iterations_count: 100
	/// * reprojection_error: 8.0
	/// * confidence: 0.99
	/// * inliers: noArray()
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	pub fn solve_pnp_ransac(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray, use_extrinsic_guess: bool, iterations_count: i32, reprojection_error: f32, confidence: f64, inliers: &mut impl ToOutputArray, flags: i32) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRansac_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_int_float_double_const__OutputArrayR_int(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), use_extrinsic_guess, iterations_count, reprojection_error, confidence, inliers.as_raw__OutputArray(), flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## Note
	/// This alternative version of [solve_pnp_ransac_1] function uses the following default values for its arguments:
	/// * params: UsacParams()
	#[inline]
	pub fn solve_pnp_ransac_1_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray, inliers: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRansac_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), inliers.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// ## C++ default parameters
	/// * params: UsacParams()
	#[inline]
	pub fn solve_pnp_ransac_1(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &mut impl ToInputOutputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray, inliers: &mut impl ToOutputArray, params: crate::calib3d::UsacParams) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		output_array_arg!(inliers);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRansac_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const_UsacParamsR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), inliers.as_raw__OutputArray(), &params, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
	/// to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
	/// where N is the number of points. vector\<Point3d\> can also be passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can also be passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Input/Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
	/// * tvec: Input/Output translation vector. Input values are used as an initial solution.
	/// * criteria: Criteria when to stop the Levenberg-Marquard iterative algorithm.
	///
	/// The function refines the object pose given at least 3 object points, their corresponding image
	/// projections, an initial solution for the rotation and translation vector,
	/// as well as the camera intrinsic matrix and the distortion coefficients.
	/// The function minimizes the projection error with respect to the rotation and the translation vectors, according
	/// to a Levenberg-Marquardt iterative minimization [Madsen04](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Madsen04) [Eade13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Eade13) process.
	///
	/// ## Note
	/// This alternative version of [solve_pnp_refine_lm] function uses the following default values for its arguments:
	/// * criteria: TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON)
	#[inline]
	pub fn solve_pnp_refine_lm_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToInputOutputArray, tvec: &mut impl ToInputOutputArray) -> Result<()> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRefineLM_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
	/// to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
	/// where N is the number of points. vector\<Point3d\> can also be passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can also be passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Input/Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
	/// * tvec: Input/Output translation vector. Input values are used as an initial solution.
	/// * criteria: Criteria when to stop the Levenberg-Marquard iterative algorithm.
	///
	/// The function refines the object pose given at least 3 object points, their corresponding image
	/// projections, an initial solution for the rotation and translation vector,
	/// as well as the camera intrinsic matrix and the distortion coefficients.
	/// The function minimizes the projection error with respect to the rotation and the translation vectors, according
	/// to a Levenberg-Marquardt iterative minimization [Madsen04](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Madsen04) [Eade13](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Eade13) process.
	///
	/// ## C++ default parameters
	/// * criteria: TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON)
	#[inline]
	pub fn solve_pnp_refine_lm(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToInputOutputArray, tvec: &mut impl ToInputOutputArray, criteria: core::TermCriteria) -> Result<()> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRefineLM_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_TermCriteria(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
	/// to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
	/// where N is the number of points. vector\<Point3d\> can also be passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can also be passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Input/Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
	/// * tvec: Input/Output translation vector. Input values are used as an initial solution.
	/// * criteria: Criteria when to stop the Levenberg-Marquard iterative algorithm.
	/// * VVSlambda: Gain for the virtual visual servoing control law, equivalent to the ![inline formula](https://latex.codecogs.com/png.latex?%5Calpha)
	/// gain in the Damped Gauss-Newton formulation.
	///
	/// The function refines the object pose given at least 3 object points, their corresponding image
	/// projections, an initial solution for the rotation and translation vector,
	/// as well as the camera intrinsic matrix and the distortion coefficients.
	/// The function minimizes the projection error with respect to the rotation and the translation vectors, using a
	/// virtual visual servoing (VVS) [Chaumette06](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Chaumette06) [Marchand16](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Marchand16) scheme.
	///
	/// ## Note
	/// This alternative version of [solve_pnp_refine_vvs] function uses the following default values for its arguments:
	/// * criteria: TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON)
	/// * vv_slambda: 1
	#[inline]
	pub fn solve_pnp_refine_vvs_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToInputOutputArray, tvec: &mut impl ToInputOutputArray) -> Result<()> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRefineVVS_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
	/// to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
	/// where N is the number of points. vector\<Point3d\> can also be passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can also be passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Input/Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system. Input values are used as an initial solution.
	/// * tvec: Input/Output translation vector. Input values are used as an initial solution.
	/// * criteria: Criteria when to stop the Levenberg-Marquard iterative algorithm.
	/// * VVSlambda: Gain for the virtual visual servoing control law, equivalent to the ![inline formula](https://latex.codecogs.com/png.latex?%5Calpha)
	/// gain in the Damped Gauss-Newton formulation.
	///
	/// The function refines the object pose given at least 3 object points, their corresponding image
	/// projections, an initial solution for the rotation and translation vector,
	/// as well as the camera intrinsic matrix and the distortion coefficients.
	/// The function minimizes the projection error with respect to the rotation and the translation vectors, using a
	/// virtual visual servoing (VVS) [Chaumette06](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Chaumette06) [Marchand16](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Marchand16) scheme.
	///
	/// ## C++ default parameters
	/// * criteria: TermCriteria(TermCriteria::EPS+TermCriteria::COUNT,20,FLT_EPSILON)
	/// * vv_slambda: 1
	#[inline]
	pub fn solve_pnp_refine_vvs(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToInputOutputArray, tvec: &mut impl ToInputOutputArray, criteria: core::TermCriteria, vv_slambda: f64) -> Result<()> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnPRefineVVS_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_TermCriteria_double(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), &criteria, vv_slambda, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
	/// coordinate frame to the camera coordinate frame, using different methods:
	/// - P3P methods ([SOLVEPNP_P3P], [SOLVEPNP_AP3P]): need 4 input points to return a unique solution.
	/// - [SOLVEPNP_IPPE] Input points must be >= 4 and object points must be coplanar.
	/// - [SOLVEPNP_IPPE_SQUARE] Special case suitable for marker pose estimation.
	/// Number of input points must be 4. Object points must be defined in the following order:
	///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
	/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Output translation vector.
	/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * flags: Method for solving a PnP problem: see [calib3d_solvePnP_flags]
	///
	/// More information about Perspective-n-Points is described in [calib3d_solvePnP]
	///
	///
	/// Note:
	///    *   An example of how to use solvePnP for planar augmented reality can be found at
	///        opencv_source_code/samples/python/plane_ar.py
	///    *   If you are using Python:
	///        - Numpy array slices won't work as input because solvePnP requires contiguous
	///        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
	///        modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
	///        to its calling of [undistort_points] (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        which requires 2-channel information.
	///        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
	///        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
	///        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
	///    *   The methods [SOLVEPNP_DLS] and [SOLVEPNP_UPNP] cannot be used as the current implementations are
	///        unstable and sometimes give completely wrong results. If you pass one of these two
	///        flags, [SOLVEPNP_EPNP] method will be used instead.
	///    *   The minimum number of points is 4 in the general case. In the case of [SOLVEPNP_P3P] and [SOLVEPNP_AP3P]
	///        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
	///        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
	///    *   With [SOLVEPNP_ITERATIVE] method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
	///        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
	///        global solution to converge.
	///    *   With [SOLVEPNP_IPPE] input points must be >= 4 and object points must be coplanar.
	///    *   With [SOLVEPNP_IPPE_SQUARE] this is a special case suitable for marker pose estimation.
	///        Number of input points must be 4. Object points must be defined in the following order:
	///          - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///          - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///          - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///          - point 3: [-squareLength / 2, -squareLength / 2, 0]
	///    *  With [SOLVEPNP_SQPNP] input points must be >= 3
	///
	/// ## Note
	/// This alternative version of [solve_pnp] function uses the following default values for its arguments:
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	pub fn solve_pnp_def(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnP_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Finds an object pose from 3D-2D point correspondences.
	/// ## See also
	/// [calib3d_solvePnP]
	///
	/// This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
	/// coordinate frame to the camera coordinate frame, using different methods:
	/// - P3P methods ([SOLVEPNP_P3P], [SOLVEPNP_AP3P]): need 4 input points to return a unique solution.
	/// - [SOLVEPNP_IPPE] Input points must be >= 4 and object points must be coplanar.
	/// - [SOLVEPNP_IPPE_SQUARE] Special case suitable for marker pose estimation.
	/// Number of input points must be 4. Object points must be defined in the following order:
	///   - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///   - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///   - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///   - point 3: [-squareLength / 2, -squareLength / 2, 0]
	/// - for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
	///
	/// ## Parameters
	/// * objectPoints: Array of object points in the object coordinate space, Nx3 1-channel or
	/// 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
	/// * imagePoints: Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
	/// where N is the number of points. vector\<Point2d\> can be also passed here.
	/// * cameraMatrix: Input camera intrinsic matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Ccameramatrix%7BA%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%5Cdistcoeffs). If the vector is NULL/empty, the zero distortion coefficients are
	/// assumed.
	/// * rvec: Output rotation vector (see [Rodrigues] ) that, together with tvec, brings points from
	/// the model coordinate system to the camera coordinate system.
	/// * tvec: Output translation vector.
	/// * useExtrinsicGuess: Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
	/// the provided rvec and tvec values as initial approximations of the rotation and translation
	/// vectors, respectively, and further optimizes them.
	/// * flags: Method for solving a PnP problem: see [calib3d_solvePnP_flags]
	///
	/// More information about Perspective-n-Points is described in [calib3d_solvePnP]
	///
	///
	/// Note:
	///    *   An example of how to use solvePnP for planar augmented reality can be found at
	///        opencv_source_code/samples/python/plane_ar.py
	///    *   If you are using Python:
	///        - Numpy array slices won't work as input because solvePnP requires contiguous
	///        arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
	///        modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
	///        to its calling of [undistort_points] (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
	///        which requires 2-channel information.
	///        - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
	///        it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
	///        np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
	///    *   The methods [SOLVEPNP_DLS] and [SOLVEPNP_UPNP] cannot be used as the current implementations are
	///        unstable and sometimes give completely wrong results. If you pass one of these two
	///        flags, [SOLVEPNP_EPNP] method will be used instead.
	///    *   The minimum number of points is 4 in the general case. In the case of [SOLVEPNP_P3P] and [SOLVEPNP_AP3P]
	///        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
	///        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
	///    *   With [SOLVEPNP_ITERATIVE] method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
	///        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
	///        global solution to converge.
	///    *   With [SOLVEPNP_IPPE] input points must be >= 4 and object points must be coplanar.
	///    *   With [SOLVEPNP_IPPE_SQUARE] this is a special case suitable for marker pose estimation.
	///        Number of input points must be 4. Object points must be defined in the following order:
	///          - point 0: [-squareLength / 2,  squareLength / 2, 0]
	///          - point 1: [ squareLength / 2,  squareLength / 2, 0]
	///          - point 2: [ squareLength / 2, -squareLength / 2, 0]
	///          - point 3: [-squareLength / 2, -squareLength / 2, 0]
	///    *  With [SOLVEPNP_SQPNP] input points must be >= 3
	///
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	pub fn solve_pnp(object_points: &impl ToInputArray, image_points: &impl ToInputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, rvec: &mut impl ToOutputArray, tvec: &mut impl ToOutputArray, use_extrinsic_guess: bool, flags: i32) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		output_array_arg!(rvec);
		output_array_arg!(tvec);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_solvePnP_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_int(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), use_extrinsic_guess, flags, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [stereo_calibrate_1] function uses the following default values for its arguments:
	/// * flags: CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
	#[inline]
	pub fn stereo_calibrate_1_def(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, camera_matrix1: &mut impl ToInputOutputArray, dist_coeffs1: &mut impl ToInputOutputArray, camera_matrix2: &mut impl ToInputOutputArray, dist_coeffs2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToInputOutputArray, t: &mut impl ToInputOutputArray, e: &mut impl ToOutputArray, f: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(camera_matrix1);
		input_output_array_arg!(dist_coeffs1);
		input_output_array_arg!(camera_matrix2);
		input_output_array_arg!(dist_coeffs2);
		input_output_array_arg!(r);
		input_output_array_arg!(t);
		output_array_arg!(e);
		output_array_arg!(f);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), &image_size, r.as_raw__InputOutputArray(), t.as_raw__InputOutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Calibrates a stereo camera set up. This function finds the intrinsic parameters
	/// for each of the two cameras and the extrinsic parameters between the two cameras.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points. The same structure as
	/// in [calibrateCamera]. For each pattern view, both cameras need to see the same object
	/// points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
	/// equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
	/// be equal for each i.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera. The same structure as in [calibrateCamera].
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera. The same structure as in [calibrateCamera].
	/// * cameraMatrix1: Input/output camera intrinsic matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * cameraMatrix2: Input/output second camera intrinsic matrix for the second camera. See description for
	/// cameraMatrix1.
	/// * distCoeffs2: Input/output lens distortion coefficients for the second camera. See
	/// description for distCoeffs1.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrices.
