1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mike Brown (SNL)
------------------------------------------------------------------------- */
#include "fix_nh_sphere.h"
#include <cmath>
#include <cstring>
#include "atom.h"
#include "atom_vec.h"
#include "error.h"
#include "force.h"
#include "domain.h"
#include "math_vector.h"
#include "math_extra.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathExtra;
/* ---------------------------------------------------------------------- */
FixNHSphere::FixNHSphere(LAMMPS *lmp, int narg, char **arg) :
FixNH(lmp, narg, arg)
{
if (!atom->sphere_flag)
error->all(FLERR,"Fix nvt/nph/npt sphere requires atom style sphere");
// inertia = moment of inertia prefactor for sphere or disc
inertia = 0.4;
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"disc") == 0){
inertia = 0.5;
if (domain->dimension != 2)
error->all(FLERR,
"Fix nvt/nph/npt sphere disc option requires 2d simulation");
}
iarg++;
}
}
/* ---------------------------------------------------------------------- */
void FixNHSphere::init()
{
// check that all particles are finite-size
// no point particles allowed
double *radius = atom->radius;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
if (radius[i] == 0.0)
error->one(FLERR,"Fix nvt/npt/nph/sphere require extended particles");
FixNH::init();
}
/* ----------------------------------------------------------------------
perform half-step update of rotational velocities
-----------------------------------------------------------------------*/
void FixNHSphere::nve_v()
{
// standard nve_v velocity update
FixNH::nve_v();
double **omega = atom->omega;
double **torque = atom->torque;
double *radius = atom->radius;
double *rmass = atom->rmass;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
// set timestep here since dt may have changed or come via rRESPA
double dtfrotate = dtf / inertia;
double dtirotate;
// update omega for all particles
// d_omega/dt = torque / inertia
// 4 cases depending on radius vs shape and rmass vs mass
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
dtirotate = dtfrotate / (radius[i]*radius[i]*rmass[i]);
omega[i][0] += dtirotate*torque[i][0];
omega[i][1] += dtirotate*torque[i][1];
omega[i][2] += dtirotate*torque[i][2];
}
}
/* ----------------------------------------------------------------------
perform full-step update of position with dipole orientation, if requested
-----------------------------------------------------------------------*/
void FixNHSphere::nve_x()
{
// standard nve_x position update
FixNH::nve_x();
// update mu for dipoles
if (dipole_flag) {
double **mu = atom->mu;
double **omega = atom->omega;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (dlm_flag == 0){
// d_mu/dt = omega cross mu
// renormalize mu to dipole length
double msq,scale,g[3];
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
if (mu[i][3] > 0.0) {
g[0] = mu[i][0] + dtv * (omega[i][1]*mu[i][2]-omega[i][2]*mu[i][1]);
g[1] = mu[i][1] + dtv * (omega[i][2]*mu[i][0]-omega[i][0]*mu[i][2]);
g[2] = mu[i][2] + dtv * (omega[i][0]*mu[i][1]-omega[i][1]*mu[i][0]);
msq = g[0]*g[0] + g[1]*g[1] + g[2]*g[2];
scale = mu[i][3]/sqrt(msq);
mu[i][0] = g[0]*scale;
mu[i][1] = g[1]*scale;
mu[i][2] = g[2]*scale;
