opencv 0.94.4

Rust bindings for OpenCV
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
pub mod hdf {
	//! # Hierarchical Data Format I/O routines
	//!
	//! This module provides storage routines for Hierarchical Data Format objects.
	//!    # Hierarchical Data Format version 5
	//!
	//!    Hierarchical Data Format version 5
	//!    --------------------------------------------------------
	//!
	//!    In order to use it, the hdf5 library has to be installed, which
	//!    means cmake should find it using `find_package(HDF5)`.
	use crate::mod_prelude::*;
	use crate::{core, sys, types};
	pub mod prelude {
		pub use super::{HDF5Trait, HDF5TraitConst};
	}

	/// Get the chunk sizes of a dataset. see also: dsgetsize()
	pub const HDF5_H5_GETCHUNKDIMS: i32 = 102;
	/// Get the dimension information of a dataset. see also: dsgetsize()
	pub const HDF5_H5_GETDIMS: i32 = 100;
	/// Get the maximum dimension information of a dataset. see also: dsgetsize()
	pub const HDF5_H5_GETMAXDIMS: i32 = 101;
	/// No compression, see also: dscreate()
	pub const HDF5_H5_NONE: i32 = -1;
	/// The dimension size is unlimited, see also: dscreate()
	pub const HDF5_H5_UNLIMITED: i32 = -1;
	/// Open or create hdf5 file
	/// ## Parameters
	/// * HDF5Filename: specify the HDF5 filename.
	///
	/// Returns a pointer to the hdf5 object class
	///
	///
	/// Note: If the specified file does not exist, it will be created using default properties.
	/// Otherwise, it is opened in read and write mode with default access properties.
	/// Any operations except dscreate() functions on object
	/// will be thread safe. Multiple datasets can be created inside a single hdf5 file, and can be accessed
	/// from the same hdf5 object from multiple instances as long read or write operations are done over
	/// non-overlapping regions of dataset. Single hdf5 file also can be opened by multiple instances,
	/// reads and writes can be instantiated at the same time as long as non-overlapping regions are involved. Object
	/// is released using close().
	///
	/// - Example below opens and then releases the file.
	/// ```C++
	///   // open / auto create hdf5 file
	///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
	///   // ...
	///   // release
	///   h5io->close();
	/// ```
	///
	///
	/// ![Visualization of 10x10 CV_64FC2 (Hilbert matrix) using HDFView tool](https://docs.opencv.org/4.11.0/hdfview_demo.gif)
	///
	/// - Text dump (3x3 Hilbert matrix) of hdf5 dataset using **h5dump** tool:
	/// ```C++
	/// $ h5dump test.h5
	/// HDF5 "test.h5" {
	/// GROUP "/" {
	///    DATASET "hilbert" {
	///       DATATYPE  H5T_ARRAY { [2] H5T_IEEE_F64LE }
	///       DATASPACE  SIMPLE { ( 3, 3 ) / ( 3, 3 ) }
	///       DATA {
	///       (0,0): [ 1, -1 ], [ 0.5, -0.5 ], [ 0.333333, -0.333333 ],
	///       (1,0): [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], [ 0.25, -0.25 ],
	///       (2,0): [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], [ 0.2, -0.2 ]
	///       }
	///    }
	/// }
	/// }
	/// ```
	///
	#[inline]
	pub fn open(hdf5_filename: &str) -> Result<core::Ptr<crate::hdf::HDF5>> {
		extern_container_arg!(hdf5_filename);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_hdf_open_const_StringR(hdf5_filename.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::hdf::HDF5>::opencv_from_extern(ret) };
		Ok(ret)
	}

	/// Hierarchical Data Format version 5 interface.
	///
	/// Notice that this module is compiled only when hdf5 is correctly installed.
	pub struct HDF5 {
		ptr: *mut c_void,
	}

	opencv_type_boxed! { HDF5 }

	impl Drop for HDF5 {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_hdf_HDF5_delete(self.as_raw_mut_HDF5()) };
		}
	}

	unsafe impl Send for HDF5 {}

	/// Constant methods for [crate::hdf::HDF5]
	pub trait HDF5TraitConst {
		fn as_raw_HDF5(&self) -> *const c_void;