	/// * R: Output rotation matrix. Together with the translation vector T, this matrix brings
	/// points given in the first camera's coordinate system to points in the second camera's
	/// coordinate system. In more technical terms, the tuple of R and T performs a change of basis
	/// from the first camera's coordinate system to the second camera's coordinate system. Due to its
	/// duality, this tuple is equivalent to the position of the first camera with respect to the
	/// second camera coordinate system.
	/// * T: Output translation vector, see description above.
	/// * E: Output essential matrix.
	/// * F: Output fundamental matrix.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_FIX_INTRINSIC] Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
	/// matrices are estimated.
	/// *   [CALIB_USE_INTRINSIC_GUESS] Optimize some or all of the intrinsic parameters
	/// according to the specified flags. Initial values are provided by the user.
	/// *   [CALIB_USE_EXTRINSIC_GUESS] R and T contain valid initial values that are optimized further.
	/// Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
	/// *   [CALIB_FIX_PRINCIPAL_POINT] Fix the principal points during the optimization.
	/// *   [CALIB_FIX_FOCAL_LENGTH] Fix ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) .
	/// *   [CALIB_FIX_ASPECT_RATIO] Optimize ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) . Fix the ratio ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx%2Ff%5E%7B%28j%29%7D%5Fy)
	/// .
	/// *   [CALIB_SAME_FOCAL_LENGTH] Enforce ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fx%3Df%5E%7B%281%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fy%3Df%5E%7B%281%29%7D%5Fy) .
	/// *   [CALIB_ZERO_TANGENT_DIST] Set tangential distortion coefficients for each camera to
	/// zeros and fix there.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] Do not change the corresponding radial
	/// distortion coefficient during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set,
	/// the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Enable coefficients k4, k5, and k6. To provide the backward
	/// compatibility, this extra flag should be explicitly specified to make the calibration
	/// function use the rational model and return 8 coefficients. If the flag is not set, the
	/// function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// The function estimates the transformation between two cameras making a stereo pair. If one computes
	/// the poses of an object relative to the first camera and to the second camera,
	/// ( ![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1) ) and (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)), respectively, for a stereo camera where the
	/// relative position and orientation between the two cameras are fixed, then those poses definitely
	/// relate to each other. This means, if the relative position and orientation (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) of the
	/// two cameras is known, it is possible to compute (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)) when (![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1)) is
	/// given. This is what the described function does. It computes (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) such that:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?R%5F2%3DR%20R%5F1)
	/// ![block formula](https://latex.codecogs.com/png.latex?T%5F2%3DR%20T%5F1%20%2B%20T%2E)
	///
	/// Therefore, one can compute the coordinate representation of a 3D point for the second camera's
	/// coordinate system when given the point's coordinate representation in the first camera's coordinate
	/// system:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5F2%20%5C%5C%0AY%5F2%20%5C%5C%0AZ%5F2%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20T%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5F1%20%5C%5C%0AY%5F1%20%5C%5C%0AZ%5F1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	///
	///
	/// Optionally, it computes the essential matrix E:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?E%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2DT%5F2%20%26%20T%5F1%5C%5C%20T%5F2%20%26%200%20%26%20%2DT%5F0%5C%5C%20%2DT%5F1%20%26%20T%5F0%20%26%200%20%5Cend%7Bbmatrix%7D%20R)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fi) are components of the translation vector ![inline formula](https://latex.codecogs.com/png.latex?T) : ![inline formula](https://latex.codecogs.com/png.latex?T%3D%5BT%5F0%2C%20T%5F1%2C%20T%5F2%5D%5ET) .
	/// And the function can also compute the fundamental matrix F:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?F%20%3D%20cameraMatrix2%5E%7B%2DT%7D%5Ccdot%20E%20%5Ccdot%20cameraMatrix1%5E%7B%2D1%7D)
	///
	/// Besides the stereo-related information, the function can also perform a full calibration of each of
	/// the two cameras. However, due to the high dimensionality of the parameter space and noise in the
	/// input data, the function can diverge from the correct solution. If the intrinsic parameters can be
	/// estimated with high accuracy for each of the cameras individually (for example, using
	/// [calibrate_camera] ), you are recommended to do so and then pass [CALIB_FIX_INTRINSIC] flag to the
	/// function along with the computed intrinsic parameters. Otherwise, if all the parameters are
	/// estimated at once, it makes sense to restrict some parameters, for example, pass
	///  [CALIB_SAME_FOCAL_LENGTH] and [CALIB_ZERO_TANGENT_DIST] flags, which is usually a
	/// reasonable assumption.
	///
	/// Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
	/// points in all the available views from both cameras. The function returns the final value of the
	/// re-projection error.
	///
	/// ## Note
	/// This alternative version of [stereo_calibrate_extended] function uses the following default values for its arguments:
	/// * flags: CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
	#[inline]
	pub fn stereo_calibrate_extended_def(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, camera_matrix1: &mut impl ToInputOutputArray, dist_coeffs1: &mut impl ToInputOutputArray, camera_matrix2: &mut impl ToInputOutputArray, dist_coeffs2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToInputOutputArray, t: &mut impl ToInputOutputArray, e: &mut impl ToOutputArray, f: &mut impl ToOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(camera_matrix1);
		input_output_array_arg!(dist_coeffs1);
		input_output_array_arg!(camera_matrix2);
		input_output_array_arg!(dist_coeffs2);
		input_output_array_arg!(r);
		input_output_array_arg!(t);
		output_array_arg!(e);
		output_array_arg!(f);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), &image_size, r.as_raw__InputOutputArray(), t.as_raw__InputOutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Calibrates a stereo camera set up. This function finds the intrinsic parameters
	/// for each of the two cameras and the extrinsic parameters between the two cameras.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points. The same structure as
	/// in [calibrateCamera]. For each pattern view, both cameras need to see the same object
	/// points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
	/// equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
	/// be equal for each i.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera. The same structure as in [calibrateCamera].
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera. The same structure as in [calibrateCamera].
	/// * cameraMatrix1: Input/output camera intrinsic matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * cameraMatrix2: Input/output second camera intrinsic matrix for the second camera. See description for
	/// cameraMatrix1.
	/// * distCoeffs2: Input/output lens distortion coefficients for the second camera. See
	/// description for distCoeffs1.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrices.
	/// * R: Output rotation matrix. Together with the translation vector T, this matrix brings
	/// points given in the first camera's coordinate system to points in the second camera's
	/// coordinate system. In more technical terms, the tuple of R and T performs a change of basis
	/// from the first camera's coordinate system to the second camera's coordinate system. Due to its
	/// duality, this tuple is equivalent to the position of the first camera with respect to the
	/// second camera coordinate system.
	/// * T: Output translation vector, see description above.
	/// * E: Output essential matrix.
	/// * F: Output fundamental matrix.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_FIX_INTRINSIC] Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
	/// matrices are estimated.
	/// *   [CALIB_USE_INTRINSIC_GUESS] Optimize some or all of the intrinsic parameters
	/// according to the specified flags. Initial values are provided by the user.
	/// *   [CALIB_USE_EXTRINSIC_GUESS] R and T contain valid initial values that are optimized further.
	/// Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
	/// *   [CALIB_FIX_PRINCIPAL_POINT] Fix the principal points during the optimization.
	/// *   [CALIB_FIX_FOCAL_LENGTH] Fix ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) .
	/// *   [CALIB_FIX_ASPECT_RATIO] Optimize ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) . Fix the ratio ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx%2Ff%5E%7B%28j%29%7D%5Fy)
	/// .
	/// *   [CALIB_SAME_FOCAL_LENGTH] Enforce ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fx%3Df%5E%7B%281%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fy%3Df%5E%7B%281%29%7D%5Fy) .
	/// *   [CALIB_ZERO_TANGENT_DIST] Set tangential distortion coefficients for each camera to
	/// zeros and fix there.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] Do not change the corresponding radial
	/// distortion coefficient during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set,
	/// the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Enable coefficients k4, k5, and k6. To provide the backward
	/// compatibility, this extra flag should be explicitly specified to make the calibration
	/// function use the rational model and return 8 coefficients. If the flag is not set, the
	/// function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// The function estimates the transformation between two cameras making a stereo pair. If one computes
	/// the poses of an object relative to the first camera and to the second camera,
	/// ( ![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1) ) and (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)), respectively, for a stereo camera where the
	/// relative position and orientation between the two cameras are fixed, then those poses definitely
	/// relate to each other. This means, if the relative position and orientation (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) of the
	/// two cameras is known, it is possible to compute (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)) when (![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1)) is
	/// given. This is what the described function does. It computes (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) such that:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?R%5F2%3DR%20R%5F1)
	/// ![block formula](https://latex.codecogs.com/png.latex?T%5F2%3DR%20T%5F1%20%2B%20T%2E)
	///
	/// Therefore, one can compute the coordinate representation of a 3D point for the second camera's
	/// coordinate system when given the point's coordinate representation in the first camera's coordinate
	/// system:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5F2%20%5C%5C%0AY%5F2%20%5C%5C%0AZ%5F2%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20T%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5F1%20%5C%5C%0AY%5F1%20%5C%5C%0AZ%5F1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	///
	///
	/// Optionally, it computes the essential matrix E:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?E%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2DT%5F2%20%26%20T%5F1%5C%5C%20T%5F2%20%26%200%20%26%20%2DT%5F0%5C%5C%20%2DT%5F1%20%26%20T%5F0%20%26%200%20%5Cend%7Bbmatrix%7D%20R)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fi) are components of the translation vector ![inline formula](https://latex.codecogs.com/png.latex?T) : ![inline formula](https://latex.codecogs.com/png.latex?T%3D%5BT%5F0%2C%20T%5F1%2C%20T%5F2%5D%5ET) .
	/// And the function can also compute the fundamental matrix F:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?F%20%3D%20cameraMatrix2%5E%7B%2DT%7D%5Ccdot%20E%20%5Ccdot%20cameraMatrix1%5E%7B%2D1%7D)
	///
	/// Besides the stereo-related information, the function can also perform a full calibration of each of
	/// the two cameras. However, due to the high dimensionality of the parameter space and noise in the
	/// input data, the function can diverge from the correct solution. If the intrinsic parameters can be
	/// estimated with high accuracy for each of the cameras individually (for example, using
	/// [calibrate_camera] ), you are recommended to do so and then pass [CALIB_FIX_INTRINSIC] flag to the
	/// function along with the computed intrinsic parameters. Otherwise, if all the parameters are
	/// estimated at once, it makes sense to restrict some parameters, for example, pass
	///  [CALIB_SAME_FOCAL_LENGTH] and [CALIB_ZERO_TANGENT_DIST] flags, which is usually a
	/// reasonable assumption.
	///
	/// Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
	/// points in all the available views from both cameras. The function returns the final value of the
	/// re-projection error.
	///
	/// ## C++ default parameters
	/// * flags: CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
	#[inline]
	pub fn stereo_calibrate_extended(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, camera_matrix1: &mut impl ToInputOutputArray, dist_coeffs1: &mut impl ToInputOutputArray, camera_matrix2: &mut impl ToInputOutputArray, dist_coeffs2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToInputOutputArray, t: &mut impl ToInputOutputArray, e: &mut impl ToOutputArray, f: &mut impl ToOutputArray, rvecs: &mut impl ToOutputArray, tvecs: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(camera_matrix1);
		input_output_array_arg!(dist_coeffs1);
		input_output_array_arg!(camera_matrix2);
		input_output_array_arg!(dist_coeffs2);
		input_output_array_arg!(r);
		input_output_array_arg!(t);
		output_array_arg!(e);
		output_array_arg!(f);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), &image_size, r.as_raw__InputOutputArray(), t.as_raw__InputOutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Calibrates a stereo camera set up. This function finds the intrinsic parameters
	/// for each of the two cameras and the extrinsic parameters between the two cameras.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points. The same structure as
	/// in [calibrateCamera]. For each pattern view, both cameras need to see the same object
	/// points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
	/// equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
	/// be equal for each i.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera. The same structure as in [calibrateCamera].
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera. The same structure as in [calibrateCamera].
	/// * cameraMatrix1: Input/output camera intrinsic matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * cameraMatrix2: Input/output second camera intrinsic matrix for the second camera. See description for
	/// cameraMatrix1.
	/// * distCoeffs2: Input/output lens distortion coefficients for the second camera. See
	/// description for distCoeffs1.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrices.
	/// * R: Output rotation matrix. Together with the translation vector T, this matrix brings
	/// points given in the first camera's coordinate system to points in the second camera's
	/// coordinate system. In more technical terms, the tuple of R and T performs a change of basis
	/// from the first camera's coordinate system to the second camera's coordinate system. Due to its
	/// duality, this tuple is equivalent to the position of the first camera with respect to the
	/// second camera coordinate system.
	/// * T: Output translation vector, see description above.
	/// * E: Output essential matrix.
	/// * F: Output fundamental matrix.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_FIX_INTRINSIC] Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
	/// matrices are estimated.
	/// *   [CALIB_USE_INTRINSIC_GUESS] Optimize some or all of the intrinsic parameters
	/// according to the specified flags. Initial values are provided by the user.
	/// *   [CALIB_USE_EXTRINSIC_GUESS] R and T contain valid initial values that are optimized further.
	/// Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
	/// *   [CALIB_FIX_PRINCIPAL_POINT] Fix the principal points during the optimization.
	/// *   [CALIB_FIX_FOCAL_LENGTH] Fix ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) .
	/// *   [CALIB_FIX_ASPECT_RATIO] Optimize ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) . Fix the ratio ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx%2Ff%5E%7B%28j%29%7D%5Fy)
	/// .
	/// *   [CALIB_SAME_FOCAL_LENGTH] Enforce ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fx%3Df%5E%7B%281%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fy%3Df%5E%7B%281%29%7D%5Fy) .
	/// *   [CALIB_ZERO_TANGENT_DIST] Set tangential distortion coefficients for each camera to
	/// zeros and fix there.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] Do not change the corresponding radial
	/// distortion coefficient during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set,
	/// the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Enable coefficients k4, k5, and k6. To provide the backward
	/// compatibility, this extra flag should be explicitly specified to make the calibration
	/// function use the rational model and return 8 coefficients. If the flag is not set, the
	/// function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// The function estimates the transformation between two cameras making a stereo pair. If one computes
	/// the poses of an object relative to the first camera and to the second camera,
	/// ( ![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1) ) and (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)), respectively, for a stereo camera where the
	/// relative position and orientation between the two cameras are fixed, then those poses definitely
	/// relate to each other. This means, if the relative position and orientation (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) of the
	/// two cameras is known, it is possible to compute (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)) when (![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1)) is
