lammps-sys 0.6.0

Generates bindings to LAMMPS' C interface (with optional builds from source)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/* -*- c++ -*- ----------------------------------------------------------
   LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
   http://lammps.sandia.gov, Sandia National Laboratories
   Steve Plimpton, sjplimp@sandia.gov

   Copyright (2003) Sandia Corporation.  Under the terms of Contract
   DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
   certain rights in this software.  This software is distributed under
   the GNU General Public License.

   See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */

/* ----------------------------------------------------------------------
   Contributing author: Mike Brown (SNL)
------------------------------------------------------------------------- */

#ifndef LMP_MATH_EXTRA_H
#define LMP_MATH_EXTRA_H

#include <cmath>

namespace MathExtra {

  // 3 vector operations

  inline void copy3(const double *v, double *ans);
  inline void zero3(double *v);
  inline void norm3(double *v);
  inline void normalize3(const double *v, double *ans);
  inline void snormalize3(const double, const double *v, double *ans);
  inline void negate3(double *v);
  inline void scale3(double s, double *v);
  inline void add3(const double *v1, const double *v2, double *ans);
  inline void scaleadd3(double s, const double *v1, const double *v2,
                        double *ans);
  inline void sub3(const double *v1, const double *v2, double *ans);
  inline double len3(const double *v);
  inline double lensq3(const double *v);
  inline double distsq3(const double *v1, const double *v2);
  inline double dot3(const double *v1, const double *v2);
  inline void cross3(const double *v1, const double *v2, double *ans);

  // 3x3 matrix operations

  inline void col2mat(const double *ex, const double *ey, const double *ez,
                      double m[3][3]);
  inline double det3(const double mat[3][3]);
  inline void diag_times3(const double *d, const double m[3][3],
                          double ans[3][3]);
  inline void times3_diag(const double m[3][3], const double *d,
                          double ans[3][3]);
  inline void plus3(const double m[3][3], const double m2[3][3],
                    double ans[3][3]);
  inline void times3(const double m[3][3], const double m2[3][3],
                     double ans[3][3]);
  inline void transpose_times3(const double m[3][3], const double m2[3][3],
                               double ans[3][3]);
  inline void times3_transpose(const double m[3][3], const double m2[3][3],
                               double ans[3][3]);
  inline void invert3(const double mat[3][3], double ans[3][3]);
  inline void matvec(const double mat[3][3], const double *vec, double *ans);
  inline void matvec(const double *ex, const double *ey, const double *ez,
                     const double *vec, double *ans);
  inline void transpose_matvec(const double mat[3][3], const double *vec,
                               double *ans);
  inline void transpose_matvec(const double *ex, const double *ey,
                               const double *ez, const double *v,
                               double *ans);
  inline void transpose_diag3(const double m[3][3], const double *d,
                              double ans[3][3]);
  inline void vecmat(const double *v, const double m[3][3], double *ans);
  inline void scalar_times3(const double f, double m[3][3]);

  void write3(const double mat[3][3]);
  int mldivide3(const double mat[3][3], const double *vec, double *ans);
  int jacobi(double matrix[3][3], double *evalues, double evectors[3][3]);
  void rotate(double matrix[3][3], int i, int j, int k, int l,
              double s, double tau);
  void richardson(double *q, double *m, double *w, double *moments, double dtq);
  void no_squish_rotate(int k, double *p, double *q, double *inertia,
                        double dt);

  // shape matrix operations
  // upper-triangular 3x3 matrix stored in Voigt notation as 6-vector

  inline void multiply_shape_shape(const double *one, const double *two,
                                   double *ans);

