lammps-sys 0.6.0

Generates bindings to LAMMPS' C interface (with optional builds from source)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/* ----------------------------------------------------------------------
   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
   http://lammps.sandia.gov, Sandia National Laboratories
   Steve Plimpton, sjplimp@sandia.gov

   Copyright (2003) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the GNU General Public License.

   See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */

/* ----------------------------------------------------------------------
   Contributing author: Shawn Coleman (ARL)
------------------------------------------------------------------------- */
#include "fix_ave_histo_weight.h"
#include <mpi.h>
#include <unistd.h>
#include "fix.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "compute.h"
#include "input.h"
#include "variable.h"
#include "memory.h"
#include "error.h"

using namespace LAMMPS_NS;
using namespace FixConst;

enum{X,V,F,COMPUTE,FIX,VARIABLE};
enum{ONE,RUNNING};
enum{SCALAR,VECTOR,WINDOW};
enum{DEFAULT,GLOBAL,PERATOM,LOCAL};
enum{IGNORE,END,EXTRA};
enum{SINGLE,VALUE};

#define INVOKED_SCALAR 1
#define INVOKED_VECTOR 2
#define INVOKED_ARRAY 4
#define INVOKED_PERATOM 8
#define INVOKED_LOCAL 16

#define BIG 1.0e20

/* ---------------------------------------------------------------------- */

FixAveHistoWeight::FixAveHistoWeight(LAMMPS *lmp, int narg, char **arg) :
  FixAveHisto(lmp, narg, arg)
{
  // nvalues = 2 required for histo/weight

  if (nvalues != 2) error->all(FLERR,"Illegal fix ave/histo/weight command");

  // check that length of 2 values is the same

  int size[2];

  for (int i = 0; i < nvalues; i++) {
    if (which[i] == X || which[i] == V || which[i] == F) {
      size[i] = atom->nlocal;
    } else if (which[i] == COMPUTE && kind == GLOBAL && mode == SCALAR) {
      int icompute = modify->find_compute(ids[i]);
      size[i] = modify->compute[icompute]->size_vector;
    } else if (which[i] == COMPUTE && kind == GLOBAL && mode == VECTOR) {
      int icompute = modify->find_compute(ids[i]);
      size[i] = modify->compute[icompute]->size_array_rows;
    } else if (which[i] == COMPUTE && kind == PERATOM) {
      size[i] = atom->nlocal;
    } else if (which[i] == COMPUTE && kind == LOCAL) {
      int icompute = modify->find_compute(ids[i]);
      size[i] = modify->compute[icompute]->size_local_rows;
    } else if (which[i] == FIX && kind == GLOBAL && mode == SCALAR) {
      int ifix = modify->find_fix(ids[i]);
      size[i] = modify->fix[ifix]->size_vector;
    } else if (which[i] == FIX && kind == GLOBAL && mode == VECTOR) {
      int ifix = modify->find_fix(ids[i]);
      size[i]= modify->fix[ifix]->size_array_rows;
    } else if (which[i] == FIX && kind == PERATOM) {
      size[i] = atom->nlocal;
    } else if (which[i] == FIX && kind == LOCAL) {
      int ifix = modify->find_fix(ids[i]);
      size[i] = modify->fix[ifix]->size_local_rows;
    } else if (which[i] == VARIABLE && kind == PERATOM) {
      size[i] = atom->nlocal;
    }
  }

  if (size[0] != size[1])
    error->all(FLERR,"Fix ave/histo/weight value and weight vector "
               "lengths do not match");
}

/* ---------------------------------------------------------------------- */

void FixAveHistoWeight::end_of_step()
{
  int i,j,m;

  // skip if not step which requires doing something
  // error check if timestep was reset in an invalid manner

  bigint ntimestep = update->ntimestep;
  if (ntimestep < nvalid_last || ntimestep > nvalid)
    error->all(FLERR,"Invalid timestep reset for fix ave/histo");
  if (ntimestep != nvalid) return;
  nvalid_last = nvalid;