	/// given. This is what the described function does. It computes (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) such that:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?R%5F2%3DR%20R%5F1)
	/// ![block formula](https://latex.codecogs.com/png.latex?T%5F2%3DR%20T%5F1%20%2B%20T%2E)
	///
	/// Therefore, one can compute the coordinate representation of a 3D point for the second camera's
	/// coordinate system when given the point's coordinate representation in the first camera's coordinate
	/// system:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5F2%20%5C%5C%0AY%5F2%20%5C%5C%0AZ%5F2%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20T%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5F1%20%5C%5C%0AY%5F1%20%5C%5C%0AZ%5F1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	///
	///
	/// Optionally, it computes the essential matrix E:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?E%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2DT%5F2%20%26%20T%5F1%5C%5C%20T%5F2%20%26%200%20%26%20%2DT%5F0%5C%5C%20%2DT%5F1%20%26%20T%5F0%20%26%200%20%5Cend%7Bbmatrix%7D%20R)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fi) are components of the translation vector ![inline formula](https://latex.codecogs.com/png.latex?T) : ![inline formula](https://latex.codecogs.com/png.latex?T%3D%5BT%5F0%2C%20T%5F1%2C%20T%5F2%5D%5ET) .
	/// And the function can also compute the fundamental matrix F:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?F%20%3D%20cameraMatrix2%5E%7B%2DT%7D%5Ccdot%20E%20%5Ccdot%20cameraMatrix1%5E%7B%2D1%7D)
	///
	/// Besides the stereo-related information, the function can also perform a full calibration of each of
	/// the two cameras. However, due to the high dimensionality of the parameter space and noise in the
	/// input data, the function can diverge from the correct solution. If the intrinsic parameters can be
	/// estimated with high accuracy for each of the cameras individually (for example, using
	/// [calibrate_camera] ), you are recommended to do so and then pass [CALIB_FIX_INTRINSIC] flag to the
	/// function along with the computed intrinsic parameters. Otherwise, if all the parameters are
	/// estimated at once, it makes sense to restrict some parameters, for example, pass
	///  [CALIB_SAME_FOCAL_LENGTH] and [CALIB_ZERO_TANGENT_DIST] flags, which is usually a
	/// reasonable assumption.
	///
	/// Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
	/// points in all the available views from both cameras. The function returns the final value of the
	/// re-projection error.
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
	#[inline]
	pub fn stereo_calibrate_1(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, camera_matrix1: &mut impl ToInputOutputArray, dist_coeffs1: &mut impl ToInputOutputArray, camera_matrix2: &mut impl ToInputOutputArray, dist_coeffs2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToInputOutputArray, t: &mut impl ToInputOutputArray, e: &mut impl ToOutputArray, f: &mut impl ToOutputArray, per_view_errors: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(camera_matrix1);
		input_output_array_arg!(dist_coeffs1);
		input_output_array_arg!(camera_matrix2);
		input_output_array_arg!(dist_coeffs2);
		input_output_array_arg!(r);
		input_output_array_arg!(t);
		output_array_arg!(e);
		output_array_arg!(f);
		output_array_arg!(per_view_errors);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), &image_size, r.as_raw__InputOutputArray(), t.as_raw__InputOutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// @overload
	///
	/// ## Note
	/// This alternative version of [stereo_calibrate] function uses the following default values for its arguments:
	/// * flags: CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
	#[inline]
	pub fn stereo_calibrate_def(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, camera_matrix1: &mut impl ToInputOutputArray, dist_coeffs1: &mut impl ToInputOutputArray, camera_matrix2: &mut impl ToInputOutputArray, dist_coeffs2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, e: &mut impl ToOutputArray, f: &mut impl ToOutputArray) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(camera_matrix1);
		input_output_array_arg!(dist_coeffs1);
		input_output_array_arg!(camera_matrix2);
		input_output_array_arg!(dist_coeffs2);
		output_array_arg!(r);
		output_array_arg!(t);
		output_array_arg!(e);
		output_array_arg!(f);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), &image_size, r.as_raw__OutputArray(), t.as_raw__OutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Calibrates a stereo camera set up. This function finds the intrinsic parameters
	/// for each of the two cameras and the extrinsic parameters between the two cameras.
	///
	/// ## Parameters
	/// * objectPoints: Vector of vectors of the calibration pattern points. The same structure as
	/// in [calibrateCamera]. For each pattern view, both cameras need to see the same object
	/// points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
	/// equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
	/// be equal for each i.
	/// * imagePoints1: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the first camera. The same structure as in [calibrateCamera].
	/// * imagePoints2: Vector of vectors of the projections of the calibration pattern points,
	/// observed by the second camera. The same structure as in [calibrateCamera].
	/// * cameraMatrix1: Input/output camera intrinsic matrix for the first camera, the same as in
	/// [calibrateCamera]. Furthermore, for the stereo case, additional flags may be used, see below.
	/// * distCoeffs1: Input/output vector of distortion coefficients, the same as in
	/// [calibrateCamera].
	/// * cameraMatrix2: Input/output second camera intrinsic matrix for the second camera. See description for
	/// cameraMatrix1.
	/// * distCoeffs2: Input/output lens distortion coefficients for the second camera. See
	/// description for distCoeffs1.
	/// * imageSize: Size of the image used only to initialize the camera intrinsic matrices.
	/// * R: Output rotation matrix. Together with the translation vector T, this matrix brings
	/// points given in the first camera's coordinate system to points in the second camera's
	/// coordinate system. In more technical terms, the tuple of R and T performs a change of basis
	/// from the first camera's coordinate system to the second camera's coordinate system. Due to its
	/// duality, this tuple is equivalent to the position of the first camera with respect to the
	/// second camera coordinate system.
	/// * T: Output translation vector, see description above.
	/// * E: Output essential matrix.
	/// * F: Output fundamental matrix.
	/// * rvecs: Output vector of rotation vectors ( [Rodrigues] ) estimated for each pattern view in the
	/// coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
	/// i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
	/// description) brings the calibration pattern from the object coordinate space (in which object points are
	/// specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
	/// the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
	/// to camera coordinate space of the first camera of the stereo pair.
	/// * tvecs: Output vector of translation vectors estimated for each pattern view, see parameter description
	/// of previous output parameter ( rvecs ).
	/// * perViewErrors: Output vector of the RMS re-projection error estimated for each pattern view.
	/// * flags: Different flags that may be zero or a combination of the following values:
	/// *   [CALIB_FIX_INTRINSIC] Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
	/// matrices are estimated.
	/// *   [CALIB_USE_INTRINSIC_GUESS] Optimize some or all of the intrinsic parameters
	/// according to the specified flags. Initial values are provided by the user.
	/// *   [CALIB_USE_EXTRINSIC_GUESS] R and T contain valid initial values that are optimized further.
	/// Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
	/// *   [CALIB_FIX_PRINCIPAL_POINT] Fix the principal points during the optimization.
	/// *   [CALIB_FIX_FOCAL_LENGTH] Fix ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) .
	/// *   [CALIB_FIX_ASPECT_RATIO] Optimize ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fy) . Fix the ratio ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%28j%29%7D%5Fx%2Ff%5E%7B%28j%29%7D%5Fy)
	/// .
	/// *   [CALIB_SAME_FOCAL_LENGTH] Enforce ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fx%3Df%5E%7B%281%29%7D%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?f%5E%7B%280%29%7D%5Fy%3Df%5E%7B%281%29%7D%5Fy) .
	/// *   [CALIB_ZERO_TANGENT_DIST] Set tangential distortion coefficients for each camera to
	/// zeros and fix there.
	/// *   [CALIB_FIX_K1],..., [CALIB_FIX_K6] Do not change the corresponding radial
	/// distortion coefficient during the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set,
	/// the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_RATIONAL_MODEL] Enable coefficients k4, k5, and k6. To provide the backward
	/// compatibility, this extra flag should be explicitly specified to make the calibration
	/// function use the rational model and return 8 coefficients. If the flag is not set, the
	/// function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_THIN_PRISM_MODEL] Coefficients s1, s2, s3 and s4 are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the thin prism model and return 12 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_S1_S2_S3_S4] The thin prism distortion coefficients are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// *   [CALIB_TILTED_MODEL] Coefficients tauX and tauY are enabled. To provide the
	/// backward compatibility, this extra flag should be explicitly specified to make the
	/// calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
	/// set, the function computes and returns only 5 distortion coefficients.
	/// *   [CALIB_FIX_TAUX_TAUY] The coefficients of the tilted sensor model are not changed during
	/// the optimization. If [CALIB_USE_INTRINSIC_GUESS] is set, the coefficient from the
	/// supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	/// * criteria: Termination criteria for the iterative optimization algorithm.
	///
	/// The function estimates the transformation between two cameras making a stereo pair. If one computes
	/// the poses of an object relative to the first camera and to the second camera,
	/// ( ![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1) ) and (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)), respectively, for a stereo camera where the
	/// relative position and orientation between the two cameras are fixed, then those poses definitely
	/// relate to each other. This means, if the relative position and orientation (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) of the
	/// two cameras is known, it is possible to compute (![inline formula](https://latex.codecogs.com/png.latex?R%5F2),![inline formula](https://latex.codecogs.com/png.latex?T%5F2)) when (![inline formula](https://latex.codecogs.com/png.latex?R%5F1),![inline formula](https://latex.codecogs.com/png.latex?T%5F1)) is
	/// given. This is what the described function does. It computes (![inline formula](https://latex.codecogs.com/png.latex?R),![inline formula](https://latex.codecogs.com/png.latex?T)) such that:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?R%5F2%3DR%20R%5F1)
	/// ![block formula](https://latex.codecogs.com/png.latex?T%5F2%3DR%20T%5F1%20%2B%20T%2E)
	///
	/// Therefore, one can compute the coordinate representation of a 3D point for the second camera's
	/// coordinate system when given the point's coordinate representation in the first camera's coordinate
	/// system:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%0AX%5F2%20%5C%5C%0AY%5F2%20%5C%5C%0AZ%5F2%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0AR%20%26%20T%20%5C%5C%0A0%20%26%201%0A%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%0AX%5F1%20%5C%5C%0AY%5F1%20%5C%5C%0AZ%5F1%20%5C%5C%0A1%0A%5Cend%7Bbmatrix%7D%2E)
	///
	///
	/// Optionally, it computes the essential matrix E:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?E%3D%20%5Cbegin%7Bbmatrix%7D%200%20%26%20%2DT%5F2%20%26%20T%5F1%5C%5C%20T%5F2%20%26%200%20%26%20%2DT%5F0%5C%5C%20%2DT%5F1%20%26%20T%5F0%20%26%200%20%5Cend%7Bbmatrix%7D%20R)
	///
	/// where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fi) are components of the translation vector ![inline formula](https://latex.codecogs.com/png.latex?T) : ![inline formula](https://latex.codecogs.com/png.latex?T%3D%5BT%5F0%2C%20T%5F1%2C%20T%5F2%5D%5ET) .
	/// And the function can also compute the fundamental matrix F:
	///
	/// ![block formula](https://latex.codecogs.com/png.latex?F%20%3D%20cameraMatrix2%5E%7B%2DT%7D%5Ccdot%20E%20%5Ccdot%20cameraMatrix1%5E%7B%2D1%7D)
	///
	/// Besides the stereo-related information, the function can also perform a full calibration of each of
	/// the two cameras. However, due to the high dimensionality of the parameter space and noise in the
	/// input data, the function can diverge from the correct solution. If the intrinsic parameters can be
	/// estimated with high accuracy for each of the cameras individually (for example, using
	/// [calibrate_camera] ), you are recommended to do so and then pass [CALIB_FIX_INTRINSIC] flag to the
	/// function along with the computed intrinsic parameters. Otherwise, if all the parameters are
	/// estimated at once, it makes sense to restrict some parameters, for example, pass
	///  [CALIB_SAME_FOCAL_LENGTH] and [CALIB_ZERO_TANGENT_DIST] flags, which is usually a
	/// reasonable assumption.
	///
	/// Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
	/// points in all the available views from both cameras. The function returns the final value of the
	/// re-projection error.
	///
	/// ## Overloaded parameters
	///
	/// ## C++ default parameters
	/// * flags: CALIB_FIX_INTRINSIC
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,1e-6)
	#[inline]
	pub fn stereo_calibrate(object_points: &impl ToInputArray, image_points1: &impl ToInputArray, image_points2: &impl ToInputArray, camera_matrix1: &mut impl ToInputOutputArray, dist_coeffs1: &mut impl ToInputOutputArray, camera_matrix2: &mut impl ToInputOutputArray, dist_coeffs2: &mut impl ToInputOutputArray, image_size: core::Size, r: &mut impl ToOutputArray, t: &mut impl ToOutputArray, e: &mut impl ToOutputArray, f: &mut impl ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points1);
		input_array_arg!(image_points2);
		input_output_array_arg!(camera_matrix1);
		input_output_array_arg!(dist_coeffs1);
		input_output_array_arg!(camera_matrix2);
		input_output_array_arg!(dist_coeffs2);
		output_array_arg!(r);
		output_array_arg!(t);
		output_array_arg!(e);
		output_array_arg!(f);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoCalibrate_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_Size_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(object_points.as_raw__InputArray(), image_points1.as_raw__InputArray(), image_points2.as_raw__InputArray(), camera_matrix1.as_raw__InputOutputArray(), dist_coeffs1.as_raw__InputOutputArray(), camera_matrix2.as_raw__InputOutputArray(), dist_coeffs2.as_raw__InputOutputArray(), &image_size, r.as_raw__OutputArray(), t.as_raw__OutputArray(), e.as_raw__OutputArray(), f.as_raw__OutputArray(), flags, &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes a rectification transform for an uncalibrated stereo camera.
	///
	/// ## Parameters
	/// * points1: Array of feature points in the first image.
	/// * points2: The corresponding points in the second image. The same formats as in
	/// [find_fundamental_mat] are supported.
	/// * F: Input fundamental matrix. It can be computed from the same set of point pairs using
	/// [find_fundamental_mat] .
	/// * imgSize: Size of the image.
	/// * H1: Output rectification homography matrix for the first image.
	/// * H2: Output rectification homography matrix for the second image.
	/// * threshold: Optional threshold used to filter out the outliers. If the parameter is greater
	/// than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
	/// for which ![inline formula](https://latex.codecogs.com/png.latex?%7C%5Ctexttt%7Bpoints2%5Bi%5D%7D%5ET%20%5Ccdot%20%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpoints1%5Bi%5D%7D%7C%3E%5Ctexttt%7Bthreshold%7D) )
	/// are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
	///
	/// The function computes the rectification transformations without knowing intrinsic parameters of the
	/// cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
	/// related difference from [stereo_rectify] is that the function outputs not the rectification
	/// transformations in the object (3D) space, but the planar perspective transformations encoded by the
	/// homography matrices H1 and H2 . The function implements the algorithm [Hartley99](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Hartley99) .
	///
	///
	/// Note:
	///    While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
	///    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
	///    it would be better to correct it before computing the fundamental matrix and calling this
	///    function. For example, distortion coefficients can be estimated for each head of stereo camera
	///    separately by using [calibrate_camera] . Then, the images can be corrected using [undistort] , or
	///    just the point coordinates can be corrected with [undistort_points] .
	///
	/// ## Note
	/// This alternative version of [stereo_rectify_uncalibrated] function uses the following default values for its arguments:
	/// * threshold: 5
	#[inline]
	pub fn stereo_rectify_uncalibrated_def(points1: &impl ToInputArray, points2: &impl ToInputArray, f: &impl ToInputArray, img_size: core::Size, h1: &mut impl ToOutputArray, h2: &mut impl ToOutputArray) -> Result<bool> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(f);
		output_array_arg!(h1);
		output_array_arg!(h2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoRectifyUncalibrated_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__OutputArrayR_const__OutputArrayR(points1.as_raw__InputArray(), points2.as_raw__InputArray(), f.as_raw__InputArray(), &img_size, h1.as_raw__OutputArray(), h2.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes a rectification transform for an uncalibrated stereo camera.
	///
	/// ## Parameters
	/// * points1: Array of feature points in the first image.
	/// * points2: The corresponding points in the second image. The same formats as in
	/// [find_fundamental_mat] are supported.
	/// * F: Input fundamental matrix. It can be computed from the same set of point pairs using
	/// [find_fundamental_mat] .
	/// * imgSize: Size of the image.
	/// * H1: Output rectification homography matrix for the first image.
	/// * H2: Output rectification homography matrix for the second image.