  // quaternion operations

  inline void qnormalize(double *q);
  inline void qconjugate(double *q, double *qc);
  inline void vecquat(double *a, double *b, double *c);
  inline void quatvec(double *a, double *b, double *c);
  inline void quatquat(double *a, double *b, double *c);
  inline void invquatvec(double *a, double *b, double *c);
  inline void axisangle_to_quat(const double *v, const double angle,
                                double *quat);

  void angmom_to_omega(double *m, double *ex, double *ey, double *ez,
                       double *idiag, double *w);
  void omega_to_angmom(double *w, double *ex, double *ey, double *ez,
                       double *idiag, double *m);
  void mq_to_omega(double *m, double *q, double *moments, double *w);
  void exyz_to_q(double *ex, double *ey, double *ez, double *q);
  void q_to_exyz(double *q, double *ex, double *ey, double *ez);
  void quat_to_mat(const double *quat, double mat[3][3]);
  void quat_to_mat_trans(const double *quat, double mat[3][3]);

  // rotation operations

  inline void rotation_generator_x(const double m[3][3], double ans[3][3]);
  inline void rotation_generator_y(const double m[3][3], double ans[3][3]);
  inline void rotation_generator_z(const double m[3][3], double ans[3][3]);

  void BuildRxMatrix(double R[3][3], const double angle);
  void BuildRyMatrix(double R[3][3], const double angle);
  void BuildRzMatrix(double R[3][3], const double angle);

  // moment of inertia operations

  void inertia_ellipsoid(double *shape, double *quat, double mass,
                         double *inertia);
  void inertia_line(double length, double theta, double mass,
                    double *inertia);
  void inertia_triangle(double *v0, double *v1, double *v2,
                        double mass, double *inertia);
  void inertia_triangle(double *idiag, double *quat, double mass,
                        double *inertia);
}

/* ----------------------------------------------------------------------
   copy a vector, return in ans
------------------------------------------------------------------------- */

inline void MathExtra::copy3(const double *v, double *ans)
{
  ans[0] = v[0];
  ans[1] = v[1];
  ans[2] = v[2];
}

/* ----------------------------------------------------------------------
   set vector equal to zero
------------------------------------------------------------------------- */

inline void MathExtra::zero3(double *v)
{
  v[0] = 0.0;
  v[1] = 0.0;
  v[2] = 0.0;
}

/* ----------------------------------------------------------------------
   normalize a vector in place
------------------------------------------------------------------------- */

inline void MathExtra::norm3(double *v)
{
  double scale = 1.0/sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
  v[0] *= scale;
  v[1] *= scale;
  v[2] *= scale;
}

/* ----------------------------------------------------------------------
   normalize a vector, return in ans
------------------------------------------------------------------------- */

inline void MathExtra::normalize3(const double *v, double *ans)
{
  double scale = 1.0/sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
  ans[0] = v[0]*scale;
  ans[1] = v[1]*scale;
  ans[2] = v[2]*scale;
}

/* ----------------------------------------------------------------------
   scale a vector to length
------------------------------------------------------------------------- */

inline void MathExtra::snormalize3(const double length, const double *v,
                                   double *ans)
{
  double scale = length/sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
  ans[0] = v[0]*scale;
  ans[1] = v[1]*scale;
  ans[2] = v[2]*scale;
}

/* ----------------------------------------------------------------------
   negate vector v
------------------------------------------------------------------------- */

inline void MathExtra::negate3(double *v)
{
  v[0] = -v[0];
  v[1] = -v[1];
  v[2] = -v[2];
}

/* ----------------------------------------------------------------------
   scale vector v by s
------------------------------------------------------------------------- */

inline void MathExtra::scale3(double s, double *v)
{
  v[0] *= s;
  v[1] *= s;
  v[2] *= s;
}

/* ----------------------------------------------------------------------
   ans = v1 + v2
------------------------------------------------------------------------- */

inline void MathExtra::add3(const double *v1, const double *v2, double *ans)
{
  ans[0] = v1[0] + v2[0];
  ans[1] = v1[1] + v2[1];
  ans[2] = v1[2] + v2[2];
}

/* ----------------------------------------------------------------------
   ans = s*v1 + v2
------------------------------------------------------------------------- */

inline void MathExtra::scaleadd3(double s, const double *v1,
                                 const double *v2, double *ans)
{
  ans[0] = s*v1[0] + v2[0];
  ans[1] = s*v1[1] + v2[1];
  ans[2] = s*v1[2] + v2[2];
}

