1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "nbin_standard.h"
#include "neighbor.h"
#include "atom.h"
#include "group.h"
#include "domain.h"
#include "comm.h"
#include "update.h"
#include "error.h"
using namespace LAMMPS_NS;
#define SMALL 1.0e-6
#define CUT2BIN_RATIO 100
/* ---------------------------------------------------------------------- */
NBinStandard::NBinStandard(LAMMPS *lmp) : NBin(lmp) {}
/* ----------------------------------------------------------------------
setup neighbor binning geometry
bin numbering in each dimension is global:
0 = 0.0 to binsize, 1 = binsize to 2*binsize, etc
nbin-1,nbin,etc = bbox-binsize to bbox, bbox to bbox+binsize, etc
-1,-2,etc = -binsize to 0.0, -2*binsize to -binsize, etc
code will work for any binsize
since next(xyz) and stencil extend as far as necessary
binsize = 1/2 of cutoff is roughly optimal
for orthogonal boxes:
a dim must be filled exactly by integer # of bins
in periodic, procs on both sides of PBC must see same bin boundary
in non-periodic, coord2bin() still assumes this by use of nbin xyz
for triclinic boxes:
tilted simulation box cannot contain integer # of bins
stencil & neigh list built differently to account for this
mbinlo = lowest global bin any of my ghost atoms could fall into
mbinhi = highest global bin any of my ghost atoms could fall into
mbin = number of bins I need in a dimension
------------------------------------------------------------------------- */
void NBinStandard::setup_bins(int style)
{
// bbox = size of bbox of entire domain
// bsubbox lo/hi = bounding box of my subdomain extended by comm->cutghost
// for triclinic:
// bbox bounds all 8 corners of tilted box
// subdomain is in lamda coords
// include dimension-dependent extension via comm->cutghost
// domain->bbox() converts lamda extent to box coords and computes bbox
double bbox[3],bsubboxlo[3],bsubboxhi[3];
double *cutghost = comm->cutghost;
if (triclinic == 0) {
bsubboxlo[0] = domain->sublo[0] - cutghost[0];
bsubboxlo[1] = domain->sublo[1] - cutghost[1];
bsubboxlo[2] = domain->sublo[2] - cutghost[2];
bsubboxhi[0] = domain->subhi[0] + cutghost[0];
bsubboxhi[1] = domain->subhi[1] + cutghost[1];
bsubboxhi[2] = domain->subhi[2] + cutghost[2];
} else {
double lo[3],hi[3];
lo[0] = domain->sublo_lamda[0] - cutghost[0];
lo[1] = domain->sublo_lamda[1] - cutghost[1];
lo[2] = domain->sublo_lamda[2] - cutghost[2];
hi[0] = domain->subhi_lamda[0] + cutghost[0];
hi[1] = domain->subhi_lamda[1] + cutghost[1];
hi[2] = domain->subhi_lamda[2] + cutghost[2];
domain->bbox(lo,hi,bsubboxlo,bsubboxhi);
}
bbox[0] = bboxhi[0] - bboxlo[0];
bbox[1] = bboxhi[1] - bboxlo[1];
bbox[2] = bboxhi[2] - bboxlo[2];
// optimal bin size is roughly 1/2 the cutoff
// for BIN style, binsize = 1/2 of max neighbor cutoff
// for MULTI style, binsize = 1/2 of min neighbor cutoff
// special case of all cutoffs = 0.0, binsize = box size
double binsize_optimal;
if (binsizeflag) binsize_optimal = binsize_user;
else if (style == Neighbor::BIN) binsize_optimal = 0.5*cutneighmax;
else binsize_optimal = 0.5*cutneighmin;
if (binsize_optimal == 0.0) binsize_optimal = bbox[0];
double binsizeinv = 1.0/binsize_optimal;
// test for too many global bins in any dimension due to huge global domain
if (bbox[0]*binsizeinv > MAXSMALLINT || bbox[1]*binsizeinv > MAXSMALLINT ||
bbox[2]*binsizeinv > MAXSMALLINT)
error->all(FLERR,"Domain too large for neighbor bins");
// create actual bins
// always have one bin even if cutoff > bbox