	/// * threshold: Optional threshold used to filter out the outliers. If the parameter is greater
	/// than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
	/// for which ![inline formula](https://latex.codecogs.com/png.latex?%7C%5Ctexttt%7Bpoints2%5Bi%5D%7D%5ET%20%5Ccdot%20%5Ctexttt%7BF%7D%20%5Ccdot%20%5Ctexttt%7Bpoints1%5Bi%5D%7D%7C%3E%5Ctexttt%7Bthreshold%7D) )
	/// are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
	///
	/// The function computes the rectification transformations without knowing intrinsic parameters of the
	/// cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
	/// related difference from [stereo_rectify] is that the function outputs not the rectification
	/// transformations in the object (3D) space, but the planar perspective transformations encoded by the
	/// homography matrices H1 and H2 . The function implements the algorithm [Hartley99](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Hartley99) .
	///
	///
	/// Note:
	///    While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
	///    depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
	///    it would be better to correct it before computing the fundamental matrix and calling this
	///    function. For example, distortion coefficients can be estimated for each head of stereo camera
	///    separately by using [calibrate_camera] . Then, the images can be corrected using [undistort] , or
	///    just the point coordinates can be corrected with [undistort_points] .
	///
	/// ## C++ default parameters
	/// * threshold: 5
	#[inline]
	pub fn stereo_rectify_uncalibrated(points1: &impl ToInputArray, points2: &impl ToInputArray, f: &impl ToInputArray, img_size: core::Size, h1: &mut impl ToOutputArray, h2: &mut impl ToOutputArray, threshold: f64) -> Result<bool> {
		input_array_arg!(points1);
		input_array_arg!(points2);
		input_array_arg!(f);
		output_array_arg!(h1);
		output_array_arg!(h2);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoRectifyUncalibrated_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__OutputArrayR_const__OutputArrayR_double(points1.as_raw__InputArray(), points2.as_raw__InputArray(), f.as_raw__InputArray(), &img_size, h1.as_raw__OutputArray(), h2.as_raw__OutputArray(), threshold, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes rectification transforms for each head of a calibrated stereo camera.
	///
	/// ## Parameters
	/// * cameraMatrix1: First camera intrinsic matrix.
	/// * distCoeffs1: First camera distortion parameters.
	/// * cameraMatrix2: Second camera intrinsic matrix.
	/// * distCoeffs2: Second camera distortion parameters.
	/// * imageSize: Size of the image used for stereo calibration.
	/// * R: Rotation matrix from the coordinate system of the first camera to the second camera,
	/// see [stereoCalibrate].
	/// * T: Translation vector from the coordinate system of the first camera to the second camera,
	/// see [stereoCalibrate].
	/// * R1: Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
	/// brings points given in the unrectified first camera's coordinate system to points in the rectified
	/// first camera's coordinate system. In more technical terms, it performs a change of basis from the
	/// unrectified first camera's coordinate system to the rectified first camera's coordinate system.
	/// * R2: Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
	/// brings points given in the unrectified second camera's coordinate system to points in the rectified
	/// second camera's coordinate system. In more technical terms, it performs a change of basis from the
	/// unrectified second camera's coordinate system to the rectified second camera's coordinate system.
	/// * P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
	/// camera, i.e. it projects points given in the rectified first camera coordinate system into the
	/// rectified first camera's image.
	/// * P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
	/// camera, i.e. it projects points given in the rectified first camera coordinate system into the
	/// rectified second camera's image.
	/// * Q: Output ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) disparity-to-depth mapping matrix (see [reprojectImageTo3D]).
	/// * flags: Operation flags that may be zero or [CALIB_ZERO_DISPARITY] . If the flag is set,
	/// the function makes the principal points of each camera have the same pixel coordinates in the
	/// rectified views. And if the flag is not set, the function may still shift the images in the
	/// horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
	/// useful image area.
	/// * alpha: Free scaling parameter. If it is -1 or absent, the function performs the default
	/// scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
	/// images are zoomed and shifted so that only valid pixels are visible (no black areas after
	/// rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
	/// pixels from the original images from the cameras are retained in the rectified images (no source
	/// image pixels are lost). Any intermediate value yields an intermediate result between
	/// those two extreme cases.
	/// * newImageSize: New image resolution after rectification. The same size should be passed to
	/// [init_undistort_rectify_map] (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
	/// is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
	/// preserve details in the original image, especially when there is a big radial distortion.
	/// * validPixROI1: Optional output rectangles inside the rectified images where all the pixels
	/// are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
	/// (see the picture below).
	/// * validPixROI2: Optional output rectangles inside the rectified images where all the pixels
	/// are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
	/// (see the picture below).
	///
	/// The function computes the rotation matrices for each camera that (virtually) make both camera image
	/// planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
	/// the dense stereo correspondence problem. The function takes the matrices computed by [stereo_calibrate]
	/// as input. As output, it provides two rotation matrices and also two projection matrices in the new
	/// coordinates. The function distinguishes the following two cases:
	///
	/// *   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
	///    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
	///    corresponding epipolar lines in the left and right cameras are horizontal and have the same
	///    y-coordinate. P1 and P2 look like:
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%5F1%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP2%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%5F2%20%26%20T%5Fx%20%5Ccdot%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20%2C)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BQ%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%20%26%200%20%26%200%20%26%20%2Dcx%5F1%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%201%20%26%200%20%26%20%2Dcy%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%200%20%26%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%20%2D%5Cfrac%7B1%7D%7BT%5Fx%7D%20%26%20%5Cfrac%7Bcx%5F1%20%2D%20cx%5F2%7D%7BT%5Fx%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20)
	///
	///    where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fx) is a horizontal shift between the cameras and ![inline formula](https://latex.codecogs.com/png.latex?cx%5F1%3Dcx%5F2) if
	///    [CALIB_ZERO_DISPARITY] is set.
	///
	/// *   **Vertical stereo**: the first and the second camera views are shifted relative to each other
	///    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
	///    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%5F1%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP2%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%5F2%20%26%20T%5Fy%20%5Ccdot%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%2C)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BQ%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%20%26%200%20%26%200%20%26%20%2Dcx%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%201%20%26%200%20%26%20%2Dcy%5F1%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%200%20%26%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%20%2D%5Cfrac%7B1%7D%7BT%5Fy%7D%20%26%20%5Cfrac%7Bcy%5F1%20%2D%20cy%5F2%7D%7BT%5Fy%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20)
	///
	///    where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fy) is a vertical shift between the cameras and ![inline formula](https://latex.codecogs.com/png.latex?cy%5F1%3Dcy%5F2) if
	///    [CALIB_ZERO_DISPARITY] is set.
	///
	/// As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
	/// matrices. The matrices, together with R1 and R2 , can then be passed to [init_undistort_rectify_map] to
	/// initialize the rectification map for each camera.
	///
	/// See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
	/// the corresponding image regions. This means that the images are well rectified, which is what most
	/// stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
	/// their interiors are all valid pixels.
	///
	/// ![image](https://docs.opencv.org/4.11.0/stereo_undistort.jpg)
	///
	/// ## Note
	/// This alternative version of [stereo_rectify] function uses the following default values for its arguments:
	/// * flags: CALIB_ZERO_DISPARITY
	/// * alpha: -1
	/// * new_image_size: Size()
	/// * valid_pix_roi1: 0
	/// * valid_pix_roi2: 0
	#[inline]
	pub fn stereo_rectify_def(camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray, image_size: core::Size, r: &impl ToInputArray, t: &impl ToInputArray, r1: &mut impl ToOutputArray, r2: &mut impl ToOutputArray, p1: &mut impl ToOutputArray, p2: &mut impl ToOutputArray, q: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		input_array_arg!(r);
		input_array_arg!(t);
		output_array_arg!(r1);
		output_array_arg!(r2);
		output_array_arg!(p1);
		output_array_arg!(p2);
		output_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoRectify_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), t.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), q.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes rectification transforms for each head of a calibrated stereo camera.
	///
	/// ## Parameters
	/// * cameraMatrix1: First camera intrinsic matrix.
	/// * distCoeffs1: First camera distortion parameters.
	/// * cameraMatrix2: Second camera intrinsic matrix.
	/// * distCoeffs2: Second camera distortion parameters.
	/// * imageSize: Size of the image used for stereo calibration.
	/// * R: Rotation matrix from the coordinate system of the first camera to the second camera,
	/// see [stereoCalibrate].
	/// * T: Translation vector from the coordinate system of the first camera to the second camera,
	/// see [stereoCalibrate].
	/// * R1: Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
	/// brings points given in the unrectified first camera's coordinate system to points in the rectified
	/// first camera's coordinate system. In more technical terms, it performs a change of basis from the
	/// unrectified first camera's coordinate system to the rectified first camera's coordinate system.
	/// * R2: Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
	/// brings points given in the unrectified second camera's coordinate system to points in the rectified
	/// second camera's coordinate system. In more technical terms, it performs a change of basis from the
	/// unrectified second camera's coordinate system to the rectified second camera's coordinate system.
	/// * P1: Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
	/// camera, i.e. it projects points given in the rectified first camera coordinate system into the
	/// rectified first camera's image.
	/// * P2: Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
	/// camera, i.e. it projects points given in the rectified first camera coordinate system into the
	/// rectified second camera's image.
	/// * Q: Output ![inline formula](https://latex.codecogs.com/png.latex?4%20%5Ctimes%204) disparity-to-depth mapping matrix (see [reprojectImageTo3D]).
	/// * flags: Operation flags that may be zero or [CALIB_ZERO_DISPARITY] . If the flag is set,
	/// the function makes the principal points of each camera have the same pixel coordinates in the
	/// rectified views. And if the flag is not set, the function may still shift the images in the
	/// horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
	/// useful image area.
	/// * alpha: Free scaling parameter. If it is -1 or absent, the function performs the default
	/// scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
	/// images are zoomed and shifted so that only valid pixels are visible (no black areas after
	/// rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
	/// pixels from the original images from the cameras are retained in the rectified images (no source
	/// image pixels are lost). Any intermediate value yields an intermediate result between
	/// those two extreme cases.
	/// * newImageSize: New image resolution after rectification. The same size should be passed to
	/// [init_undistort_rectify_map] (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
	/// is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
	/// preserve details in the original image, especially when there is a big radial distortion.
	/// * validPixROI1: Optional output rectangles inside the rectified images where all the pixels
	/// are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
	/// (see the picture below).
	/// * validPixROI2: Optional output rectangles inside the rectified images where all the pixels
	/// are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
	/// (see the picture below).
	///
	/// The function computes the rotation matrices for each camera that (virtually) make both camera image
	/// planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
	/// the dense stereo correspondence problem. The function takes the matrices computed by [stereo_calibrate]
	/// as input. As output, it provides two rotation matrices and also two projection matrices in the new
	/// coordinates. The function distinguishes the following two cases:
	///
	/// *   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
	///    mainly along the x-axis (with possible small vertical shift). In the rectified images, the
	///    corresponding epipolar lines in the left and right cameras are horizontal and have the same
	///    y-coordinate. P1 and P2 look like:
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%5F1%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP2%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%5F2%20%26%20T%5Fx%20%5Ccdot%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20%2C)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BQ%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%20%26%200%20%26%200%20%26%20%2Dcx%5F1%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%201%20%26%200%20%26%20%2Dcy%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%200%20%26%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%20%2D%5Cfrac%7B1%7D%7BT%5Fx%7D%20%26%20%5Cfrac%7Bcx%5F1%20%2D%20cx%5F2%7D%7BT%5Fx%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20)
	///
	///    where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fx) is a horizontal shift between the cameras and ![inline formula](https://latex.codecogs.com/png.latex?cx%5F1%3Dcx%5F2) if
	///    [CALIB_ZERO_DISPARITY] is set.
	///
	/// *   **Vertical stereo**: the first and the second camera views are shifted relative to each other
	///    mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
	///    lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP1%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%5F1%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BP2%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20f%20%26%200%20%26%20cx%20%26%200%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%20f%20%26%20cy%5F2%20%26%20T%5Fy%20%5Ccdot%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%201%20%26%200%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%2C)
	///
	///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7BQ%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%201%20%26%200%20%26%200%20%26%20%2Dcx%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%201%20%26%200%20%26%20%2Dcy%5F1%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%200%20%26%20f%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%26%200%20%26%20%2D%5Cfrac%7B1%7D%7BT%5Fy%7D%20%26%20%5Cfrac%7Bcy%5F1%20%2D%20cy%5F2%7D%7BT%5Fy%7D%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cend%7Bbmatrix%7D%20)
	///
	///    where ![inline formula](https://latex.codecogs.com/png.latex?T%5Fy) is a vertical shift between the cameras and ![inline formula](https://latex.codecogs.com/png.latex?cy%5F1%3Dcy%5F2) if
	///    [CALIB_ZERO_DISPARITY] is set.
	///
	/// As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
	/// matrices. The matrices, together with R1 and R2 , can then be passed to [init_undistort_rectify_map] to
	/// initialize the rectification map for each camera.
	///
	/// See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
	/// the corresponding image regions. This means that the images are well rectified, which is what most
	/// stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
	/// their interiors are all valid pixels.
	///
	/// ![image](https://docs.opencv.org/4.11.0/stereo_undistort.jpg)
	///
	/// ## C++ default parameters
	/// * flags: CALIB_ZERO_DISPARITY
	/// * alpha: -1
	/// * new_image_size: Size()
	/// * valid_pix_roi1: 0
	/// * valid_pix_roi2: 0
	#[inline]
	pub fn stereo_rectify(camera_matrix1: &impl ToInputArray, dist_coeffs1: &impl ToInputArray, camera_matrix2: &impl ToInputArray, dist_coeffs2: &impl ToInputArray, image_size: core::Size, r: &impl ToInputArray, t: &impl ToInputArray, r1: &mut impl ToOutputArray, r2: &mut impl ToOutputArray, p1: &mut impl ToOutputArray, p2: &mut impl ToOutputArray, q: &mut impl ToOutputArray, flags: i32, alpha: f64, new_image_size: core::Size, valid_pix_roi1: &mut core::Rect, valid_pix_roi2: &mut core::Rect) -> Result<()> {
		input_array_arg!(camera_matrix1);
		input_array_arg!(dist_coeffs1);
		input_array_arg!(camera_matrix2);
		input_array_arg!(dist_coeffs2);
		input_array_arg!(r);
		input_array_arg!(t);
		output_array_arg!(r1);
		output_array_arg!(r2);
		output_array_arg!(p1);
		output_array_arg!(p2);
		output_array_arg!(q);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_stereoRectify_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_Size_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_double_Size_RectX_RectX(camera_matrix1.as_raw__InputArray(), dist_coeffs1.as_raw__InputArray(), camera_matrix2.as_raw__InputArray(), dist_coeffs2.as_raw__InputArray(), &image_size, r.as_raw__InputArray(), t.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray(), p1.as_raw__OutputArray(), p2.as_raw__OutputArray(), q.as_raw__OutputArray(), flags, alpha, &new_image_size, valid_pix_roi1, valid_pix_roi2, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