/* ----------------------------------------------------------------------
   ans = v1 - v2
------------------------------------------------------------------------- */

inline void MathExtra::sub3(const double *v1, const double *v2, double *ans)
{
  ans[0] = v1[0] - v2[0];
  ans[1] = v1[1] - v2[1];
  ans[2] = v1[2] - v2[2];
}

/* ----------------------------------------------------------------------
   length of vector v
------------------------------------------------------------------------- */

inline double MathExtra::len3(const double *v)
{
  return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}

/* ----------------------------------------------------------------------
   squared length of vector v, or dot product of v with itself
------------------------------------------------------------------------- */

inline double MathExtra::lensq3(const double *v)
{
  return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
}

/* ----------------------------------------------------------------------
   ans = distance squared between pts v1 and v2
------------------------------------------------------------------------- */

inline double MathExtra::distsq3(const double *v1, const double *v2)
{
  double dx = v1[0] - v2[0];
  double dy = v1[1] - v2[1];
  double dz = v1[2] - v2[2];
  return dx*dx + dy*dy + dz*dz;
}

/* ----------------------------------------------------------------------
   dot product of 2 vectors
------------------------------------------------------------------------- */

inline double MathExtra::dot3(const double *v1, const double *v2)
{
  return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
}

/* ----------------------------------------------------------------------
   cross product of 2 vectors
------------------------------------------------------------------------- */

inline void MathExtra::cross3(const double *v1, const double *v2, double *ans)
{
  ans[0] = v1[1]*v2[2] - v1[2]*v2[1];
  ans[1] = v1[2]*v2[0] - v1[0]*v2[2];
  ans[2] = v1[0]*v2[1] - v1[1]*v2[0];
}

/* ----------------------------------------------------------------------
   construct matrix from 3 column vectors
------------------------------------------------------------------------- */

void MathExtra::col2mat(const double *ex, const double *ey, const double *ez,
                        double m[3][3])
{
  m[0][0] = ex[0];
  m[1][0] = ex[1];
  m[2][0] = ex[2];
  m[0][1] = ey[0];
  m[1][1] = ey[1];
  m[2][1] = ey[2];
  m[0][2] = ez[0];
  m[1][2] = ez[1];
  m[2][2] = ez[2];
}

/* ----------------------------------------------------------------------
   determinant of a matrix
------------------------------------------------------------------------- */

inline double MathExtra::det3(const double m[3][3])
{
  double ans = m[0][0]*m[1][1]*m[2][2] - m[0][0]*m[1][2]*m[2][1] -
    m[1][0]*m[0][1]*m[2][2] + m[1][0]*m[0][2]*m[2][1] +
    m[2][0]*m[0][1]*m[1][2] - m[2][0]*m[0][2]*m[1][1];
  return ans;
}

/* ----------------------------------------------------------------------
   diagonal matrix times a full matrix
------------------------------------------------------------------------- */

inline void MathExtra::diag_times3(const double *d, const double m[3][3],
                                   double ans[3][3])
{
  ans[0][0] = d[0]*m[0][0];
  ans[0][1] = d[0]*m[0][1];
  ans[0][2] = d[0]*m[0][2];
  ans[1][0] = d[1]*m[1][0];
  ans[1][1] = d[1]*m[1][1];
  ans[1][2] = d[1]*m[1][2];
  ans[2][0] = d[2]*m[2][0];
  ans[2][1] = d[2]*m[2][1];
  ans[2][2] = d[2]*m[2][2];
}

/* ----------------------------------------------------------------------
   full matrix times a diagonal matrix
------------------------------------------------------------------------- */

void MathExtra::times3_diag(const double m[3][3], const double *d,
                            double ans[3][3])
{
  ans[0][0] = m[0][0]*d[0];
  ans[0][1] = m[0][1]*d[1];
  ans[0][2] = m[0][2]*d[2];
  ans[1][0] = m[1][0]*d[0];
  ans[1][1] = m[1][1]*d[1];
  ans[1][2] = m[1][2]*d[2];
  ans[2][0] = m[2][0]*d[0];
  ans[2][1] = m[2][1]*d[1];
  ans[2][2] = m[2][2]*d[2];
}