// for 2d, nbinz = 1
nbinx = static_cast<int> (bbox[0]*binsizeinv);
nbiny = static_cast<int> (bbox[1]*binsizeinv);
if (dimension == 3) nbinz = static_cast<int> (bbox[2]*binsizeinv);
else nbinz = 1;
if (nbinx == 0) nbinx = 1;
if (nbiny == 0) nbiny = 1;
if (nbinz == 0) nbinz = 1;
// compute actual bin size for nbins to fit into box exactly
// error if actual bin size << cutoff, since will create a zillion bins
// this happens when nbin = 1 and box size << cutoff
// typically due to non-periodic, flat system in a particular dim
// in that extreme case, should use NSQ not BIN neighbor style
binsizex = bbox[0]/nbinx;
binsizey = bbox[1]/nbiny;
binsizez = bbox[2]/nbinz;
bininvx = 1.0 / binsizex;
bininvy = 1.0 / binsizey;
bininvz = 1.0 / binsizez;
if (binsize_optimal*bininvx > CUT2BIN_RATIO ||
binsize_optimal*bininvy > CUT2BIN_RATIO ||
binsize_optimal*bininvz > CUT2BIN_RATIO)
error->all(FLERR,"Cannot use neighbor bins - box size << cutoff");
// mbinlo/hi = lowest and highest global bins my ghost atoms could be in
// coord = lowest and highest values of coords for my ghost atoms
// static_cast(-1.5) = -1, so subract additional -1
// add in SMALL for round-off safety
int mbinxhi,mbinyhi,mbinzhi;
double coord;
coord = bsubboxlo[0] - SMALL*bbox[0];
mbinxlo = static_cast<int> ((coord-bboxlo[0])*bininvx);
if (coord < bboxlo[0]) mbinxlo = mbinxlo - 1;
coord = bsubboxhi[0] + SMALL*bbox[0];
mbinxhi = static_cast<int> ((coord-bboxlo[0])*bininvx);
coord = bsubboxlo[1] - SMALL*bbox[1];
mbinylo = static_cast<int> ((coord-bboxlo[1])*bininvy);
if (coord < bboxlo[1]) mbinylo = mbinylo - 1;
coord = bsubboxhi[1] + SMALL*bbox[1];
mbinyhi = static_cast<int> ((coord-bboxlo[1])*bininvy);
if (dimension == 3) {
coord = bsubboxlo[2] - SMALL*bbox[2];
mbinzlo = static_cast<int> ((coord-bboxlo[2])*bininvz);
if (coord < bboxlo[2]) mbinzlo = mbinzlo - 1;
coord = bsubboxhi[2] + SMALL*bbox[2];
mbinzhi = static_cast<int> ((coord-bboxlo[2])*bininvz);
}
// extend bins by 1 to insure stencil extent is included
// for 2d, only 1 bin in z
mbinxlo = mbinxlo - 1;
mbinxhi = mbinxhi + 1;
mbinx = mbinxhi - mbinxlo + 1;
mbinylo = mbinylo - 1;
mbinyhi = mbinyhi + 1;
mbiny = mbinyhi - mbinylo + 1;
if (dimension == 3) {
mbinzlo = mbinzlo - 1;
mbinzhi = mbinzhi + 1;
} else mbinzlo = mbinzhi = 0;
mbinz = mbinzhi - mbinzlo + 1;
bigint bbin = ((bigint) mbinx) * ((bigint) mbiny) * ((bigint) mbinz) + 1;
if (bbin > MAXSMALLINT) error->one(FLERR,"Too many neighbor bins");
mbins = bbin;
}
/* ----------------------------------------------------------------------
bin owned and ghost atoms
------------------------------------------------------------------------- */
void NBinStandard::bin_atoms()
{
int i,ibin;
last_bin = update->ntimestep;
for (i = 0; i < mbins; i++) binhead[i] = -1;
// bin in reverse order so linked list will be in forward order
// also puts ghost atoms at end of list, which is necessary
double **x = atom->x;
int *mask = atom->mask;
int nlocal = atom->nlocal;
int nall = nlocal + atom->nghost;
if (includegroup) {
int bitmask = group->bitmask[includegroup];
for (i = nall-1; i >= nlocal; i--) {
if (mask[i] & bitmask) {
ibin = coord2bin(x[i]);
atom2bin[i] = ibin;
bins[i] = binhead[ibin];
binhead[ibin] = i;
}
}
for (i = atom->nfirst-1; i >= 0; i--) {
ibin = coord2bin(x[i]);
atom2bin[i] = ibin;
bins[i] = binhead[ibin];
binhead[ibin] = i;
}
} else {
for (i = nall-1; i >= 0; i--) {
ibin = coord2bin(x[i]);
atom2bin[i] = ibin;
bins[i] = binhead[ibin];
binhead[ibin] = i;
}
}
}