  // zero if first step

  if (irepeat == 0) {
    stats[0] = stats[1] = 0.0;
    stats[2] = BIG;
    stats[3] = -BIG;
    for (i = 0; i < nbins; i++) bin[i] = 0.0;
  }

  // first calculate weight factors, then bin single value
  // accumulate results of computes,fixes,variables to local copy
  // compute/fix/variable may invoke computes so wrap with clear/add

  modify->clearstep_compute();

  // calculate weight factors which are 2nd value (i = 1)

  double weight = 0.0;
  double *weights = NULL;
  int stride = 0;
  i = 1;

  m = value2index[i];
  j = argindex[i];

  // atom attributes

  if (which[i] == X) {
    weights = &atom->x[0][j];
    stride = 3;
  } else if (which[i] == V){
    weights = &atom->v[0][j];
    stride = 3;
    bin_atoms(&atom->v[0][j],3);
  } else if (which[i] == F) {
    weights = &atom->f[0][j];
    stride = 3;
  }

  // invoke compute if not previously invoked

  if (which[i] == COMPUTE) {

    Compute *compute = modify->compute[m];

    if (kind == GLOBAL && mode == SCALAR) {
      if (j == 0) {
        if (!(compute->invoked_flag & INVOKED_SCALAR)) {
          compute->compute_scalar();
          compute->invoked_flag |= INVOKED_SCALAR;
        }
        weight = compute->scalar;
      } else {
        if (!(compute->invoked_flag & INVOKED_VECTOR)) {
          compute->compute_vector();
          compute->invoked_flag |= INVOKED_VECTOR;
        }
        weight = compute->vector[j-1];
      }
    } else if (kind == GLOBAL && mode == VECTOR) {
      if (j == 0) {
        if (!(compute->invoked_flag & INVOKED_VECTOR)) {
          compute->compute_vector();
          compute->invoked_flag |= INVOKED_VECTOR;
        }
        weights = compute->vector;
        stride = 1;
      } else {
        if (!(compute->invoked_flag & INVOKED_ARRAY)) {
          compute->compute_array();
          compute->invoked_flag |= INVOKED_ARRAY;
        }
        if (compute->array) weights = &compute->array[0][j-1];
        stride = compute->size_array_cols;
      }
    } else if (kind == PERATOM) {
      if (!(compute->invoked_flag & INVOKED_PERATOM)) {
        compute->compute_peratom();
        compute->invoked_flag |= INVOKED_PERATOM;
      }
      if (j == 0) {
        weights = compute->vector_atom;
        stride = 1;
      } else if (compute->array_atom) {
        weights = &compute->array_atom[0][j-1];
        stride = compute->size_peratom_cols;
      }
    } else if (kind == LOCAL) {
      if (!(compute->invoked_flag & INVOKED_LOCAL)) {
        compute->compute_local();
        compute->invoked_flag |= INVOKED_LOCAL;
      }
      if (j == 0) {
        weights = compute->vector_local;
        stride = 1;
      } else if (compute->array_local) {
        weights = &compute->array_local[0][j-1];
        stride = compute->size_local_cols;
      }
    }

  // access fix fields, guaranteed to be ready

  } else if (which[i] == FIX) {

    Fix *fix = modify->fix[m];

    if (kind == GLOBAL && mode == SCALAR) {
      if (j == 0) weight = fix->compute_scalar();
      else weight = fix->compute_vector(j-1);
    } else if (kind == GLOBAL && mode == VECTOR) {
      error->all(FLERR,"Fix ave/histo/weight option not yet supported");
      // NOTE: need to allocate local storage
      if (j == 0) {
        int n = fix->size_vector;
        for (i = 0; i < n; i++) weights[n] = fix->compute_vector(i);
      } else {
        int n = fix->size_vector;
        for (i = 0; i < n; i++) weights[n] = fix->compute_array(i,j-1);
      }
    } else if (kind == PERATOM) {
      if (j == 0) {
        weights = fix->vector_atom;
        stride = 1;
      } else if (fix->array_atom) {
        weights = fix->array_atom[j-1];
        stride = fix->size_peratom_cols;
      }
    } else if (kind == LOCAL) {
      if (j == 0) {
        weights = fix->vector_local;
        stride = 1;
      } else if (fix->array_local) {
        weights = &fix->array_local[0][j-1];
        stride = fix->size_local_cols;
      }
    }