		/// Check if label exists or not.
		/// ## Parameters
		/// * label: specify the hdf5 dataset label.
		///
		/// Returns **true** if dataset exists, and **false** otherwise.
		///
		///
		/// Note: Checks if dataset, group or other object type (hdf5 link) exists under the label name. It is thread safe.
		#[inline]
		fn hlexists(&self, label: &str) -> Result<bool> {
			extern_container_arg!(label);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_hlexists_const_const_StringR(self.as_raw_HDF5(), label.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Check whether a given attribute exits or not in the root group.
		///
		/// ## Parameters
		/// * atlabel: the attribute name to be checked.
		/// ## Returns
		/// true if the attribute exists, false otherwise.
		/// ## See also
		/// atdelete, atwrite, atread
		#[inline]
		fn atexists(&self, atlabel: &str) -> Result<bool> {
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atexists_const_const_StringR(self.as_raw_HDF5(), atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create and allocate storage for two dimensional single or multi channel dataset.
		/// ## Parameters
		/// * rows: declare amount of rows
		/// * cols: declare amount of columns
		/// * type: type to be used, e.g, CV_8UC3, CV_32FC1 and etc.
		/// * dslabel: specify the hdf5 dataset label. Existing dataset label will cause an error.
		/// * compresslevel: specify the compression level 0-9 to be used, H5_NONE is the default value and means no compression.
		///                      The value 0 also means no compression.
		///                      A value 9 indicating the best compression ration. Note
		///                      that a higher compression level indicates a higher computational cost. It relies
		///                      on GNU gzip for compression.
		/// * dims_chunks: each array member specifies the chunking size to be used for block I/O,
		///        by default NULL means none at all.
		///
		///
		/// Note: If the dataset already exists, an exception will be thrown (CV_Error() is called).
		///
		/// - Existence of the dataset can be checked using hlexists(), see in this example:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create space for 100x50 CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "hilbert" ) )
		///    h5io->dscreate( 100, 50, CV_64FC2, "hilbert" );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: Activating compression requires internal chunking. Chunking can significantly improve access
		/// speed both at read and write time, especially for windowed access logic that shifts offset inside dataset.
		/// If no custom chunking is specified, the default one will be invoked by the size of the **whole** dataset
		/// as a single big chunk of data.
		///
		/// - See example of level 9 compression using internal default chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create level 9 compressed space for CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "hilbert", 9 ) )
		///    h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: A value of H5_UNLIMITED for **rows** or **cols** or both means **unlimited** data on the specified dimension,
		/// thus, it is possible to expand anytime such a dataset on row, col or on both directions. Presence of H5_UNLIMITED on any
		/// dimension **requires** to define custom chunking. No default chunking will be defined in the unlimited scenario since
		/// default size on that dimension will be zero, and will grow once dataset is written. Writing into a dataset that has
		/// H5_UNLIMITED on some of its dimensions requires dsinsert() that allows growth on unlimited dimensions, instead of dswrite()
		/// that allows to write only in predefined data space.
		///
		/// - Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create level 9 compressed space for CV_64FC2 matrix
		///   int chunks[2] = { 100, 100 };
		///   h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: It is **not** thread safe, it must be called only once at dataset creation, otherwise an exception will occur.
		/// Multiple datasets inside a single hdf5 file are allowed.
		///
		/// ## Overloaded parameters
		#[inline]
		fn dscreate(&self, rows: i32, cols: i32, typ: i32, dslabel: &str) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_int_const_int_const_int_const_StringR(self.as_raw_HDF5(), rows, cols, typ, dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create and allocate storage for two dimensional single or multi channel dataset.
		/// ## Parameters
		/// * rows: declare amount of rows
		/// * cols: declare amount of columns
		/// * type: type to be used, e.g, CV_8UC3, CV_32FC1 and etc.
		/// * dslabel: specify the hdf5 dataset label. Existing dataset label will cause an error.
		/// * compresslevel: specify the compression level 0-9 to be used, H5_NONE is the default value and means no compression.
		///                      The value 0 also means no compression.
		///                      A value 9 indicating the best compression ration. Note
		///                      that a higher compression level indicates a higher computational cost. It relies
		///                      on GNU gzip for compression.
		/// * dims_chunks: each array member specifies the chunking size to be used for block I/O,
		///        by default NULL means none at all.
		///
		///
		/// Note: If the dataset already exists, an exception will be thrown (CV_Error() is called).
		///
		/// - Existence of the dataset can be checked using hlexists(), see in this example:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create space for 100x50 CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "hilbert" ) )
		///    h5io->dscreate( 100, 50, CV_64FC2, "hilbert" );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: Activating compression requires internal chunking. Chunking can significantly improve access
		/// speed both at read and write time, especially for windowed access logic that shifts offset inside dataset.
		/// If no custom chunking is specified, the default one will be invoked by the size of the **whole** dataset
		/// as a single big chunk of data.
		///
		/// - See example of level 9 compression using internal default chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create level 9 compressed space for CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "hilbert", 9 ) )
		///    h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: A value of H5_UNLIMITED for **rows** or **cols** or both means **unlimited** data on the specified dimension,
		/// thus, it is possible to expand anytime such a dataset on row, col or on both directions. Presence of H5_UNLIMITED on any
		/// dimension **requires** to define custom chunking. No default chunking will be defined in the unlimited scenario since
		/// default size on that dimension will be zero, and will grow once dataset is written. Writing into a dataset that has
		/// H5_UNLIMITED on some of its dimensions requires dsinsert() that allows growth on unlimited dimensions, instead of dswrite()
		/// that allows to write only in predefined data space.
		///
		/// - Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create level 9 compressed space for CV_64FC2 matrix
		///   int chunks[2] = { 100, 100 };
		///   h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: It is **not** thread safe, it must be called only once at dataset creation, otherwise an exception will occur.
		/// Multiple datasets inside a single hdf5 file are allowed.
		///
		/// ## Overloaded parameters
		#[inline]
		fn dscreate_compress(&self, rows: i32, cols: i32, typ: i32, dslabel: &str, compresslevel: i32) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_int_const_int_const_int_const_StringR_const_int(self.as_raw_HDF5(), rows, cols, typ, dslabel.opencv_as_extern(), compresslevel, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create and allocate storage for two dimensional single or multi channel dataset.
		/// ## Parameters
		/// * rows: declare amount of rows
		/// * cols: declare amount of columns
		/// * type: type to be used, e.g, CV_8UC3, CV_32FC1 and etc.
		/// * dslabel: specify the hdf5 dataset label. Existing dataset label will cause an error.
		/// * compresslevel: specify the compression level 0-9 to be used, H5_NONE is the default value and means no compression.
		///                      The value 0 also means no compression.
		///                      A value 9 indicating the best compression ration. Note
		///                      that a higher compression level indicates a higher computational cost. It relies
		///                      on GNU gzip for compression.
		/// * dims_chunks: each array member specifies the chunking size to be used for block I/O,
		///        by default NULL means none at all.
		///
		///
		/// Note: If the dataset already exists, an exception will be thrown (CV_Error() is called).
		///
		/// - Existence of the dataset can be checked using hlexists(), see in this example:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create space for 100x50 CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "hilbert" ) )
		///    h5io->dscreate( 100, 50, CV_64FC2, "hilbert" );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: Activating compression requires internal chunking. Chunking can significantly improve access
		/// speed both at read and write time, especially for windowed access logic that shifts offset inside dataset.
		/// If no custom chunking is specified, the default one will be invoked by the size of the **whole** dataset
		/// as a single big chunk of data.
		///
		/// - See example of level 9 compression using internal default chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create level 9 compressed space for CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "hilbert", 9 ) )
		///    h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: A value of H5_UNLIMITED for **rows** or **cols** or both means **unlimited** data on the specified dimension,
		/// thus, it is possible to expand anytime such a dataset on row, col or on both directions. Presence of H5_UNLIMITED on any
		/// dimension **requires** to define custom chunking. No default chunking will be defined in the unlimited scenario since
		/// default size on that dimension will be zero, and will grow once dataset is written. Writing into a dataset that has
		/// H5_UNLIMITED on some of its dimensions requires dsinsert() that allows growth on unlimited dimensions, instead of dswrite()
		/// that allows to write only in predefined data space.
		///
		/// - Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create level 9 compressed space for CV_64FC2 matrix
		///   int chunks[2] = { 100, 100 };
		///   h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: It is **not** thread safe, it must be called only once at dataset creation, otherwise an exception will occur.
		/// Multiple datasets inside a single hdf5 file are allowed.
		///
		/// ## Overloaded parameters
		#[inline]
		fn dscreate_compress_dims(&self, rows: i32, cols: i32, typ: i32, dslabel: &str, compresslevel: i32, dims_chunks: &core::Vector<i32>) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_int_const_int_const_int_const_StringR_const_int_const_vectorLintGR(self.as_raw_HDF5(), rows, cols, typ, dslabel.opencv_as_extern(), compresslevel, dims_chunks.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn dscreate_nd(&self, sizes: &[i32], typ: i32, dslabel: &str) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_int_const_intX_const_int_const_StringR(self.as_raw_HDF5(), sizes.len().try_into()?, sizes.as_ptr(), typ, dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn dscreate_nd_compress(&self, sizes: &[i32], typ: i32, dslabel: &str, compresslevel: i32) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_int_const_intX_const_int_const_StringR_const_int(self.as_raw_HDF5(), sizes.len().try_into()?, sizes.as_ptr(), typ, dslabel.opencv_as_extern(), compresslevel, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## C++ default parameters
		/// * compresslevel: HDF5::H5_NONE
		/// * dims_chunks: vector<int>()
		#[inline]
		fn dscreate_nd_vec_compress_dims(&self, sizes: &core::Vector<i32>, typ: i32, dslabel: &str, compresslevel: i32, dims_chunks: &core::Vector<i32>) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_vectorLintGR_const_int_const_StringR_const_int_const_vectorLintGR(self.as_raw_HDF5(), sizes.as_raw_VectorOfi32(), typ, dslabel.opencv_as_extern(), compresslevel, dims_chunks.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## Note
		/// This alternative version of [HDF5TraitConst::dscreate_nd_vec_compress_dims] function uses the following default values for its arguments:
		/// * compresslevel: HDF5::H5_NONE
		/// * dims_chunks: vector<int>()
		#[inline]
		fn dscreate_nd_vec_compress_dims_def(&self, sizes: &core::Vector<i32>, typ: i32, dslabel: &str) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_vectorLintGR_const_int_const_StringR(self.as_raw_HDF5(), sizes.as_raw_VectorOfi32(), typ, dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create and allocate storage for n-dimensional dataset, single or multichannel type.
		/// ## Parameters
		/// * n_dims: declare number of dimensions
		/// * sizes: array containing sizes for each dimensions
		/// * type: type to be used, e.g., CV_8UC3, CV_32FC1, etc.
		/// * dslabel: specify the hdf5 dataset label. Existing dataset label will cause an error.
		/// * compresslevel: specify the compression level 0-9 to be used, H5_NONE is the default value and means no compression.
		///                      The value 0 also means no compression.
		///                      A value 9 indicating the best compression ration. Note
		///                      that a higher compression level indicates a higher computational cost. It relies
		///                      on GNU gzip for compression.
		/// * dims_chunks: each array member specifies chunking sizes to be used for block I/O,
		///        by default NULL means none at all.
		///
		/// Note: If the dataset already exists, an exception will be thrown. Existence of the dataset can be checked
		/// using hlexists().
		///
		/// - See example below that creates a 6 dimensional storage space:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create space for 6 dimensional CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "nddata" ) )
		///    int n_dims = 5;
		///    int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 };
		///    h5io->dscreate( n_dims, sizes, CV_64FC2, "nddata" );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: Activating compression requires internal chunking. Chunking can significantly improve access
		/// speed both at read and write time, especially for windowed access logic that shifts offset inside dataset.
		/// If no custom chunking is specified, the default one will be invoked by the size of **whole** dataset
		/// as single big chunk of data.
		///
		/// - See example of level 0 compression (shallow) using chunking against the first
		/// dimension, thus storage will consists of 100 chunks of data:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create space for 6 dimensional CV_64FC2 matrix
		///   if ( ! h5io->hlexists( "nddata" ) )
		///    int n_dims = 5;
		///    int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 };
		///    int chunks[n_dims] = {   1, 100, 20, 10, 5, 5 };
		///    h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", 0, chunks );
		///   else
		///    printf("DS already created, skipping\n" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		///
		/// Note: A value of H5_UNLIMITED inside the **sizes** array means **unlimited** data on that dimension, thus it is
		/// possible to expand anytime such dataset on those unlimited directions. Presence of H5_UNLIMITED on any dimension
		/// **requires** to define custom chunking. No default chunking will be defined in unlimited scenario since the default size
		/// on that dimension will be zero, and will grow once dataset is written. Writing into dataset that has H5_UNLIMITED on
		/// some of its dimension requires dsinsert() instead of dswrite() that allows growth on unlimited dimension instead of
		/// dswrite() that allows to write only in predefined data space.
		///
		/// - Example below shows a 3 dimensional dataset using no compression with all unlimited sizes and one unit chunking:
		/// ```C++
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   int n_dims = 3;
		///   int chunks[n_dims] = { 1, 1, 1 };
		///   int dsdims[n_dims] = { cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED };
		///   h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", cv::hdf::HDF5::H5_NONE, chunks );
		///   // release
		///   h5io->close();
		/// ```
		///
		#[inline]
		fn dscreate_nd_compress_dims(&self, sizes: &[i32], typ: i32, dslabel: &str, compresslevel: i32, dims_chunks: &i32) -> Result<()> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dscreate_const_const_int_const_intX_const_int_const_StringR_const_int_const_intX(self.as_raw_HDF5(), sizes.len().try_into()?, sizes.as_ptr(), typ, dslabel.opencv_as_extern(), compresslevel, dims_chunks, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Fetch dataset sizes
		/// ## Parameters
		/// * dslabel: specify the hdf5 dataset label to be measured.
		/// * dims_flag: will fetch dataset dimensions on H5_GETDIMS, dataset maximum dimensions on H5_GETMAXDIMS,
		///                  and chunk sizes on H5_GETCHUNKDIMS.
		///
		/// Returns vector object containing sizes of dataset on each dimensions.
		///
		///
		/// Note: Resulting vector size will match the amount of dataset dimensions. By default H5_GETDIMS will return
		/// actual dataset dimensions. Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match
		/// actual dataset dimension but can hold H5_UNLIMITED value if dataset was prepared in **unlimited** mode on
		/// some of its dimension. It can be useful to check existing dataset dimensions before overwrite it as whole or subset.
		/// Trying to write with oversized source data into dataset target will thrown exception. The H5_GETCHUNKDIMS will
		/// return the dimension of chunk if dataset was created with chunking options otherwise returned vector size
		/// will be zero.
		///
		/// ## C++ default parameters
		/// * dims_flag: HDF5::H5_GETDIMS
		#[inline]
		fn dsgetsize(&self, dslabel: &str, dims_flag: i32) -> Result<core::Vector<i32>> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsgetsize_const_const_StringR_int(self.as_raw_HDF5(), dslabel.opencv_as_extern(), dims_flag, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Vector::<i32>::opencv_from_extern(ret) };
			Ok(ret)
		}