	/// their observations with a stereo camera.
	///
	/// ## Parameters
	/// * projMatr1: 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
	/// given in the world's coordinate system into the first image.
	/// * projMatr2: 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
	/// given in the world's coordinate system into the second image.
	/// * projPoints1: 2xN array of feature points in the first image. In the case of the c++ version,
	/// it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
	/// * projPoints2: 2xN array of corresponding points in the second image. In the case of the c++
	/// version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
	/// * points4D: 4xN array of reconstructed points in homogeneous coordinates. These points are
	/// returned in the world's coordinate system.
	///
	///
	/// Note:
	///    Keep in mind that all input data should be of float type in order for this function to work.
	///
	///
	/// Note:
	///    If the projection matrices from [stereoRectify] are used, then the returned points are
	///    represented in the first camera's rectified coordinate system.
	/// ## See also
	/// reprojectImageTo3D
	#[inline]
	pub fn triangulate_points(proj_matr1: &impl ToInputArray, proj_matr2: &impl ToInputArray, proj_points1: &impl ToInputArray, proj_points2: &impl ToInputArray, points4_d: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(proj_matr1);
		input_array_arg!(proj_matr2);
		input_array_arg!(proj_points1);
		input_array_arg!(proj_points2);
		output_array_arg!(points4_d);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_triangulatePoints_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(proj_matr1.as_raw__InputArray(), proj_matr2.as_raw__InputArray(), proj_points1.as_raw__InputArray(), proj_points2.as_raw__InputArray(), points4_d.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Compute undistorted image points position
	///
	/// ## Parameters
	/// * src: Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
	/// CV_64FC2) (or vector\<Point2f\> ).
	/// * dst: Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
	/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Distortion coefficients
	///
	/// ## Note
	/// This alternative version of [undistort_image_points] function uses the following default values for its arguments:
	/// * unnamed: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,0.01)
	#[inline]
	pub fn undistort_image_points_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistortImagePoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Compute undistorted image points position
	///
	/// ## Parameters
	/// * src: Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
	/// CV_64FC2) (or vector\<Point2f\> ).
	/// * dst: Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f\> ).
	/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Distortion coefficients
	///
	/// ## C++ default parameters
	/// * unnamed: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,0.01)
	#[inline]
	pub fn undistort_image_points(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, unnamed: core::TermCriteria) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistortImagePoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_TermCriteria(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), &unnamed, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes the ideal point coordinates from the observed point coordinates.
	///
	/// The function is similar to [undistort] and [init_undistort_rectify_map] but it operates on a
	/// sparse set of points instead of a raster image. Also the function performs a reverse transformation
	/// to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
	/// planar object, it does, up to a translation vector, if the proper R is specified.
	///
	/// For each observed point coordinate ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) the function computes:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%5E%7B%22%7D%20%20%5Cleftarrow%20%28u%20%2D%20c%5Fx%29%2Ff%5Fx%20%20%5C%5C%0Ay%5E%7B%22%7D%20%20%5Cleftarrow%20%28v%20%2D%20c%5Fy%29%2Ff%5Fy%20%20%5C%5C%0A%28x%27%2Cy%27%29%20%3D%20undistort%28x%5E%7B%22%7D%2Cy%5E%7B%22%7D%2C%20%5Ctexttt%7BdistCoeffs%7D%29%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%2A%5Bx%27%20%5C%2C%20y%27%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0A%5Ctext%7Bonly%20performed%20if%20P%20is%20specified%3A%7D%20%5C%5C%0Au%27%20%20%5Cleftarrow%20x%20%7Bf%27%7D%5Fx%20%2B%20%7Bc%27%7D%5Fx%20%20%5C%5C%0Av%27%20%20%5Cleftarrow%20y%20%7Bf%27%7D%5Fy%20%2B%20%7Bc%27%7D%5Fy%0A%5Cend%7Barray%7D%0A)
	///
	/// where *undistort* is an approximate iterative algorithm that estimates the normalized original
	/// point coordinates out of the normalized distorted point coordinates ("normalized" means that the
	/// coordinates do not depend on the camera matrix).
	///
	/// The function can be used for both a stereo camera head or a monocular camera (when R is empty).
	/// ## Parameters
	/// * src: Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
	/// vector\<Point2f\> ).
	/// * dst: Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
	/// transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
	/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * R: Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
	/// [stereo_rectify] can be passed here. If the matrix is empty, the identity transformation is used.
	/// * P: New camera matrix (3x3) or new projection matrix (3x4) ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20%7Bf%27%7D%5Fx%20%26%200%20%26%20%7Bc%27%7D%5Fx%20%26%20t%5Fx%20%5C%5C%200%20%26%20%7Bf%27%7D%5Fy%20%26%20%7Bc%27%7D%5Fy%20%26%20t%5Fy%20%5C%5C%200%20%26%200%20%26%201%20%26%20t%5Fz%20%5Cend%7Bbmatrix%7D). P1 or P2 computed by
	/// [stereo_rectify] can be passed here. If the matrix is empty, the identity new camera matrix is used.
	///
	/// ## Note
	/// This alternative version of [undistort_points] function uses the following default values for its arguments:
	/// * r: noArray()
	/// * p: noArray()
	#[inline]
	pub fn undistort_points_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes the ideal point coordinates from the observed point coordinates.
	///
	/// The function is similar to [undistort] and [init_undistort_rectify_map] but it operates on a
	/// sparse set of points instead of a raster image. Also the function performs a reverse transformation
	/// to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
	/// planar object, it does, up to a translation vector, if the proper R is specified.
	///
	/// For each observed point coordinate ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) the function computes:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%5E%7B%22%7D%20%20%5Cleftarrow%20%28u%20%2D%20c%5Fx%29%2Ff%5Fx%20%20%5C%5C%0Ay%5E%7B%22%7D%20%20%5Cleftarrow%20%28v%20%2D%20c%5Fy%29%2Ff%5Fy%20%20%5C%5C%0A%28x%27%2Cy%27%29%20%3D%20undistort%28x%5E%7B%22%7D%2Cy%5E%7B%22%7D%2C%20%5Ctexttt%7BdistCoeffs%7D%29%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%2A%5Bx%27%20%5C%2C%20y%27%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0A%5Ctext%7Bonly%20performed%20if%20P%20is%20specified%3A%7D%20%5C%5C%0Au%27%20%20%5Cleftarrow%20x%20%7Bf%27%7D%5Fx%20%2B%20%7Bc%27%7D%5Fx%20%20%5C%5C%0Av%27%20%20%5Cleftarrow%20y%20%7Bf%27%7D%5Fy%20%2B%20%7Bc%27%7D%5Fy%0A%5Cend%7Barray%7D%0A)
	///
	/// where *undistort* is an approximate iterative algorithm that estimates the normalized original
	/// point coordinates out of the normalized distorted point coordinates ("normalized" means that the
	/// coordinates do not depend on the camera matrix).
	///
	/// The function can be used for both a stereo camera head or a monocular camera (when R is empty).
	/// ## Parameters
	/// * src: Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
	/// vector\<Point2f\> ).
	/// * dst: Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
	/// transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
	/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * R: Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
	/// [stereo_rectify] can be passed here. If the matrix is empty, the identity transformation is used.
	/// * P: New camera matrix (3x3) or new projection matrix (3x4) ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20%7Bf%27%7D%5Fx%20%26%200%20%26%20%7Bc%27%7D%5Fx%20%26%20t%5Fx%20%5C%5C%200%20%26%20%7Bf%27%7D%5Fy%20%26%20%7Bc%27%7D%5Fy%20%26%20t%5Fy%20%5C%5C%200%20%26%200%20%26%201%20%26%20t%5Fz%20%5Cend%7Bbmatrix%7D). P1 or P2 computed by
	/// [stereo_rectify] can be passed here. If the matrix is empty, the identity new camera matrix is used.
	///
	/// ## C++ default parameters
	/// * r: noArray()
	/// * p: noArray()
	#[inline]
	pub fn undistort_points(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, r: &impl ToInputArray, p: &impl ToInputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(r);
		input_array_arg!(p);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Computes the ideal point coordinates from the observed point coordinates.
	///
	/// The function is similar to [undistort] and [init_undistort_rectify_map] but it operates on a
	/// sparse set of points instead of a raster image. Also the function performs a reverse transformation
	/// to  #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
	/// planar object, it does, up to a translation vector, if the proper R is specified.
	///
	/// For each observed point coordinate ![inline formula](https://latex.codecogs.com/png.latex?%28u%2C%20v%29) the function computes:
	/// ![block formula](https://latex.codecogs.com/png.latex?%0A%5Cbegin%7Barray%7D%7Bl%7D%0Ax%5E%7B%22%7D%20%20%5Cleftarrow%20%28u%20%2D%20c%5Fx%29%2Ff%5Fx%20%20%5C%5C%0Ay%5E%7B%22%7D%20%20%5Cleftarrow%20%28v%20%2D%20c%5Fy%29%2Ff%5Fy%20%20%5C%5C%0A%28x%27%2Cy%27%29%20%3D%20undistort%28x%5E%7B%22%7D%2Cy%5E%7B%22%7D%2C%20%5Ctexttt%7BdistCoeffs%7D%29%20%5C%5C%0A%7B%5BX%5C%2CY%5C%2CW%5D%7D%20%5ET%20%20%5Cleftarrow%20R%2A%5Bx%27%20%5C%2C%20y%27%20%5C%2C%201%5D%5ET%20%20%5C%5C%0Ax%20%20%5Cleftarrow%20X%2FW%20%20%5C%5C%0Ay%20%20%5Cleftarrow%20Y%2FW%20%20%5C%5C%0A%5Ctext%7Bonly%20performed%20if%20P%20is%20specified%3A%7D%20%5C%5C%0Au%27%20%20%5Cleftarrow%20x%20%7Bf%27%7D%5Fx%20%2B%20%7Bc%27%7D%5Fx%20%20%5C%5C%0Av%27%20%20%5Cleftarrow%20y%20%7Bf%27%7D%5Fy%20%2B%20%7Bc%27%7D%5Fy%0A%5Cend%7Barray%7D%0A)
	///
	/// where *undistort* is an approximate iterative algorithm that estimates the normalized original
	/// point coordinates out of the normalized distorted point coordinates ("normalized" means that the
	/// coordinates do not depend on the camera matrix).
	///
	/// The function can be used for both a stereo camera head or a monocular camera (when R is empty).
	/// ## Parameters
	/// * src: Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
	/// vector\<Point2f\> ).
	/// * dst: Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f\> ) after undistortion and reverse perspective
	/// transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.
	/// * cameraMatrix: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * R: Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
	/// [stereo_rectify] can be passed here. If the matrix is empty, the identity transformation is used.
	/// * P: New camera matrix (3x3) or new projection matrix (3x4) ![inline formula](https://latex.codecogs.com/png.latex?%5Cbegin%7Bbmatrix%7D%20%7Bf%27%7D%5Fx%20%26%200%20%26%20%7Bc%27%7D%5Fx%20%26%20t%5Fx%20%5C%5C%200%20%26%20%7Bf%27%7D%5Fy%20%26%20%7Bc%27%7D%5Fy%20%26%20t%5Fy%20%5C%5C%200%20%26%200%20%26%201%20%26%20t%5Fz%20%5Cend%7Bbmatrix%7D). P1 or P2 computed by
	/// [stereo_rectify] can be passed here. If the matrix is empty, the identity new camera matrix is used.
	///
	/// ## Overloaded parameters
	///
	///
	/// Note: Default version of [undistort_points] does 5 iterations to compute undistorted points.
	#[inline]
	pub fn undistort_points_iter(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, r: &impl ToInputArray, p: &impl ToInputArray, criteria: core::TermCriteria) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(r);
		input_array_arg!(p);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_TermCriteria(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), &criteria, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Transforms an image to compensate for lens distortion.
	///
	/// The function transforms an image to compensate radial and tangential lens distortion.
	///
	/// The function is simply a combination of [init_undistort_rectify_map] (with unity R ) and [remap]
	/// (with bilinear interpolation). See the former function for details of the transformation being
	/// performed.
	///
	/// Those pixels in the destination image, for which there is no correspondent pixels in the source
	/// image, are filled with zeros (black color).
	///
	/// A particular subset of the source image that will be visible in the corrected image can be regulated
	/// by newCameraMatrix. You can use [get_optimal_new_camera_matrix] to compute the appropriate
	/// newCameraMatrix depending on your requirements.
	///
	/// The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
	/// the resolution of images is different from the resolution used at the calibration stage, ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%2C%0Af%5Fy%2C%20c%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) need to be scaled accordingly, while the distortion coefficients remain
	/// the same.
	///
	/// ## Parameters
	/// * src: Input (distorted) image.
	/// * dst: Output (corrected) image that has the same size and type as src .
	/// * cameraMatrix: Input camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * newCameraMatrix: Camera matrix of the distorted image. By default, it is the same as
	/// cameraMatrix but you may additionally scale and shift the result by using a different matrix.
	///
	/// ## Note
	/// This alternative version of [undistort] function uses the following default values for its arguments:
	/// * new_camera_matrix: noArray()
	#[inline]
	pub fn undistort_def(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistort_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// Transforms an image to compensate for lens distortion.
	///
	/// The function transforms an image to compensate radial and tangential lens distortion.
	///
	/// The function is simply a combination of [init_undistort_rectify_map] (with unity R ) and [remap]
	/// (with bilinear interpolation). See the former function for details of the transformation being
	/// performed.
	///
	/// Those pixels in the destination image, for which there is no correspondent pixels in the source
	/// image, are filled with zeros (black color).
	///
	/// A particular subset of the source image that will be visible in the corrected image can be regulated
	/// by newCameraMatrix. You can use [get_optimal_new_camera_matrix] to compute the appropriate
	/// newCameraMatrix depending on your requirements.
	///
	/// The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
	/// the resolution of images is different from the resolution used at the calibration stage, ![inline formula](https://latex.codecogs.com/png.latex?f%5Fx%2C%0Af%5Fy%2C%20c%5Fx) and ![inline formula](https://latex.codecogs.com/png.latex?c%5Fy) need to be scaled accordingly, while the distortion coefficients remain
	/// the same.
	///
	/// ## Parameters
	/// * src: Input (distorted) image.
	/// * dst: Output (corrected) image that has the same size and type as src .
	/// * cameraMatrix: Input camera matrix ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) .
	/// * distCoeffs: Input vector of distortion coefficients
	/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5B%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5B%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%5D%5D%5D%5D%29)
	/// of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
	/// * newCameraMatrix: Camera matrix of the distorted image. By default, it is the same as
	/// cameraMatrix but you may additionally scale and shift the result by using a different matrix.
	///
	/// ## C++ default parameters
	/// * new_camera_matrix: noArray()
	#[inline]
	pub fn undistort(src: &impl ToInputArray, dst: &mut impl ToOutputArray, camera_matrix: &impl ToInputArray, dist_coeffs: &impl ToInputArray, new_camera_matrix: &impl ToInputArray) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_array_arg!(new_camera_matrix);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_undistort_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), new_camera_matrix.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
	///
	/// ## Note
	/// This alternative version of [validate_disparity] function uses the following default values for its arguments:
	/// * disp12_max_disp: 1
	#[inline]
	pub fn validate_disparity_def(disparity: &mut impl ToInputOutputArray, cost: &impl ToInputArray, min_disparity: i32, number_of_disparities: i32) -> Result<()> {
		input_output_array_arg!(disparity);
		input_array_arg!(cost);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_validateDisparity_const__InputOutputArrayR_const__InputArrayR_int_int(disparity.as_raw__InputOutputArray(), cost.as_raw__InputArray(), min_disparity, number_of_disparities, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	/// validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
	///
	/// ## C++ default parameters
	/// * disp12_max_disp: 1
	#[inline]
	pub fn validate_disparity(disparity: &mut impl ToInputOutputArray, cost: &impl ToInputArray, min_disparity: i32, number_of_disparities: i32, disp12_max_disp: i32) -> Result<()> {
		input_output_array_arg!(disparity);
		input_array_arg!(cost);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_validateDisparity_const__InputOutputArrayR_const__InputArrayR_int_int_int(disparity.as_raw__InputOutputArray(), cost.as_raw__InputArray(), min_disparity, number_of_disparities, disp12_max_disp, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq)]
	pub struct CirclesGridFinderParameters {
		pub density_neighborhood_size: core::Size2f,
		pub min_density: f32,
		pub kmeans_attempts: i32,
		pub min_distance_to_add_keypoint: i32,
		pub keypoint_scale: i32,
		pub min_graph_confidence: f32,
		pub vertex_gain: f32,
		pub vertex_penalty: f32,
		pub existing_vertex_gain: f32,
		pub edge_gain: f32,
		pub edge_penalty: f32,
		pub convex_hull_factor: f32,
		pub min_rng_edge_switch_dist: f32,
		pub grid_type: crate::calib3d::CirclesGridFinderParameters_GridType,
		/// Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
		pub square_size: f32,
		/// Max deviation from prediction. Used by CALIB_CB_CLUSTERING.
		pub max_rectified_distance: f32,
	}