}
} else {
// Integrate orientation following Dullweber-Leimkuhler-Maclachlan scheme
vector w, w_temp, a;
matrix Q, Q_temp, R;
double scale,s2,inv_len_mu;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit && mu[i][3] > 0.0) {
// Construct Q from dipole:
// Q is the rotation matrix from space frame to body frame
// i.e. v_b = Q.v_s
// Define mu to lie along the z axis in the body frame
// We take the unit dipole to avoid getting a scaling matrix
inv_len_mu = 1.0/mu[i][3];
a[0] = mu[i][0]*inv_len_mu;
a[1] = mu[i][1]*inv_len_mu;
a[2] = mu[i][2]*inv_len_mu;
// v = a x [0 0 1] - cross product of mu in space and body frames
// s = |v|
// c = a.[0 0 1] = a[2]
// vx = [ 0 -v[2] v[1]
// v[2] 0 -v[0]
// -v[1] v[0] 0 ]
// then
// Q = I + vx + vx^2 * (1-c)/s^2
s2 = a[0]*a[0] + a[1]*a[1];
if (s2 != 0.0){ // i.e. the vectors are not parallel
scale = (1.0 - a[2])/s2;
Q[0][0] = 1.0 - scale*a[0]*a[0]; Q[0][1] = -scale*a[0]*a[1]; Q[0][2] = -a[0];
Q[1][0] = -scale*a[0]*a[1]; Q[1][1] = 1.0 - scale*a[1]*a[1]; Q[1][2] = -a[1];
Q[2][0] = a[0]; Q[2][1] = a[1]; Q[2][2] = 1.0 - scale*(a[0]*a[0] + a[1]*a[1]);
} else { // if parallel then we just have I or -I
Q[0][0] = 1.0/a[2]; Q[0][1] = 0.0; Q[0][2] = 0.0;
Q[1][0] = 0.0; Q[1][1] = 1.0/a[2]; Q[1][2] = 0.0;
Q[2][0] = 0.0; Q[2][1] = 0.0; Q[2][2] = 1.0/a[2];
}
// Local copy of this particle's angular velocity (in space frame)
w[0] = omega[i][0]; w[1] = omega[i][1]; w[2] = omega[i][2];
// Transform omega into body frame: w_temp= Q.w
matvec(Q,w,w_temp);
// Construct rotation R1
BuildRxMatrix(R, dtf/force->ftm2v*w_temp[0]);
// Apply R1 to w: w = R.w_temp
matvec(R,w_temp,w);
// Apply R1 to Q: Q_temp = R^T.Q
transpose_times3(R,Q,Q_temp);
// Construct rotation R2
BuildRyMatrix(R, dtf/force->ftm2v*w[1]);
// Apply R2 to w: w_temp = R.w
matvec(R,w,w_temp);
// Apply R2 to Q: Q = R^T.Q_temp
transpose_times3(R,Q_temp,Q);
// Construct rotation R3
BuildRzMatrix(R, 2.0*dtf/force->ftm2v*w_temp[2]);
// Apply R3 to w: w = R.w_temp
matvec(R,w_temp,w);
// Apply R3 to Q: Q_temp = R^T.Q
transpose_times3(R,Q,Q_temp);
// Construct rotation R4
BuildRyMatrix(R, dtf/force->ftm2v*w[1]);
// Apply R4 to w: w_temp = R.w
matvec(R,w,w_temp);
// Apply R4 to Q: Q = R^T.Q_temp
transpose_times3(R,Q_temp,Q);
// Construct rotation R5
BuildRxMatrix(R, dtf/force->ftm2v*w_temp[0]);
// Apply R5 to w: w = R.w_temp
matvec(R,w_temp,w);
// Apply R5 to Q: Q_temp = R^T.Q
transpose_times3(R,Q,Q_temp);
// Transform w back into space frame w_temp = Q^T.w
transpose_matvec(Q_temp,w,w_temp);
omega[i][0] = w_temp[0]; omega[i][1] = w_temp[1]; omega[i][2] = w_temp[2];
// Set dipole according to updated Q: mu = Q^T.[0 0 1] * |mu|
mu[i][0] = Q_temp[2][0] * mu[i][3];
mu[i][1] = Q_temp[2][1] * mu[i][3];
mu[i][2] = Q_temp[2][2] * mu[i][3];
}
}
}
}
}
/* ----------------------------------------------------------------------
perform half-step scaling of rotatonal velocities
-----------------------------------------------------------------------*/
void FixNHSphere::nh_v_temp()
{
// standard nh_v_temp scaling
FixNH::nh_v_temp();
double **omega = atom->omega;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
omega[i][0] *= factor_eta;
omega[i][1] *= factor_eta;
omega[i][2] *= factor_eta;
}
}
}