		/// Fetch dataset sizes
		/// ## Parameters
		/// * dslabel: specify the hdf5 dataset label to be measured.
		/// * dims_flag: will fetch dataset dimensions on H5_GETDIMS, dataset maximum dimensions on H5_GETMAXDIMS,
		///                  and chunk sizes on H5_GETCHUNKDIMS.
		///
		/// Returns vector object containing sizes of dataset on each dimensions.
		///
		///
		/// Note: Resulting vector size will match the amount of dataset dimensions. By default H5_GETDIMS will return
		/// actual dataset dimensions. Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match
		/// actual dataset dimension but can hold H5_UNLIMITED value if dataset was prepared in **unlimited** mode on
		/// some of its dimension. It can be useful to check existing dataset dimensions before overwrite it as whole or subset.
		/// Trying to write with oversized source data into dataset target will thrown exception. The H5_GETCHUNKDIMS will
		/// return the dimension of chunk if dataset was created with chunking options otherwise returned vector size
		/// will be zero.
		///
		/// ## Note
		/// This alternative version of [HDF5TraitConst::dsgetsize] function uses the following default values for its arguments:
		/// * dims_flag: HDF5::H5_GETDIMS
		#[inline]
		fn dsgetsize_def(&self, dslabel: &str) -> Result<core::Vector<i32>> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsgetsize_const_const_StringR(self.as_raw_HDF5(), dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Vector::<i32>::opencv_from_extern(ret) };
			Ok(ret)
		}