/* ----------------------------------------------------------------------
   add two matrices
------------------------------------------------------------------------- */

inline void MathExtra::plus3(const double m[3][3], const double m2[3][3],
                             double ans[3][3])
{
  ans[0][0] = m[0][0]+m2[0][0];
  ans[0][1] = m[0][1]+m2[0][1];
  ans[0][2] = m[0][2]+m2[0][2];
  ans[1][0] = m[1][0]+m2[1][0];
  ans[1][1] = m[1][1]+m2[1][1];
  ans[1][2] = m[1][2]+m2[1][2];
  ans[2][0] = m[2][0]+m2[2][0];
  ans[2][1] = m[2][1]+m2[2][1];
  ans[2][2] = m[2][2]+m2[2][2];
}

/* ----------------------------------------------------------------------
   multiply mat1 times mat2
------------------------------------------------------------------------- */

inline void MathExtra::times3(const double m[3][3], const double m2[3][3],
                              double ans[3][3])
{
  ans[0][0] = m[0][0]*m2[0][0] + m[0][1]*m2[1][0] + m[0][2]*m2[2][0];
  ans[0][1] = m[0][0]*m2[0][1] + m[0][1]*m2[1][1] + m[0][2]*m2[2][1];
  ans[0][2] = m[0][0]*m2[0][2] + m[0][1]*m2[1][2] + m[0][2]*m2[2][2];
  ans[1][0] = m[1][0]*m2[0][0] + m[1][1]*m2[1][0] + m[1][2]*m2[2][0];
  ans[1][1] = m[1][0]*m2[0][1] + m[1][1]*m2[1][1] + m[1][2]*m2[2][1];
  ans[1][2] = m[1][0]*m2[0][2] + m[1][1]*m2[1][2] + m[1][2]*m2[2][2];
  ans[2][0] = m[2][0]*m2[0][0] + m[2][1]*m2[1][0] + m[2][2]*m2[2][0];
  ans[2][1] = m[2][0]*m2[0][1] + m[2][1]*m2[1][1] + m[2][2]*m2[2][1];
  ans[2][2] = m[2][0]*m2[0][2] + m[2][1]*m2[1][2] + m[2][2]*m2[2][2];
}

/* ----------------------------------------------------------------------
   multiply the transpose of mat1 times mat2
------------------------------------------------------------------------- */

inline void MathExtra::transpose_times3(const double m[3][3],
                                        const double m2[3][3],double ans[3][3])
{
  ans[0][0] = m[0][0]*m2[0][0] + m[1][0]*m2[1][0] + m[2][0]*m2[2][0];
  ans[0][1] = m[0][0]*m2[0][1] + m[1][0]*m2[1][1] + m[2][0]*m2[2][1];
  ans[0][2] = m[0][0]*m2[0][2] + m[1][0]*m2[1][2] + m[2][0]*m2[2][2];
  ans[1][0] = m[0][1]*m2[0][0] + m[1][1]*m2[1][0] + m[2][1]*m2[2][0];
  ans[1][1] = m[0][1]*m2[0][1] + m[1][1]*m2[1][1] + m[2][1]*m2[2][1];
  ans[1][2] = m[0][1]*m2[0][2] + m[1][1]*m2[1][2] + m[2][1]*m2[2][2];
  ans[2][0] = m[0][2]*m2[0][0] + m[1][2]*m2[1][0] + m[2][2]*m2[2][0];
  ans[2][1] = m[0][2]*m2[0][1] + m[1][2]*m2[1][1] + m[2][2]*m2[2][1];
  ans[2][2] = m[0][2]*m2[0][2] + m[1][2]*m2[1][2] + m[2][2]*m2[2][2];
}