	opencv_type_simple! { crate::calib3d::CirclesGridFinderParameters }

	impl CirclesGridFinderParameters {
		#[inline]
		pub fn default() -> Result<crate::calib3d::CirclesGridFinderParameters> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_CirclesGridFinderParameters_CirclesGridFinderParameters(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Levenberg-Marquardt solver. Starting with the specified vector of parameters it
	/// optimizes the target vector criteria "err"
	/// (finds local minima of each target vector component absolute value).
	///
	/// When needed, it calls user-provided callback.
	pub struct LMSolver {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { LMSolver }

	impl Drop for LMSolver {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_LMSolver_delete(self.as_raw_mut_LMSolver()) };
		}
	}

	unsafe impl Send for LMSolver {}

	impl LMSolver {
		/// Creates Levenberg-Marquard solver
		///
		/// ## Parameters
		/// * cb: callback
		/// * maxIters: maximum number of iterations that can be further
		///   modified using setMaxIters() method.
		#[inline]
		pub fn create(cb: &core::Ptr<crate::calib3d::LMSolver_Callback>, max_iters: i32) -> Result<core::Ptr<crate::calib3d::LMSolver>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_LMSolver_create_const_PtrLCallbackGR_int(cb.as_raw_PtrOfLMSolver_Callback(), max_iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::calib3d::LMSolver>::opencv_from_extern(ret) };
			Ok(ret)
		}