		/// Fetch dataset type
		/// ## Parameters
		/// * dslabel: specify the hdf5 dataset label to be checked.
		///
		/// Returns the stored matrix type. This is an identifier compatible with the CvMat type system,
		/// like e.g. CV_16SC5 (16-bit signed 5-channel array), and so on.
		///
		///
		/// Note: Result can be parsed with CV_MAT_CN() to obtain amount of channels and CV_MAT_DEPTH() to obtain native cvdata type.
		/// It is thread safe.
		#[inline]
		fn dsgettype(&self, dslabel: &str) -> Result<i32> {
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsgettype_const_const_StringR(self.as_raw_HDF5(), dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn dswrite(&self, array: &impl ToInputArray, dslabel: &str) -> Result<()> {
			input_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dswrite_const_const__InputArrayR_const_StringR(self.as_raw_HDF5(), array.as_raw__InputArray(), dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## C++ default parameters
		/// * dims_counts: vector<int>()
		#[inline]
		fn dswrite_offset(&self, array: &impl ToInputArray, dslabel: &str, dims_offset: &core::Vector<i32>, dims_counts: &core::Vector<i32>) -> Result<()> {
			input_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dswrite_const_const__InputArrayR_const_StringR_const_vectorLintGR_const_vectorLintGR(self.as_raw_HDF5(), array.as_raw__InputArray(), dslabel.opencv_as_extern(), dims_offset.as_raw_VectorOfi32(), dims_counts.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## Note
		/// This alternative version of [HDF5TraitConst::dswrite_offset] function uses the following default values for its arguments:
		/// * dims_counts: vector<int>()
		#[inline]
		fn dswrite_offset_def(&self, array: &impl ToInputArray, dslabel: &str, dims_offset: &core::Vector<i32>) -> Result<()> {
			input_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dswrite_const_const__InputArrayR_const_StringR_const_vectorLintGR(self.as_raw_HDF5(), array.as_raw__InputArray(), dslabel.opencv_as_extern(), dims_offset.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn dsinsert(&self, array: &impl ToInputArray, dslabel: &str) -> Result<()> {
			input_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsinsert_const_const__InputArrayR_const_StringR(self.as_raw_HDF5(), array.as_raw__InputArray(), dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## C++ default parameters
		/// * dims_counts: vector<int>()
		#[inline]
		fn dsinsert_offset(&self, array: &impl ToInputArray, dslabel: &str, dims_offset: &core::Vector<i32>, dims_counts: &core::Vector<i32>) -> Result<()> {
			input_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsinsert_const_const__InputArrayR_const_StringR_const_vectorLintGR_const_vectorLintGR(self.as_raw_HDF5(), array.as_raw__InputArray(), dslabel.opencv_as_extern(), dims_offset.as_raw_VectorOfi32(), dims_counts.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## Note
		/// This alternative version of [HDF5TraitConst::dsinsert_offset] function uses the following default values for its arguments:
		/// * dims_counts: vector<int>()
		#[inline]
		fn dsinsert_offset_def(&self, array: &impl ToInputArray, dslabel: &str, dims_offset: &core::Vector<i32>) -> Result<()> {
			input_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsinsert_const_const__InputArrayR_const_StringR_const_vectorLintGR(self.as_raw_HDF5(), array.as_raw__InputArray(), dslabel.opencv_as_extern(), dims_offset.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		#[inline]
		fn dsread(&self, array: &mut impl ToOutputArray, dslabel: &str) -> Result<()> {
			output_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsread_const_const__OutputArrayR_const_StringR(self.as_raw_HDF5(), array.as_raw__OutputArray(), dslabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## C++ default parameters
		/// * dims_counts: vector<int>()
		#[inline]
		fn dsread_offset(&self, array: &mut impl ToOutputArray, dslabel: &str, dims_offset: &core::Vector<i32>, dims_counts: &core::Vector<i32>) -> Result<()> {
			output_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsread_const_const__OutputArrayR_const_StringR_const_vectorLintGR_const_vectorLintGR(self.as_raw_HDF5(), array.as_raw__OutputArray(), dslabel.opencv_as_extern(), dims_offset.as_raw_VectorOfi32(), dims_counts.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// ## Note
		/// This alternative version of [HDF5TraitConst::dsread_offset] function uses the following default values for its arguments:
		/// * dims_counts: vector<int>()
		#[inline]
		fn dsread_offset_def(&self, array: &mut impl ToOutputArray, dslabel: &str, dims_offset: &core::Vector<i32>) -> Result<()> {
			output_array_arg!(array);
			extern_container_arg!(dslabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_dsread_const_const__OutputArrayR_const_StringR_const_vectorLintGR(self.as_raw_HDF5(), array.as_raw__OutputArray(), dslabel.opencv_as_extern(), dims_offset.as_raw_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Fetch keypoint dataset size
		/// ## Parameters
		/// * kplabel: specify the hdf5 dataset label to be measured.
		/// * dims_flag: will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS.
		///
		/// Returns size of keypoints dataset.
		///
		///
		/// Note: Resulting size will match the amount of keypoints. By default H5_GETDIMS will return actual dataset dimension.
		/// Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match actual dataset dimension but can hold
		/// H5_UNLIMITED value if dataset was prepared in **unlimited** mode. It can be useful to check existing dataset dimension
		/// before overwrite it as whole or subset. Trying to write with oversized source data into dataset target will thrown
		/// exception. The H5_GETCHUNKDIMS will return the dimension of chunk if dataset was created with chunking options otherwise
		/// returned vector size will be zero.
		///
		/// ## C++ default parameters
		/// * dims_flag: HDF5::H5_GETDIMS
		#[inline]
		fn kpgetsize(&self, kplabel: &str, dims_flag: i32) -> Result<i32> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpgetsize_const_const_StringR_int(self.as_raw_HDF5(), kplabel.opencv_as_extern(), dims_flag, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Fetch keypoint dataset size
		/// ## Parameters
		/// * kplabel: specify the hdf5 dataset label to be measured.
		/// * dims_flag: will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS.
		///
		/// Returns size of keypoints dataset.
		///
		///
		/// Note: Resulting size will match the amount of keypoints. By default H5_GETDIMS will return actual dataset dimension.
		/// Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match actual dataset dimension but can hold
		/// H5_UNLIMITED value if dataset was prepared in **unlimited** mode. It can be useful to check existing dataset dimension
		/// before overwrite it as whole or subset. Trying to write with oversized source data into dataset target will thrown
		/// exception. The H5_GETCHUNKDIMS will return the dimension of chunk if dataset was created with chunking options otherwise
		/// returned vector size will be zero.
		///
		/// ## Note
		/// This alternative version of [HDF5TraitConst::kpgetsize] function uses the following default values for its arguments:
		/// * dims_flag: HDF5::H5_GETDIMS
		#[inline]
		fn kpgetsize_def(&self, kplabel: &str) -> Result<i32> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpgetsize_const_const_StringR(self.as_raw_HDF5(), kplabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create and allocate special storage for cv::KeyPoint dataset.
		/// ## Parameters
		/// * size: declare fixed number of KeyPoints
		/// * kplabel: specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
		/// * compresslevel: specify the compression level 0-9 to be used, H5_NONE is default and means no compression.
		/// * chunks: each array member specifies chunking sizes to be used for block I/O,
		///        H5_NONE is default and means no compression.
		///
		/// Note: If the dataset already exists an exception will be thrown. Existence of the dataset can be checked
		/// using hlexists().
		///
		/// - See example below that creates space for 100 keypoints in the dataset:
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   if ( ! h5io->hlexists( "keypoints" ) )
		///    h5io->kpcreate( 100, "keypoints" );
		///   else
		///    printf("DS already created, skipping\n" );
		/// ```
		///
		///
		///
		/// Note: A value of H5_UNLIMITED for **size** means **unlimited** keypoints, thus is possible to expand anytime such
		/// dataset by adding or inserting. Presence of H5_UNLIMITED **require** to define custom chunking. No default chunking
		/// will be defined in unlimited scenario since default size on that dimension will be zero, and will grow once dataset