  // evaluate equal-style variable

  } else if (which[i] == VARIABLE && kind == GLOBAL) {
    weight = input->variable->compute_equal(m);

  } else if (which[i] == VARIABLE && kind == PERATOM) {
    if (atom->nmax > maxatom) {
      memory->destroy(vector);
      maxatom = atom->nmax;
      memory->create(vector,maxatom,"ave/histo/weight:vector");
    }
    input->variable->compute_atom(m,igroup,vector,1,0);
    weights = vector;
    stride = 1;
  }

  // bin values using weights, values are 1st value (i = 0)

  i = 0;
  m = value2index[i];
  j = argindex[i];

  // atom attributes

  if (which[i] == X && weights != NULL)
    bin_atoms_weights(&atom->x[0][j],3,weights,stride);
  else if (which[i] == V && weights != NULL)
    bin_atoms_weights(&atom->v[0][j],3,weights,stride);
  else if (which[i] == F && weights != NULL)
    bin_atoms_weights(&atom->f[0][j],3,weights,stride);

  // invoke compute if not previously invoked

  if (which[i] == COMPUTE) {
    Compute *compute = modify->compute[m];
    if (kind == GLOBAL && mode == SCALAR) {
      if (j == 0) {
        if (!(compute->invoked_flag & INVOKED_SCALAR)) {
          compute->compute_scalar();
          compute->invoked_flag |= INVOKED_SCALAR;
        }
        bin_one_weights(compute->scalar,weight);
      } else {
        if (!(compute->invoked_flag & INVOKED_VECTOR)) {
          compute->compute_vector();
          compute->invoked_flag |= INVOKED_VECTOR;
        }
        bin_one_weights(compute->vector[j-1],weight);
      }
    } else if (kind == GLOBAL && mode == VECTOR) {
      if (j == 0) {
        if (!(compute->invoked_flag & INVOKED_VECTOR)) {
          compute->compute_vector();
          compute->invoked_flag |= INVOKED_VECTOR;
        }
        bin_vector_weights(compute->size_vector,compute->vector,1,
                           weights,stride);
      } else {
        if (!(compute->invoked_flag & INVOKED_ARRAY)) {
          compute->compute_array();
          compute->invoked_flag |= INVOKED_ARRAY;
        }
        if (compute->array)
          bin_vector_weights(compute->size_array_rows,&compute->array[0][j-1],
                             compute->size_array_cols,weights,stride);
      }

    } else if (kind == PERATOM) {
      if (!(compute->invoked_flag & INVOKED_PERATOM)) {
        compute->compute_peratom();
        compute->invoked_flag |= INVOKED_PERATOM;
      }
      if (j == 0)
        bin_atoms_weights(compute->vector_atom,1,weights, stride);
      else if (compute->array_atom)
        bin_atoms_weights(&compute->array_atom[0][j-1],
                          compute->size_peratom_cols,weights,stride);

    } else if (kind == LOCAL) {
      if (!(compute->invoked_flag & INVOKED_LOCAL)) {
        compute->compute_local();
        compute->invoked_flag |= INVOKED_LOCAL;
      }
      if (j == 0)
        bin_vector_weights(compute->size_local_rows,
                           compute->vector_local,1,weights,stride);
      else if (compute->array_local)
        bin_vector_weights(compute->size_local_rows,
                           &compute->array_local[0][j-1],
                           compute->size_local_cols,weights,stride);
    }