/* ----------------------------------------------------------------------
   multiply mat1 times transpose of mat2
------------------------------------------------------------------------- */

inline void MathExtra::times3_transpose(const double m[3][3],
                                        const double m2[3][3],double ans[3][3])
{
  ans[0][0] = m[0][0]*m2[0][0] + m[0][1]*m2[0][1] + m[0][2]*m2[0][2];
  ans[0][1] = m[0][0]*m2[1][0] + m[0][1]*m2[1][1] + m[0][2]*m2[1][2];
  ans[0][2] = m[0][0]*m2[2][0] + m[0][1]*m2[2][1] + m[0][2]*m2[2][2];
  ans[1][0] = m[1][0]*m2[0][0] + m[1][1]*m2[0][1] + m[1][2]*m2[0][2];
  ans[1][1] = m[1][0]*m2[1][0] + m[1][1]*m2[1][1] + m[1][2]*m2[1][2];
  ans[1][2] = m[1][0]*m2[2][0] + m[1][1]*m2[2][1] + m[1][2]*m2[2][2];
  ans[2][0] = m[2][0]*m2[0][0] + m[2][1]*m2[0][1] + m[2][2]*m2[0][2];
  ans[2][1] = m[2][0]*m2[1][0] + m[2][1]*m2[1][1] + m[2][2]*m2[1][2];
  ans[2][2] = m[2][0]*m2[2][0] + m[2][1]*m2[2][1] + m[2][2]*m2[2][2];
}

/* ----------------------------------------------------------------------
   invert a matrix
   does NOT check for singular or badly scaled matrix
------------------------------------------------------------------------- */

inline void MathExtra::invert3(const double m[3][3], double ans[3][3])
{
  double den = m[0][0]*m[1][1]*m[2][2]-m[0][0]*m[1][2]*m[2][1];
  den += -m[1][0]*m[0][1]*m[2][2]+m[1][0]*m[0][2]*m[2][1];
  den += m[2][0]*m[0][1]*m[1][2]-m[2][0]*m[0][2]*m[1][1];

  ans[0][0] = (m[1][1]*m[2][2]-m[1][2]*m[2][1]) / den;
  ans[0][1] = -(m[0][1]*m[2][2]-m[0][2]*m[2][1]) / den;
  ans[0][2] = (m[0][1]*m[1][2]-m[0][2]*m[1][1]) / den;
  ans[1][0] = -(m[1][0]*m[2][2]-m[1][2]*m[2][0]) / den;
  ans[1][1] = (m[0][0]*m[2][2]-m[0][2]*m[2][0]) / den;
  ans[1][2] = -(m[0][0]*m[1][2]-m[0][2]*m[1][0]) / den;
  ans[2][0] = (m[1][0]*m[2][1]-m[1][1]*m[2][0]) / den;
  ans[2][1] = -(m[0][0]*m[2][1]-m[0][1]*m[2][0]) / den;
  ans[2][2] = (m[0][0]*m[1][1]-m[0][1]*m[1][0]) / den;
}

/* ----------------------------------------------------------------------
   matrix times vector
------------------------------------------------------------------------- */

inline void MathExtra::matvec(const double m[3][3], const double *v,
                              double *ans)
{
  ans[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
  ans[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
  ans[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
}

/* ----------------------------------------------------------------------
   matrix times vector
------------------------------------------------------------------------- */

inline void MathExtra::matvec(const double *ex, const double *ey,
                              const double *ez, const double *v, double *ans)
{
  ans[0] = ex[0]*v[0] + ey[0]*v[1] + ez[0]*v[2];
  ans[1] = ex[1]*v[0] + ey[1]*v[1] + ez[1]*v[2];
  ans[2] = ex[2]*v[0] + ey[2]*v[1] + ez[2]*v[2];
}

/* ----------------------------------------------------------------------
   transposed matrix times vector
------------------------------------------------------------------------- */

inline void MathExtra::transpose_matvec(const double m[3][3], const double *v,
                                 double *ans)
{
  ans[0] = m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2];
  ans[1] = m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2];
  ans[2] = m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2];
}