		/// is written. Writing into dataset that have H5_UNLIMITED on some of its dimension requires kpinsert() that allow
		/// growth on unlimited dimension instead of kpwrite() that allows to write only in predefined data space.
		///
		/// - See example below that creates unlimited space for keypoints chunking size of 100 but no compression:
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   if ( ! h5io->hlexists( "keypoints" ) )
		///    h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", cv::hdf::HDF5::H5_NONE, 100 );
		///   else
		///    printf("DS already created, skipping\n" );
		/// ```
		///
		///
		/// ## C++ default parameters
		/// * compresslevel: H5_NONE
		/// * chunks: H5_NONE
		#[inline]
		fn kpcreate(&self, size: i32, kplabel: &str, compresslevel: i32, chunks: i32) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpcreate_const_const_int_const_StringR_const_int_const_int(self.as_raw_HDF5(), size, kplabel.opencv_as_extern(), compresslevel, chunks, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create and allocate special storage for cv::KeyPoint dataset.
		/// ## Parameters
		/// * size: declare fixed number of KeyPoints
		/// * kplabel: specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
		/// * compresslevel: specify the compression level 0-9 to be used, H5_NONE is default and means no compression.
		/// * chunks: each array member specifies chunking sizes to be used for block I/O,
		///        H5_NONE is default and means no compression.
		///
		/// Note: If the dataset already exists an exception will be thrown. Existence of the dataset can be checked
		/// using hlexists().
		///
		/// - See example below that creates space for 100 keypoints in the dataset:
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   if ( ! h5io->hlexists( "keypoints" ) )
		///    h5io->kpcreate( 100, "keypoints" );
		///   else
		///    printf("DS already created, skipping\n" );
		/// ```
		///
		///
		///
		/// Note: A value of H5_UNLIMITED for **size** means **unlimited** keypoints, thus is possible to expand anytime such
		/// dataset by adding or inserting. Presence of H5_UNLIMITED **require** to define custom chunking. No default chunking
		/// will be defined in unlimited scenario since default size on that dimension will be zero, and will grow once dataset
		/// is written. Writing into dataset that have H5_UNLIMITED on some of its dimension requires kpinsert() that allow
		/// growth on unlimited dimension instead of kpwrite() that allows to write only in predefined data space.
		///
		/// - See example below that creates unlimited space for keypoints chunking size of 100 but no compression:
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   if ( ! h5io->hlexists( "keypoints" ) )
		///    h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", cv::hdf::HDF5::H5_NONE, 100 );
		///   else
		///    printf("DS already created, skipping\n" );
		/// ```
		///
		///
		/// ## Note
		/// This alternative version of [HDF5TraitConst::kpcreate] function uses the following default values for its arguments:
		/// * compresslevel: H5_NONE
		/// * chunks: H5_NONE
		#[inline]
		fn kpcreate_def(&self, size: i32, kplabel: &str) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpcreate_const_const_int_const_StringR(self.as_raw_HDF5(), size, kplabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Write or overwrite list of KeyPoint into specified dataset of hdf5 file.
		/// ## Parameters
		/// * keypoints: specify keypoints data list to be written.
		/// * kplabel: specify the target hdf5 dataset label.
		/// * offset: specify the offset location on dataset from where keypoints will be (over)written into dataset.
		/// * counts: specify the amount of keypoints that will be written into dataset.
		///
		/// Writes vector<KeyPoint> object into targeted dataset.
		///
		///
		/// Note: If dataset is not created and does not exist it will be created **automatically**. It is thread safe but
		/// it is recommended that writes to happen over separate non overlapping regions. Multiple datasets can be written
		/// inside single hdf5 file.
		///
		/// - Example below writes a 100 keypoints into a dataset. No dataset precreation required. If routine is called multiple
		/// times dataset will be just overwritten:
		/// ```C++
		///   // generate 100 dummy keypoints
		///   std::vector<cv::KeyPoint> keypoints;
		///   for(int i = 0; i < 100; i++)
		///    keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // write / overwrite dataset
		///   h5io->kpwrite( keypoints, "keypoints" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// - Example below uses smaller set of 50 keypoints and writes into compressed space of 100 keypoints optimised by 10 chunks.
		/// Same keypoint set is written three times, first into first half (0->50) and at second half (50->75) then into remaining slots
		/// (75->99) of data space using offset and count parameters to settle the window for write access.If routine is called multiple times
		/// dataset will be just overwritten:
		/// ```C++
		///   // generate 50 dummy keypoints
		///   std::vector<cv::KeyPoint> keypoints;
		///   for(int i = 0; i < 50; i++)
		///    keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create maximum compressed space of size 100 with chunk size 10
		///   h5io->kpcreate( 100, "keypoints", 9, 10 );
		///   // write into first half
		///   h5io->kpwrite( keypoints, "keypoints", 0 );
		///   // write first 25 keypoints into second half
		///   h5io->kpwrite( keypoints, "keypoints", 50, 25 );
		///   // write first 25 keypoints into remained space of second half
		///   h5io->kpwrite( keypoints, "keypoints", 75, 25 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// ## C++ default parameters
		/// * offset: H5_NONE
		/// * counts: H5_NONE
		#[inline]
		fn kpwrite(&self, keypoints: core::Vector<core::KeyPoint>, kplabel: &str, offset: i32, counts: i32) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpwrite_const_const_vectorLKeyPointG_const_StringR_const_int_const_int(self.as_raw_HDF5(), keypoints.as_raw_VectorOfKeyPoint(), kplabel.opencv_as_extern(), offset, counts, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Write or overwrite list of KeyPoint into specified dataset of hdf5 file.
		/// ## Parameters
		/// * keypoints: specify keypoints data list to be written.
		/// * kplabel: specify the target hdf5 dataset label.
		/// * offset: specify the offset location on dataset from where keypoints will be (over)written into dataset.
		/// * counts: specify the amount of keypoints that will be written into dataset.
		///
		/// Writes vector<KeyPoint> object into targeted dataset.
		///
		///
		/// Note: If dataset is not created and does not exist it will be created **automatically**. It is thread safe but
		/// it is recommended that writes to happen over separate non overlapping regions. Multiple datasets can be written
		/// inside single hdf5 file.
		///
		/// - Example below writes a 100 keypoints into a dataset. No dataset precreation required. If routine is called multiple
		/// times dataset will be just overwritten:
		/// ```C++
		///   // generate 100 dummy keypoints
		///   std::vector<cv::KeyPoint> keypoints;
		///   for(int i = 0; i < 100; i++)
		///    keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // write / overwrite dataset
		///   h5io->kpwrite( keypoints, "keypoints" );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// - Example below uses smaller set of 50 keypoints and writes into compressed space of 100 keypoints optimised by 10 chunks.
		/// Same keypoint set is written three times, first into first half (0->50) and at second half (50->75) then into remaining slots
		/// (75->99) of data space using offset and count parameters to settle the window for write access.If routine is called multiple times
		/// dataset will be just overwritten:
		/// ```C++
		///   // generate 50 dummy keypoints
		///   std::vector<cv::KeyPoint> keypoints;
		///   for(int i = 0; i < 50; i++)
		///    keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create maximum compressed space of size 100 with chunk size 10
		///   h5io->kpcreate( 100, "keypoints", 9, 10 );
		///   // write into first half
		///   h5io->kpwrite( keypoints, "keypoints", 0 );
		///   // write first 25 keypoints into second half
		///   h5io->kpwrite( keypoints, "keypoints", 50, 25 );
		///   // write first 25 keypoints into remained space of second half
		///   h5io->kpwrite( keypoints, "keypoints", 75, 25 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// ## Note
		/// This alternative version of [HDF5TraitConst::kpwrite] function uses the following default values for its arguments:
		/// * offset: H5_NONE
		/// * counts: H5_NONE
		#[inline]