    // access fix fields, guaranteed to be ready

  } else if (which[i] == FIX) {

    Fix *fix = modify->fix[m];

    if (kind == GLOBAL && mode == SCALAR) {
      if (j == 0) bin_one_weights(fix->compute_scalar(),weight);
      else bin_one_weights(fix->compute_vector(j-1),weight);

    } else if (kind == GLOBAL && mode == VECTOR) {
      if (j == 0) {
        int n = fix->size_vector;
        for (i = 0; i < n; i++)
          bin_one_weights(fix->compute_vector(i),weights[i*stride]);
      } else {
        int n = fix->size_vector;
        for (i = 0; i < n; i++)
          bin_one_weights(fix->compute_array(i,j-1),weights[i*stride]);
      }

    } else if (kind == PERATOM) {
      if (j == 0)
        bin_atoms_weights(fix->vector_atom,1,weights,stride);
      else if (fix->array_atom)
        bin_atoms_weights(fix->array_atom[j-1],fix->size_peratom_cols,
                          weights,stride);


    } else if (kind == LOCAL) {
      if (j == 0) bin_vector_weights(fix->size_local_rows,fix->vector_local,1,
                                     weights,stride);
      else if (fix->array_local)
        bin_vector_weights(fix->size_local_rows,&fix->array_local[0][j-1],
                           fix->size_local_cols,weights,stride);
    }

    // evaluate equal-style variable

  } else if (which[i] == VARIABLE && kind == GLOBAL) {
    bin_one_weights(input->variable->compute_equal(m),weight);

  } else if (which[i] == VARIABLE && kind == PERATOM) {
    if (atom->nmax > maxatom) {
      memory->destroy(vector);
      maxatom = atom->nmax;
      memory->create(vector,maxatom,"ave/histo/weight:vector");
    }
    input->variable->compute_atom(m,igroup,vector,1,0);
    bin_atoms_weights(vector,1,weights,stride);
  }

  // code beyond this point is identical to FixAveHisto

  // done if irepeat < nrepeat
  // else reset irepeat and nvalid

  irepeat++;
  if (irepeat < nrepeat) {
    nvalid += nevery;
    modify->addstep_compute(nvalid);
    return;
  }

  irepeat = 0;
  nvalid = ntimestep + nfreq - (nrepeat-1)*nevery;
  modify->addstep_compute(nvalid);

  // merge histogram stats across procs if necessary

  if (kind == PERATOM || kind == LOCAL) {
    MPI_Allreduce(stats,stats_all,2,MPI_DOUBLE,MPI_SUM,world);
    MPI_Allreduce(&stats[2],&stats_all[2],1,MPI_DOUBLE,MPI_MIN,world);
    MPI_Allreduce(&stats[3],&stats_all[3],1,MPI_DOUBLE,MPI_MAX,world);
    MPI_Allreduce(bin,bin_all,nbins,MPI_DOUBLE,MPI_SUM,world);

    stats[0] = stats_all[0];
    stats[1] = stats_all[1];
    stats[2] = stats_all[2];
    stats[3] = stats_all[3];
    for (i = 0; i < nbins; i++) bin[i] = bin_all[i];
  }

  // if ave = ONE, only single Nfreq timestep value is needed
  // if ave = RUNNING, combine with all previous Nfreq timestep values
  // if ave = WINDOW, combine with nwindow most recent Nfreq timestep values

  if (ave == ONE) {
    stats_total[0] = stats[0];
    stats_total[1] = stats[1];
    stats_total[2] = stats[2];
    stats_total[3] = stats[3];
    for (i = 0; i < nbins; i++) bin_total[i] = bin[i];

  } else if (ave == RUNNING) {
    stats_total[0] += stats[0];
    stats_total[1] += stats[1];
    stats_total[2] = MIN(stats_total[2],stats[2]);
    stats_total[3] = MAX(stats_total[3],stats[3]);
    for (i = 0; i < nbins; i++) bin_total[i] += bin[i];