		#[inline]
		pub fn create_ext(cb: &core::Ptr<crate::calib3d::LMSolver_Callback>, max_iters: i32, eps: f64) -> Result<core::Ptr<crate::calib3d::LMSolver>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_LMSolver_create_const_PtrLCallbackGR_int_double(cb.as_raw_PtrOfLMSolver_Callback(), max_iters, eps, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::calib3d::LMSolver>::opencv_from_extern(ret) };
			Ok(ret)
		}

	}

	/// Constant methods for [crate::calib3d::LMSolver]
	pub trait LMSolverTraitConst: core::AlgorithmTraitConst {
		fn as_raw_LMSolver(&self) -> *const c_void;

		/// Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point.
		/// The final vector of parameters (whether the algorithm converged or not) is stored at the same
		/// vector. The method returns the number of iterations used. If it's equal to the previously specified
		/// maxIters, there is a big chance the algorithm did not converge.
		///
		/// ## Parameters
		/// * param: initial/final vector of parameters.
		///
		/// Note that the dimensionality of parameter space is defined by the size of param vector,
		/// and the dimensionality of optimized criteria is defined by the size of err vector
		/// computed by the callback.
		#[inline]
		fn run(&self, param: &mut impl ToInputOutputArray) -> Result<i32> {
			input_output_array_arg!(param);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_LMSolver_run_const_const__InputOutputArrayR(self.as_raw_LMSolver(), param.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Retrieves the current maximum number of iterations
		#[inline]
		fn get_max_iters(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_LMSolver_getMaxIters_const(self.as_raw_LMSolver(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::calib3d::LMSolver]
	pub trait LMSolverTrait: core::AlgorithmTrait + crate::calib3d::LMSolverTraitConst {
		fn as_raw_mut_LMSolver(&mut self) -> *mut c_void;

		/// Sets the maximum number of iterations
		/// ## Parameters
		/// * maxIters: the number of iterations
		#[inline]
		fn set_max_iters(&mut self, max_iters: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_LMSolver_setMaxIters_int(self.as_raw_mut_LMSolver(), max_iters, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for LMSolver {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("LMSolver")
				.finish()
		}
	}

	boxed_cast_base! { LMSolver, core::Algorithm, cv_LMSolver_to_Algorithm }

	impl core::AlgorithmTraitConst for LMSolver {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for LMSolver {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { LMSolver, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::calib3d::LMSolverTraitConst for LMSolver {
		#[inline] fn as_raw_LMSolver(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::LMSolverTrait for LMSolver {
		#[inline] fn as_raw_mut_LMSolver(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { LMSolver, crate::calib3d::LMSolverTraitConst, as_raw_LMSolver, crate::calib3d::LMSolverTrait, as_raw_mut_LMSolver }

	pub struct LMSolver_Callback {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { LMSolver_Callback }

	impl Drop for LMSolver_Callback {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_LMSolver_Callback_delete(self.as_raw_mut_LMSolver_Callback()) };
		}
	}

	unsafe impl Send for LMSolver_Callback {}

	/// Constant methods for [crate::calib3d::LMSolver_Callback]
	pub trait LMSolver_CallbackTraitConst {
		fn as_raw_LMSolver_Callback(&self) -> *const c_void;

		/// computes error and Jacobian for the specified vector of parameters
		///
		/// ## Parameters
		/// * param: the current vector of parameters
		/// * err: output vector of errors: err_i = actual_f_i - ideal_f_i
		/// * J: output Jacobian: J_ij = d(ideal_f_i)/d(param_j)
		///
		/// when J=noArray(), it means that it does not need to be computed.
		/// Dimensionality of error vector and param vector can be different.
		/// The callback should explicitly allocate (with "create" method) each output array
		/// (unless it's noArray()).
		#[inline]
		fn compute(&self, param: &impl ToInputArray, err: &mut impl ToOutputArray, j: &mut impl ToOutputArray) -> Result<bool> {
			input_array_arg!(param);
			output_array_arg!(err);
			output_array_arg!(j);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_LMSolver_Callback_compute_const_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_LMSolver_Callback(), param.as_raw__InputArray(), err.as_raw__OutputArray(), j.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::calib3d::LMSolver_Callback]
	pub trait LMSolver_CallbackTrait: crate::calib3d::LMSolver_CallbackTraitConst {
		fn as_raw_mut_LMSolver_Callback(&mut self) -> *mut c_void;

	}

	impl std::fmt::Debug for LMSolver_Callback {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("LMSolver_Callback")
				.finish()
		}
	}

	impl crate::calib3d::LMSolver_CallbackTraitConst for LMSolver_Callback {
		#[inline] fn as_raw_LMSolver_Callback(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::LMSolver_CallbackTrait for LMSolver_Callback {
		#[inline] fn as_raw_mut_LMSolver_Callback(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { LMSolver_Callback, crate::calib3d::LMSolver_CallbackTraitConst, as_raw_LMSolver_Callback, crate::calib3d::LMSolver_CallbackTrait, as_raw_mut_LMSolver_Callback }

	/// Class for computing stereo correspondence using the block matching algorithm, introduced and
	/// contributed to OpenCV by K. Konolige.
	pub struct StereoBM {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { StereoBM }

	impl Drop for StereoBM {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_StereoBM_delete(self.as_raw_mut_StereoBM()) };
		}
	}

	unsafe impl Send for StereoBM {}

	impl StereoBM {
		/// Creates StereoBM object
		///
		/// ## Parameters
		/// * numDisparities: the disparity search range. For each pixel algorithm will find the best
		/// disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
		/// shifted by changing the minimum disparity.
		/// * blockSize: the linear size of the blocks compared by the algorithm. The size should be odd
		/// (as the block is centered at the current pixel). Larger block size implies smoother, though less
		/// accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
		/// chance for algorithm to find a wrong correspondence.
		///
		/// The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
		/// a specific stereo pair.
		///
		/// ## C++ default parameters
		/// * num_disparities: 0
		/// * block_size: 21
		#[inline]
		pub fn create(num_disparities: i32, block_size: i32) -> Result<core::Ptr<crate::calib3d::StereoBM>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_create_int_int(num_disparities, block_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::calib3d::StereoBM>::opencv_from_extern(ret) };
			Ok(ret)
		}

		/// Creates StereoBM object
		///
		/// ## Parameters
		/// * numDisparities: the disparity search range. For each pixel algorithm will find the best
		/// disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
		/// shifted by changing the minimum disparity.
		/// * blockSize: the linear size of the blocks compared by the algorithm. The size should be odd
		/// (as the block is centered at the current pixel). Larger block size implies smoother, though less
		/// accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
		/// chance for algorithm to find a wrong correspondence.
		///
		/// The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
		/// a specific stereo pair.
		///
		/// ## Note
		/// This alternative version of [StereoBM::create] function uses the following default values for its arguments:
		/// * num_disparities: 0
		/// * block_size: 21
		#[inline]
		pub fn create_def() -> Result<core::Ptr<crate::calib3d::StereoBM>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::calib3d::StereoBM>::opencv_from_extern(ret) };
			Ok(ret)
		}

	}

	/// Constant methods for [crate::calib3d::StereoBM]
	pub trait StereoBMTraitConst: crate::calib3d::StereoMatcherTraitConst {
		fn as_raw_StereoBM(&self) -> *const c_void;

		#[inline]
		fn get_pre_filter_type(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getPreFilterType_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_pre_filter_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getPreFilterSize_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_pre_filter_cap(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getPreFilterCap_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_texture_threshold(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getTextureThreshold_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_uniqueness_ratio(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getUniquenessRatio_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_smaller_block_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getSmallerBlockSize_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_roi1(&self) -> Result<core::Rect> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getROI1_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_roi2(&self) -> Result<core::Rect> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_getROI2_const(self.as_raw_StereoBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::calib3d::StereoBM]
	pub trait StereoBMTrait: crate::calib3d::StereoBMTraitConst + crate::calib3d::StereoMatcherTrait {
		fn as_raw_mut_StereoBM(&mut self) -> *mut c_void;

		#[inline]
		fn set_pre_filter_type(&mut self, pre_filter_type: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setPreFilterType_int(self.as_raw_mut_StereoBM(), pre_filter_type, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_pre_filter_size(&mut self, pre_filter_size: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setPreFilterSize_int(self.as_raw_mut_StereoBM(), pre_filter_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_pre_filter_cap(&mut self, pre_filter_cap: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setPreFilterCap_int(self.as_raw_mut_StereoBM(), pre_filter_cap, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_texture_threshold(&mut self, texture_threshold: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setTextureThreshold_int(self.as_raw_mut_StereoBM(), texture_threshold, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_uniqueness_ratio(&mut self, uniqueness_ratio: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setUniquenessRatio_int(self.as_raw_mut_StereoBM(), uniqueness_ratio, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_smaller_block_size(&mut self, block_size: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setSmallerBlockSize_int(self.as_raw_mut_StereoBM(), block_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_roi1(&mut self, roi1: core::Rect) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setROI1_Rect(self.as_raw_mut_StereoBM(), &roi1, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_roi2(&mut self, roi2: core::Rect) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoBM_setROI2_Rect(self.as_raw_mut_StereoBM(), &roi2, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for StereoBM {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("StereoBM")
				.finish()
		}
	}

	boxed_cast_base! { StereoBM, core::Algorithm, cv_StereoBM_to_Algorithm }

	boxed_cast_base! { StereoBM, crate::calib3d::StereoMatcher, cv_StereoBM_to_StereoMatcher }

	impl core::AlgorithmTraitConst for StereoBM {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for StereoBM {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoBM, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::calib3d::StereoMatcherTraitConst for StereoBM {
		#[inline] fn as_raw_StereoMatcher(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::StereoMatcherTrait for StereoBM {
		#[inline] fn as_raw_mut_StereoMatcher(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoBM, crate::calib3d::StereoMatcherTraitConst, as_raw_StereoMatcher, crate::calib3d::StereoMatcherTrait, as_raw_mut_StereoMatcher }

	impl crate::calib3d::StereoBMTraitConst for StereoBM {
		#[inline] fn as_raw_StereoBM(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::StereoBMTrait for StereoBM {
		#[inline] fn as_raw_mut_StereoBM(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoBM, crate::calib3d::StereoBMTraitConst, as_raw_StereoBM, crate::calib3d::StereoBMTrait, as_raw_mut_StereoBM }

	/// The base class for stereo correspondence algorithms.
	pub struct StereoMatcher {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { StereoMatcher }

	impl Drop for StereoMatcher {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_StereoMatcher_delete(self.as_raw_mut_StereoMatcher()) };
		}
	}

	unsafe impl Send for StereoMatcher {}

	/// Constant methods for [crate::calib3d::StereoMatcher]
	pub trait StereoMatcherTraitConst: core::AlgorithmTraitConst {
		fn as_raw_StereoMatcher(&self) -> *const c_void;

		#[inline]
		fn get_min_disparity(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_getMinDisparity_const(self.as_raw_StereoMatcher(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_num_disparities(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_getNumDisparities_const(self.as_raw_StereoMatcher(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_block_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_getBlockSize_const(self.as_raw_StereoMatcher(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_speckle_window_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_getSpeckleWindowSize_const(self.as_raw_StereoMatcher(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_speckle_range(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_getSpeckleRange_const(self.as_raw_StereoMatcher(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_disp12_max_diff(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_getDisp12MaxDiff_const(self.as_raw_StereoMatcher(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::calib3d::StereoMatcher]
	pub trait StereoMatcherTrait: core::AlgorithmTrait + crate::calib3d::StereoMatcherTraitConst {
		fn as_raw_mut_StereoMatcher(&mut self) -> *mut c_void;