		fn kpwrite_def(&self, keypoints: core::Vector<core::KeyPoint>, kplabel: &str) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpwrite_const_const_vectorLKeyPointG_const_StringR(self.as_raw_HDF5(), keypoints.as_raw_VectorOfKeyPoint(), kplabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Insert or overwrite list of KeyPoint into specified dataset and autoexpand dataset size if **unlimited** property allows.
		/// ## Parameters
		/// * keypoints: specify keypoints data list to be written.
		/// * kplabel: specify the target hdf5 dataset label.
		/// * offset: specify the offset location on dataset from where keypoints will be (over)written into dataset.
		/// * counts: specify the amount of keypoints that will be written into dataset.
		///
		/// Writes vector<KeyPoint> object into targeted dataset and **autoexpand** dataset dimension if allowed.
		///
		///
		/// Note: Unlike kpwrite(), datasets are **not** created **automatically**. If dsinsert() happen over outer region of dataset
		/// and dataset has been created in **unlimited** mode then dataset is expanded, otherwise exception is thrown. To create datasets
		/// with **unlimited** property see kpcreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same
		/// dataset but multiple datasets can be merged inside single hdf5 file.
		///
		/// - Example below creates **unlimited** space for keypoints storage, and inserts a list of 10 keypoints ten times into that space.
		/// Final dataset will have 100 keypoints. Chunks size is 10 just optimized against list of keypoints. If routine is called multiple
		/// times dataset will be just overwritten:
		/// ```C++
		///   // generate 10 dummy keypoints
		///   std::vector<cv::KeyPoint> keypoints;
		///   for(int i = 0; i < 10; i++)
		///    keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create unlimited size space with chunk size of 10
		///   h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", -1, 10 );
		///   // insert 10 times same 10 keypoints
		///   for(int i = 0; i < 10; i++)
		///    h5io->kpinsert( keypoints, "keypoints", i * 10 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// ## C++ default parameters
		/// * offset: H5_NONE
		/// * counts: H5_NONE
		#[inline]
		fn kpinsert(&self, keypoints: core::Vector<core::KeyPoint>, kplabel: &str, offset: i32, counts: i32) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpinsert_const_const_vectorLKeyPointG_const_StringR_const_int_const_int(self.as_raw_HDF5(), keypoints.as_raw_VectorOfKeyPoint(), kplabel.opencv_as_extern(), offset, counts, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Insert or overwrite list of KeyPoint into specified dataset and autoexpand dataset size if **unlimited** property allows.
		/// ## Parameters
		/// * keypoints: specify keypoints data list to be written.
		/// * kplabel: specify the target hdf5 dataset label.
		/// * offset: specify the offset location on dataset from where keypoints will be (over)written into dataset.
		/// * counts: specify the amount of keypoints that will be written into dataset.
		///
		/// Writes vector<KeyPoint> object into targeted dataset and **autoexpand** dataset dimension if allowed.
		///
		///
		/// Note: Unlike kpwrite(), datasets are **not** created **automatically**. If dsinsert() happen over outer region of dataset
		/// and dataset has been created in **unlimited** mode then dataset is expanded, otherwise exception is thrown. To create datasets
		/// with **unlimited** property see kpcreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same
		/// dataset but multiple datasets can be merged inside single hdf5 file.
		///
		/// - Example below creates **unlimited** space for keypoints storage, and inserts a list of 10 keypoints ten times into that space.
		/// Final dataset will have 100 keypoints. Chunks size is 10 just optimized against list of keypoints. If routine is called multiple
		/// times dataset will be just overwritten:
		/// ```C++
		///   // generate 10 dummy keypoints
		///   std::vector<cv::KeyPoint> keypoints;
		///   for(int i = 0; i < 10; i++)
		///    keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
		///   // open / autocreate hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // create unlimited size space with chunk size of 10
		///   h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", -1, 10 );
		///   // insert 10 times same 10 keypoints
		///   for(int i = 0; i < 10; i++)
		///    h5io->kpinsert( keypoints, "keypoints", i * 10 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// ## Note
		/// This alternative version of [HDF5TraitConst::kpinsert] function uses the following default values for its arguments:
		/// * offset: H5_NONE
		/// * counts: H5_NONE
		#[inline]
		fn kpinsert_def(&self, keypoints: core::Vector<core::KeyPoint>, kplabel: &str) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpinsert_const_const_vectorLKeyPointG_const_StringR(self.as_raw_HDF5(), keypoints.as_raw_VectorOfKeyPoint(), kplabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Read specific keypoint dataset from hdf5 file into vector<KeyPoint> object.
		/// ## Parameters
		/// * keypoints: vector<KeyPoint> container where data reads will be returned.
		/// * kplabel: specify the source hdf5 dataset label.
		/// * offset: specify the offset location over dataset from where read starts.
		/// * counts: specify the amount of keypoints from dataset to read.
		///
		/// Reads out vector<KeyPoint> object reflecting the stored dataset.
		///
		///
		/// Note: If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence.
		/// It is thread safe.
		///
		/// - Example below reads a dataset containing keypoints starting with second entry:
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // blank KeyPoint container
		///   std::vector<cv::KeyPoint> keypoints;
		///   // read keypoints starting second one
		///   h5io->kpread( keypoints, "keypoints", 1 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// - Example below perform read of 3 keypoints from second entry.
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // blank KeyPoint container
		///   std::vector<cv::KeyPoint> keypoints;
		///   // read three keypoints starting second one
		///   h5io->kpread( keypoints, "keypoints", 1, 3 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// ## C++ default parameters
		/// * offset: H5_NONE
		/// * counts: H5_NONE
		#[inline]
		fn kpread(&self, keypoints: &mut core::Vector<core::KeyPoint>, kplabel: &str, offset: i32, counts: i32) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpread_const_vectorLKeyPointGR_const_StringR_const_int_const_int(self.as_raw_HDF5(), keypoints.as_raw_mut_VectorOfKeyPoint(), kplabel.opencv_as_extern(), offset, counts, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Read specific keypoint dataset from hdf5 file into vector<KeyPoint> object.
		/// ## Parameters
		/// * keypoints: vector<KeyPoint> container where data reads will be returned.
		/// * kplabel: specify the source hdf5 dataset label.
		/// * offset: specify the offset location over dataset from where read starts.
		/// * counts: specify the amount of keypoints from dataset to read.
		///
		/// Reads out vector<KeyPoint> object reflecting the stored dataset.
		///
		///
		/// Note: If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence.
		/// It is thread safe.
		///
		/// - Example below reads a dataset containing keypoints starting with second entry:
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // blank KeyPoint container
		///   std::vector<cv::KeyPoint> keypoints;
		///   // read keypoints starting second one
		///   h5io->kpread( keypoints, "keypoints", 1 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// - Example below perform read of 3 keypoints from second entry.
		/// ```C++
		///   // open hdf5 file
		///   cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
		///   // blank KeyPoint container
		///   std::vector<cv::KeyPoint> keypoints;
		///   // read three keypoints starting second one
		///   h5io->kpread( keypoints, "keypoints", 1, 3 );
		///   // release
		///   h5io->close();
		/// ```
		///
		///
		/// ## Note
		/// This alternative version of [HDF5TraitConst::kpread] function uses the following default values for its arguments:
		/// * offset: H5_NONE
		/// * counts: H5_NONE
		#[inline]
		fn kpread_def(&self, keypoints: &mut core::Vector<core::KeyPoint>, kplabel: &str) -> Result<()> {
			extern_container_arg!(kplabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_kpread_const_vectorLKeyPointGR_const_StringR(self.as_raw_HDF5(), keypoints.as_raw_mut_VectorOfKeyPoint(), kplabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	/// Mutable methods for [crate::hdf::HDF5]
	pub trait HDF5Trait: crate::hdf::HDF5TraitConst {
		fn as_raw_mut_HDF5(&mut self) -> *mut c_void;