/* ----------------------------------------------------------------------
   transposed matrix times vector
------------------------------------------------------------------------- */

inline void MathExtra::transpose_matvec(const double *ex, const double *ey,
                                 const double *ez, const double *v,
                                 double *ans)
{
  ans[0] = ex[0]*v[0] + ex[1]*v[1] + ex[2]*v[2];
  ans[1] = ey[0]*v[0] + ey[1]*v[1] + ey[2]*v[2];
  ans[2] = ez[0]*v[0] + ez[1]*v[1] + ez[2]*v[2];
}

/* ----------------------------------------------------------------------
   transposed matrix times diagonal matrix
------------------------------------------------------------------------- */

inline void MathExtra::transpose_diag3(const double m[3][3], const double *d,
                                double ans[3][3])
{
  ans[0][0] = m[0][0]*d[0];
  ans[0][1] = m[1][0]*d[1];
  ans[0][2] = m[2][0]*d[2];
  ans[1][0] = m[0][1]*d[0];
  ans[1][1] = m[1][1]*d[1];
  ans[1][2] = m[2][1]*d[2];
  ans[2][0] = m[0][2]*d[0];
  ans[2][1] = m[1][2]*d[1];
  ans[2][2] = m[2][2]*d[2];
}

/* ----------------------------------------------------------------------
   row vector times matrix
------------------------------------------------------------------------- */

inline void MathExtra::vecmat(const double *v, const double m[3][3],
                              double *ans)
{
  ans[0] = v[0]*m[0][0] + v[1]*m[1][0] + v[2]*m[2][0];
  ans[1] = v[0]*m[0][1] + v[1]*m[1][1] + v[2]*m[2][1];
  ans[2] = v[0]*m[0][2] + v[1]*m[1][2] + v[2]*m[2][2];
}

/* ----------------------------------------------------------------------
   matrix times scalar, in place
------------------------------------------------------------------------- */

inline void MathExtra::scalar_times3(const double f, double m[3][3])
{
  m[0][0] *= f; m[0][1] *= f; m[0][2] *= f;
  m[1][0] *= f; m[1][1] *= f; m[1][2] *= f;
  m[2][0] *= f; m[2][1] *= f; m[2][2] *= f;
}

/* ----------------------------------------------------------------------
   multiply 2 shape matrices
   upper-triangular 3x3, stored as 6-vector in Voigt notation
------------------------------------------------------------------------- */

inline void MathExtra::multiply_shape_shape(const double *one,
                                            const double *two, double *ans)
{
  ans[0] = one[0]*two[0];
  ans[1] = one[1]*two[1];
  ans[2] = one[2]*two[2];
  ans[3] = one[1]*two[3] + one[3]*two[2];
  ans[4] = one[0]*two[4] + one[5]*two[3] + one[4]*two[2];
  ans[5] = one[0]*two[5] + one[5]*two[1];
}

/* ----------------------------------------------------------------------
   normalize a quaternion
------------------------------------------------------------------------- */

inline void MathExtra::qnormalize(double *q)
{
  double norm = 1.0 / sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
  q[0] *= norm;
  q[1] *= norm;
  q[2] *= norm;
  q[3] *= norm;
}

/* ----------------------------------------------------------------------
   conjugate of a quaternion: qc = conjugate of q
   assume q is of unit length
------------------------------------------------------------------------- */

inline void MathExtra::qconjugate(double *q, double *qc)
{
  qc[0] = q[0];
  qc[1] = -q[1];
  qc[2] = -q[2];
  qc[3] = -q[3];
}

/* ----------------------------------------------------------------------
   vector-quaternion multiply: c = a*b, where a = (0,a)
------------------------------------------------------------------------- */

inline void MathExtra::vecquat(double *a, double *b, double *c)
{
  c[0] = -a[0]*b[1] - a[1]*b[2] - a[2]*b[3];
  c[1] = b[0]*a[0] + a[1]*b[3] - a[2]*b[2];
  c[2] = b[0]*a[1] + a[2]*b[1] - a[0]*b[3];
  c[3] = b[0]*a[2] + a[0]*b[2] - a[1]*b[1];
}