		/// Computes disparity map for the specified stereo pair
		///
		/// ## Parameters
		/// * left: Left 8-bit single-channel image.
		/// * right: Right image of the same size and the same type as the left one.
		/// * disparity: Output disparity map. It has the same size as the input images. Some algorithms,
		/// like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
		/// has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
		#[inline]
		fn compute(&mut self, left: &impl ToInputArray, right: &impl ToInputArray, disparity: &mut impl ToOutputArray) -> Result<()> {
			input_array_arg!(left);
			input_array_arg!(right);
			output_array_arg!(disparity);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_compute_const__InputArrayR_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_StereoMatcher(), left.as_raw__InputArray(), right.as_raw__InputArray(), disparity.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_min_disparity(&mut self, min_disparity: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_setMinDisparity_int(self.as_raw_mut_StereoMatcher(), min_disparity, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_num_disparities(&mut self, num_disparities: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_setNumDisparities_int(self.as_raw_mut_StereoMatcher(), num_disparities, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_block_size(&mut self, block_size: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_setBlockSize_int(self.as_raw_mut_StereoMatcher(), block_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_speckle_window_size(&mut self, speckle_window_size: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_setSpeckleWindowSize_int(self.as_raw_mut_StereoMatcher(), speckle_window_size, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_speckle_range(&mut self, speckle_range: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_setSpeckleRange_int(self.as_raw_mut_StereoMatcher(), speckle_range, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_disp12_max_diff(&mut self, disp12_max_diff: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoMatcher_setDisp12MaxDiff_int(self.as_raw_mut_StereoMatcher(), disp12_max_diff, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for StereoMatcher {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("StereoMatcher")
				.finish()
		}
	}

	boxed_cast_base! { StereoMatcher, core::Algorithm, cv_StereoMatcher_to_Algorithm }

	boxed_cast_descendant! { StereoMatcher, crate::calib3d::StereoBM, cv_StereoMatcher_to_StereoBM }

	boxed_cast_descendant! { StereoMatcher, crate::calib3d::StereoSGBM, cv_StereoMatcher_to_StereoSGBM }

	impl core::AlgorithmTraitConst for StereoMatcher {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for StereoMatcher {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoMatcher, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::calib3d::StereoMatcherTraitConst for StereoMatcher {
		#[inline] fn as_raw_StereoMatcher(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::StereoMatcherTrait for StereoMatcher {
		#[inline] fn as_raw_mut_StereoMatcher(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoMatcher, crate::calib3d::StereoMatcherTraitConst, as_raw_StereoMatcher, crate::calib3d::StereoMatcherTrait, as_raw_mut_StereoMatcher }

	/// The class implements the modified H. Hirschmuller algorithm [HH08](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_HH08) that differs from the original
	/// one as follows:
	///
	/// *   By default, the algorithm is single-pass, which means that you consider only 5 directions
	/// instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
	/// algorithm but beware that it may consume a lot of memory.
	/// *   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
	/// blocks to single pixels.
	/// *   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
	/// sub-pixel metric from [BT98](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_BT98) is used. Though, the color images are supported as well.
	/// *   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
	/// example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
	/// check, quadratic interpolation and speckle filtering).
	///
	///
	/// Note:
	///    *   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
	///        at opencv_source_code/samples/python/stereo_match.py
	pub struct StereoSGBM {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { StereoSGBM }

	impl Drop for StereoSGBM {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_StereoSGBM_delete(self.as_raw_mut_StereoSGBM()) };
		}
	}

	unsafe impl Send for StereoSGBM {}

	impl StereoSGBM {
		/// Creates StereoSGBM object
		///
		/// ## Parameters
		/// * minDisparity: Minimum possible disparity value. Normally, it is zero but sometimes
		/// rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
		/// * numDisparities: Maximum disparity minus minimum disparity. The value is always greater than
		/// zero. In the current implementation, this parameter must be divisible by 16.
		/// * blockSize: Matched block size. It must be an odd number \>=1 . Normally, it should be
		/// somewhere in the 3..11 range.
		/// * P1: The first parameter controlling the disparity smoothness. See below.
		/// * P2: The second parameter controlling the disparity smoothness. The larger the values are,
		/// the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
		/// between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
		/// pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
		/// P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
		/// 32\*number_of_image_channels\*blockSize\*blockSize , respectively).
		/// * disp12MaxDiff: Maximum allowed difference (in integer pixel units) in the left-right
		/// disparity check. Set it to a non-positive value to disable the check.
		/// * preFilterCap: Truncation value for the prefiltered image pixels. The algorithm first
		/// computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
		/// The result values are passed to the Birchfield-Tomasi pixel cost function.
		/// * uniquenessRatio: Margin in percentage by which the best (minimum) computed cost function
		/// value should "win" the second best value to consider the found match correct. Normally, a value
		/// within the 5-15 range is good enough.
		/// * speckleWindowSize: Maximum size of smooth disparity regions to consider their noise speckles
		/// and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
		/// 50-200 range.
		/// * speckleRange: Maximum disparity variation within each connected component. If you do speckle
		/// filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
		/// Normally, 1 or 2 is good enough.
		/// * mode: Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
		/// algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
		/// huge for HD-size pictures. By default, it is set to false .
		///
		/// The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
		/// set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
		/// to a custom value.
		///
		/// ## C++ default parameters
		/// * min_disparity: 0
		/// * num_disparities: 16
		/// * block_size: 3
		/// * p1: 0
		/// * p2: 0
		/// * disp12_max_diff: 0
		/// * pre_filter_cap: 0
		/// * uniqueness_ratio: 0
		/// * speckle_window_size: 0
		/// * speckle_range: 0
		/// * mode: StereoSGBM::MODE_SGBM
		#[inline]
		pub fn create(min_disparity: i32, num_disparities: i32, block_size: i32, p1: i32, p2: i32, disp12_max_diff: i32, pre_filter_cap: i32, uniqueness_ratio: i32, speckle_window_size: i32, speckle_range: i32, mode: i32) -> Result<core::Ptr<crate::calib3d::StereoSGBM>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_create_int_int_int_int_int_int_int_int_int_int_int(min_disparity, num_disparities, block_size, p1, p2, disp12_max_diff, pre_filter_cap, uniqueness_ratio, speckle_window_size, speckle_range, mode, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::calib3d::StereoSGBM>::opencv_from_extern(ret) };
			Ok(ret)
		}

		/// Creates StereoSGBM object
		///
		/// ## Parameters
		/// * minDisparity: Minimum possible disparity value. Normally, it is zero but sometimes
		/// rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
		/// * numDisparities: Maximum disparity minus minimum disparity. The value is always greater than
		/// zero. In the current implementation, this parameter must be divisible by 16.
		/// * blockSize: Matched block size. It must be an odd number \>=1 . Normally, it should be
		/// somewhere in the 3..11 range.
		/// * P1: The first parameter controlling the disparity smoothness. See below.
		/// * P2: The second parameter controlling the disparity smoothness. The larger the values are,
		/// the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
		/// between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
		/// pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
		/// P1 and P2 values are shown (like 8\*number_of_image_channels\*blockSize\*blockSize and
		/// 32\*number_of_image_channels\*blockSize\*blockSize , respectively).
		/// * disp12MaxDiff: Maximum allowed difference (in integer pixel units) in the left-right
		/// disparity check. Set it to a non-positive value to disable the check.
		/// * preFilterCap: Truncation value for the prefiltered image pixels. The algorithm first
		/// computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
		/// The result values are passed to the Birchfield-Tomasi pixel cost function.
		/// * uniquenessRatio: Margin in percentage by which the best (minimum) computed cost function
		/// value should "win" the second best value to consider the found match correct. Normally, a value
		/// within the 5-15 range is good enough.
		/// * speckleWindowSize: Maximum size of smooth disparity regions to consider their noise speckles
		/// and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
		/// 50-200 range.
		/// * speckleRange: Maximum disparity variation within each connected component. If you do speckle
		/// filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
		/// Normally, 1 or 2 is good enough.
		/// * mode: Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
		/// algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
		/// huge for HD-size pictures. By default, it is set to false .
		///
		/// The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
		/// set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
		/// to a custom value.
		///
		/// ## Note
		/// This alternative version of [StereoSGBM::create] function uses the following default values for its arguments:
		/// * min_disparity: 0
		/// * num_disparities: 16
		/// * block_size: 3
		/// * p1: 0
		/// * p2: 0
		/// * disp12_max_diff: 0
		/// * pre_filter_cap: 0
		/// * uniqueness_ratio: 0
		/// * speckle_window_size: 0
		/// * speckle_range: 0
		/// * mode: StereoSGBM::MODE_SGBM
		#[inline]
		pub fn create_def() -> Result<core::Ptr<crate::calib3d::StereoSGBM>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::calib3d::StereoSGBM>::opencv_from_extern(ret) };
			Ok(ret)
		}

	}

	/// Constant methods for [crate::calib3d::StereoSGBM]
	pub trait StereoSGBMTraitConst: crate::calib3d::StereoMatcherTraitConst {
		fn as_raw_StereoSGBM(&self) -> *const c_void;

		#[inline]
		fn get_pre_filter_cap(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_getPreFilterCap_const(self.as_raw_StereoSGBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_uniqueness_ratio(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_getUniquenessRatio_const(self.as_raw_StereoSGBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_p1(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_getP1_const(self.as_raw_StereoSGBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_p2(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_getP2_const(self.as_raw_StereoSGBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn get_mode(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_getMode_const(self.as_raw_StereoSGBM(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::calib3d::StereoSGBM]
	pub trait StereoSGBMTrait: crate::calib3d::StereoMatcherTrait + crate::calib3d::StereoSGBMTraitConst {
		fn as_raw_mut_StereoSGBM(&mut self) -> *mut c_void;

		#[inline]
		fn set_pre_filter_cap(&mut self, pre_filter_cap: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_setPreFilterCap_int(self.as_raw_mut_StereoSGBM(), pre_filter_cap, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_uniqueness_ratio(&mut self, uniqueness_ratio: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_setUniquenessRatio_int(self.as_raw_mut_StereoSGBM(), uniqueness_ratio, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_p1(&mut self, p1: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_setP1_int(self.as_raw_mut_StereoSGBM(), p1, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_p2(&mut self, p2: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_setP2_int(self.as_raw_mut_StereoSGBM(), p2, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn set_mode(&mut self, mode: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_StereoSGBM_setMode_int(self.as_raw_mut_StereoSGBM(), mode, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for StereoSGBM {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("StereoSGBM")
				.finish()
		}
	}

	boxed_cast_base! { StereoSGBM, core::Algorithm, cv_StereoSGBM_to_Algorithm }

	boxed_cast_base! { StereoSGBM, crate::calib3d::StereoMatcher, cv_StereoSGBM_to_StereoMatcher }

	impl core::AlgorithmTraitConst for StereoSGBM {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}

	impl core::AlgorithmTrait for StereoSGBM {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoSGBM, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }

	impl crate::calib3d::StereoMatcherTraitConst for StereoSGBM {
		#[inline] fn as_raw_StereoMatcher(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::StereoMatcherTrait for StereoSGBM {
		#[inline] fn as_raw_mut_StereoMatcher(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoSGBM, crate::calib3d::StereoMatcherTraitConst, as_raw_StereoMatcher, crate::calib3d::StereoMatcherTrait, as_raw_mut_StereoMatcher }

	impl crate::calib3d::StereoSGBMTraitConst for StereoSGBM {
		#[inline] fn as_raw_StereoSGBM(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::calib3d::StereoSGBMTrait for StereoSGBM {
		#[inline] fn as_raw_mut_StereoSGBM(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { StereoSGBM, crate::calib3d::StereoSGBMTraitConst, as_raw_StereoSGBM, crate::calib3d::StereoSGBMTrait, as_raw_mut_StereoSGBM }

	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq)]
	pub struct UsacParams {
		pub confidence: f64,
		pub is_parallel: bool,
		pub lo_iterations: i32,
		pub lo_method: crate::calib3d::LocalOptimMethod,
		pub lo_sample_size: i32,
		pub max_iterations: i32,
		pub neighbors_search: crate::calib3d::NeighborSearchMethod,
		pub random_generator_state: i32,
		pub sampler: crate::calib3d::SamplingMethod,
		pub score: crate::calib3d::ScoreMethod,
		pub threshold: f64,
		pub final_polisher: crate::calib3d::PolishingMethod,
		pub final_polisher_iterations: i32,
	}

	opencv_type_simple! { crate::calib3d::UsacParams }

	impl UsacParams {
		#[inline]
		pub fn default() -> Result<crate::calib3d::UsacParams> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_UsacParams_UsacParams(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

}