		/// Close and release hdf5 object.
		#[inline]
		fn close(&mut self) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_close(self.as_raw_mut_HDF5(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Create a group.
		/// ## Parameters
		/// * grlabel: specify the hdf5 group label.
		///
		/// Create a hdf5 group with default properties. The group is closed automatically after creation.
		///
		///
		/// Note: Groups are useful for better organising multiple datasets. It is possible to create subgroups within any group.
		/// Existence of a particular group can be checked using hlexists(). In case of subgroups, a label would be e.g: 'Group1/SubGroup1'
		/// where SubGroup1 is within the root group Group1. Before creating a subgroup, its parent group MUST be created.
		///
		/// - In this example, Group1 will have one subgroup called SubGroup1:
		///
		///  [create_group](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/create_groups.cpp#L1)
		///
		///  The corresponding result visualized using the HDFView tool is
		///
		///  ![Visualization of groups using the HDFView tool](https://docs.opencv.org/4.11.0/create_groups.png)
		///
		///
		/// Note: When a dataset is created with dscreate() or kpcreate(), it can be created within a group by specifying the
		/// full path within the label. In our example, it would be: 'Group1/SubGroup1/MyDataSet'. It is not thread safe.
		#[inline]
		fn grcreate(&mut self, grlabel: &str) -> Result<()> {
			extern_container_arg!(grlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_grcreate_const_StringR(self.as_raw_mut_HDF5(), grlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Delete an attribute from the root group.
		///
		/// ## Parameters
		/// * atlabel: the attribute to be deleted.
		///
		///
		/// Note: CV_Error() is called if the given attribute does not exist. Use atexists()
		/// to check whether it exists or not beforehand.
		/// ## See also
		/// atexists, atwrite, atread
		#[inline]
		fn atdelete(&mut self, atlabel: &str) -> Result<()> {
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atdelete_const_StringR(self.as_raw_mut_HDF5(), atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Write an attribute inside the root group.
		///
		/// ## Parameters
		/// * value: attribute value.
		/// * atlabel: attribute name.
		///
		/// The following example demonstrates how to write an attribute of type cv::String:
		///
		///  [snippets_write_str](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/read_write_attributes.cpp#L1)
		///
		///
		/// Note: CV_Error() is called if the given attribute already exists. Use atexists()
		/// to check whether it exists or not beforehand. And use atdelete() to delete
		/// it if it already exists.
		/// ## See also
		/// atexists, atdelete, atread
		#[inline]
		fn atwrite_i32(&mut self, value: i32, atlabel: &str) -> Result<()> {
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atwrite_const_int_const_StringR(self.as_raw_mut_HDF5(), value, atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Read an attribute from the root group.
		///
		/// ## Parameters
		/// * value: address where the attribute is read into
		/// * atlabel: attribute name
		///
		/// The following example demonstrates how to read an attribute of type cv::String:
		///
		///  [snippets_read_str](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/read_write_attributes.cpp#L1)
		///
		///
		/// Note: The attribute MUST exist, otherwise CV_Error() is called. Use atexists()
		/// to check if it exists beforehand.
		/// ## See also
		/// atexists, atdelete, atwrite
		#[inline]
		fn atread_i32(&mut self, value: &mut i32, atlabel: &str) -> Result<()> {
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atread_intX_const_StringR(self.as_raw_mut_HDF5(), value, atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Write an attribute inside the root group.
		///
		/// ## Parameters
		/// * value: attribute value.
		/// * atlabel: attribute name.
		///
		/// The following example demonstrates how to write an attribute of type cv::String:
		///
		///  [snippets_write_str](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/read_write_attributes.cpp#L1)
		///
		///
		/// Note: CV_Error() is called if the given attribute already exists. Use atexists()
		/// to check whether it exists or not beforehand. And use atdelete() to delete
		/// it if it already exists.
		/// ## See also
		/// atexists, atdelete, atread
		///
		/// ## Overloaded parameters
		#[inline]
		fn atwrite_f64(&mut self, value: f64, atlabel: &str) -> Result<()> {
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atwrite_const_double_const_StringR(self.as_raw_mut_HDF5(), value, atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Read an attribute from the root group.
		///
		/// ## Parameters
		/// * value: address where the attribute is read into
		/// * atlabel: attribute name
		///
		/// The following example demonstrates how to read an attribute of type cv::String:
		///
		///  [snippets_read_str](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/read_write_attributes.cpp#L1)
		///
		///
		/// Note: The attribute MUST exist, otherwise CV_Error() is called. Use atexists()
		/// to check if it exists beforehand.
		/// ## See also
		/// atexists, atdelete, atwrite
		///
		/// ## Overloaded parameters
		#[inline]
		fn atread_f64(&mut self, value: &mut f64, atlabel: &str) -> Result<()> {
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atread_doubleX_const_StringR(self.as_raw_mut_HDF5(), value, atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Write an attribute inside the root group.
		///
		/// ## Parameters
		/// * value: attribute value.
		/// * atlabel: attribute name.
		///
		/// The following example demonstrates how to write an attribute of type cv::String:
		///
		///  [snippets_write_str](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/read_write_attributes.cpp#L1)
		///
		///
		/// Note: CV_Error() is called if the given attribute already exists. Use atexists()
		/// to check whether it exists or not beforehand. And use atdelete() to delete
		/// it if it already exists.
		/// ## See also
		/// atexists, atdelete, atread
		///
		/// ## Overloaded parameters
		#[inline]
		fn atwrite_str(&mut self, value: &str, atlabel: &str) -> Result<()> {
			extern_container_arg!(value);
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atwrite_const_StringR_const_StringR(self.as_raw_mut_HDF5(), value.opencv_as_extern(), atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Read an attribute from the root group.
		///
		/// ## Parameters
		/// * value: address where the attribute is read into
		/// * atlabel: attribute name
		///
		/// The following example demonstrates how to read an attribute of type cv::String:
		///
		///  [snippets_read_str](https://github.com/opencv/opencv_contrib/blob/4.11.0/modules/hdf/samples/read_write_attributes.cpp#L1)
		///
		///
		/// Note: The attribute MUST exist, otherwise CV_Error() is called. Use atexists()
		/// to check if it exists beforehand.
		/// ## See also
		/// atexists, atdelete, atwrite
		///
		/// ## Overloaded parameters
		#[inline]
		fn atread_str(&mut self, value: &mut String, atlabel: &str) -> Result<()> {
			string_arg_output_send!(via value_via);
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atread_StringX_const_StringR(self.as_raw_mut_HDF5(), &mut value_via, atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			string_arg_output_receive!(value_via => value);
			Ok(ret)
		}