/* ----------------------------------------------------------------------
   quaternion-vector multiply: c = a*b, where b = (0,b)
------------------------------------------------------------------------- */

inline void MathExtra::quatvec(double *a, double *b, double *c)
{
  c[0] = -a[1]*b[0] - a[2]*b[1] - a[3]*b[2];
  c[1] = a[0]*b[0] + a[2]*b[2] - a[3]*b[1];
  c[2] = a[0]*b[1] + a[3]*b[0] - a[1]*b[2];
  c[3] = a[0]*b[2] + a[1]*b[1] - a[2]*b[0];
}

/* ----------------------------------------------------------------------
   quaternion-quaternion multiply: c = a*b
------------------------------------------------------------------------- */

inline void MathExtra::quatquat(double *a, double *b, double *c)
{
  c[0] = a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3];
  c[1] = a[0]*b[1] + b[0]*a[1] + a[2]*b[3] - a[3]*b[2];
  c[2] = a[0]*b[2] + b[0]*a[2] + a[3]*b[1] - a[1]*b[3];
  c[3] = a[0]*b[3] + b[0]*a[3] + a[1]*b[2] - a[2]*b[1];
}

/* ----------------------------------------------------------------------
   quaternion multiply: c = inv(a)*b
   a is a quaternion
   b is a four component vector
   c is a three component vector
------------------------------------------------------------------------- */

inline void MathExtra::invquatvec(double *a, double *b, double *c)
{
  c[0] = -a[1]*b[0] + a[0]*b[1] + a[3]*b[2] - a[2]*b[3];
  c[1] = -a[2]*b[0] - a[3]*b[1] + a[0]*b[2] + a[1]*b[3];
  c[2] = -a[3]*b[0] + a[2]*b[1] - a[1]*b[2] + a[0]*b[3];
}

/* ----------------------------------------------------------------------
   compute quaternion from axis-angle rotation
   v MUST be a unit vector
------------------------------------------------------------------------- */

inline void MathExtra::axisangle_to_quat(const double *v, const double angle,
                                         double *quat)
{
  double halfa = 0.5*angle;
  double sina = sin(halfa);
  quat[0] = cos(halfa);
  quat[1] = v[0]*sina;
  quat[2] = v[1]*sina;
  quat[3] = v[2]*sina;
}

/* ----------------------------------------------------------------------
   Apply principal rotation generator about x to rotation matrix m
------------------------------------------------------------------------- */

inline void MathExtra::rotation_generator_x(const double m[3][3],
                                            double ans[3][3])
{
  ans[0][0] = 0;
  ans[0][1] = -m[0][2];
  ans[0][2] = m[0][1];
  ans[1][0] = 0;
  ans[1][1] = -m[1][2];
  ans[1][2] = m[1][1];
  ans[2][0] = 0;
  ans[2][1] = -m[2][2];
  ans[2][2] = m[2][1];
}

/* ----------------------------------------------------------------------
   Apply principal rotation generator about y to rotation matrix m
------------------------------------------------------------------------- */

inline void MathExtra::rotation_generator_y(const double m[3][3],
                                            double ans[3][3])
{
  ans[0][0] = m[0][2];
  ans[0][1] = 0;
  ans[0][2] = -m[0][0];
  ans[1][0] = m[1][2];
  ans[1][1] = 0;
  ans[1][2] = -m[1][0];
  ans[2][0] = m[2][2];
  ans[2][1] = 0;
  ans[2][2] = -m[2][0];
}

/* ----------------------------------------------------------------------
   Apply principal rotation generator about z to rotation matrix m
------------------------------------------------------------------------- */

inline void MathExtra::rotation_generator_z(const double m[3][3],
                                            double ans[3][3])
{
  ans[0][0] = -m[0][1];
  ans[0][1] = m[0][0];
  ans[0][2] = 0;
  ans[1][0] = -m[1][1];
  ans[1][1] = m[1][0];
  ans[1][2] = 0;
  ans[2][0] = -m[2][1];
  ans[2][1] = m[2][0];
  ans[2][2] = 0;
}

#endif