  } else if (ave == WINDOW) {
    stats_total[0] += stats[0];
    if (window_limit) stats_total[0] -= stats_list[iwindow][0];
    stats_list[iwindow][0] = stats[0];
    stats_total[1] += stats[1];
    if (window_limit) stats_total[1] -= stats_list[iwindow][1];
    stats_list[iwindow][1] = stats[1];

    if (window_limit) m = nwindow;
    else m = iwindow+1;

    stats_list[iwindow][2] = stats[2];
    stats_total[2] = stats_list[0][2];
    for (i = 1; i < m; i++)
      stats_total[2] = MIN(stats_total[2],stats_list[i][2]);
    stats_list[iwindow][3] = stats[3];
    stats_total[3] = stats_list[0][3];
    for (i = 1; i < m; i++)
      stats_total[3] = MAX(stats_total[3],stats_list[i][3]);

    for (i = 0; i < nbins; i++) {
      bin_total[i] += bin[i];
      if (window_limit) bin_total[i] -= bin_list[iwindow][i];
      bin_list[iwindow][i] = bin[i];
    }

    iwindow++;
    if (iwindow == nwindow) {
      iwindow = 0;
      window_limit = 1;
    }
  }

  // output result to file

  if (fp && me == 0) {
    clearerr(fp);
    if (overwrite) fseek(fp,filepos,SEEK_SET);
    fprintf(fp,BIGINT_FORMAT " %d %g %g %g %g\n",ntimestep,nbins,
            stats_total[0],stats_total[1],stats_total[2],stats_total[3]);
    if (stats_total[0] != 0.0)
      for (i = 0; i < nbins; i++)
        fprintf(fp,"%d %g %g %g\n",
                i+1,coord[i],bin_total[i],bin_total[i]/stats_total[0]);
    else
      for (i = 0; i < nbins; i++)
        fprintf(fp,"%d %g %g %g\n",i+1,coord[i],0.0,0.0);

    if (ferror(fp))
      error->one(FLERR,"Error writing out histogram data");

    fflush(fp);
    if (overwrite) {
      long fileend = ftell(fp);
      if (fileend > 0) ftruncate(fileno(fp),fileend);
    }
  }
}

/* ----------------------------------------------------------------------
   bin a single value with weight)
------------------------------------------------------------------------- */

void FixAveHistoWeight::bin_one_weights(double value, double weight)
{
  stats[2] = MIN(stats[2],value);
  stats[3] = MAX(stats[3],value);

  if (value < lo) {
    if (beyond == IGNORE) {
      stats[1] += weight;
      return;
    } else bin[0] += weight;
  } else if (value > hi) {
    if (beyond == IGNORE) {
      stats[1] += weight;
      return;
    } else bin[nbins-1] += weight;
  } else {
    int ibin = static_cast<int> ((value-lo)*bininv);
    ibin = MIN(ibin,nbins-1);
    if (beyond == EXTRA) ibin++;
    bin[ibin] += weight;
  }

  stats[0] += weight;
}

/* ----------------------------------------------------------------------
   bin a vector of values with weights
   values and weights each have a stride
------------------------------------------------------------------------- */

void FixAveHistoWeight::bin_vector_weights(int n, double *values,
                                           int stride, double *weights,
                                           int stridewt)
{
  int m = 0;
  int m2 = 0;
  for (int i = 0; i < n; i++) {
    bin_one_weights(values[m],weights[m2]);
    m += stride;
    m2 += stridewt;
  }
}

/* ----------------------------------------------------------------------
   bin a per-atom vector of values with weights
   values and weights each have a stride
   only bin if atom is in group
------------------------------------------------------------------------- */

void FixAveHistoWeight::bin_atoms_weights(double *values, int stride,
                                          double *weights, int stridewt)
{
  int *mask = atom->mask;
  int nlocal = atom->nlocal;

  int m = 0;
  int m2 = 0;
  for (int i = 0; i < nlocal; i++) {
    if (mask[i] & groupbit) bin_one_weights(values[m],weights[m2]);
    m += stride;
    m2 += stridewt;
  }
}