		/// Write an attribute into the root group.
		///
		/// ## Parameters
		/// * value: attribute value. Currently, only n-d continuous multi-channel arrays are supported.
		/// * atlabel: attribute name.
		///
		///
		/// Note: CV_Error() is called if the given attribute already exists. Use atexists()
		/// to check whether it exists or not beforehand. And use atdelete() to delete
		/// it if it already exists.
		/// ## See also
		/// atexists, atdelete, atread.
		#[inline]
		fn atwrite(&mut self, value: &impl ToInputArray, atlabel: &str) -> Result<()> {
			input_array_arg!(value);
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atwrite_const__InputArrayR_const_StringR(self.as_raw_mut_HDF5(), value.as_raw__InputArray(), atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

		/// Read an attribute from the root group.
		///
		/// ## Parameters
		/// * value: attribute value. Currently, only n-d continuous multi-channel arrays are supported.
		/// * atlabel: attribute name.
		///
		///
		/// Note: The attribute MUST exist, otherwise CV_Error() is called. Use atexists()
		/// to check if it exists beforehand.
		/// ## See also
		/// atexists, atdelete, atwrite
		#[inline]
		fn atread(&mut self, value: &mut impl ToOutputArray, atlabel: &str) -> Result<()> {
			output_array_arg!(value);
			extern_container_arg!(atlabel);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_hdf_HDF5_atread_const__OutputArrayR_const_StringR(self.as_raw_mut_HDF5(), value.as_raw__OutputArray(), atlabel.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}

	}

	impl std::fmt::Debug for HDF5 {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("HDF5")
				.finish()
		}
	}

	impl crate::hdf::HDF5TraitConst for HDF5 {
		#[inline] fn as_raw_HDF5(&self) -> *const c_void { self.as_raw() }
	}

	impl crate::hdf::HDF5Trait for HDF5 {
		#[inline] fn as_raw_mut_HDF5(&mut self) -> *mut c_void { self.as_raw_mut() }
	}

	boxed_ref! { HDF5, crate::hdf::HDF5TraitConst, as_raw_HDF5, crate::hdf::HDF5Trait, as_raw_mut_HDF5 }

}