#include "compute_reduce_chunk.h"
#include <mpi.h>
#include <cstring>
#include <cstdlib>
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "fix.h"
#include "compute.h"
#include "compute_chunk_atom.h"
#include "input.h"
#include "variable.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
enum{SUM,MINN,MAXX};
enum{UNKNOWN=-1,COMPUTE,FIX,VARIABLE};
#define INVOKED_PERATOM 8
#define BIG 1.0e20
ComputeReduceChunk::ComputeReduceChunk(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg),
which(NULL), argindex(NULL), value2index(NULL), idchunk(NULL), ids(NULL),
vlocal(NULL), vglobal(NULL), alocal(NULL), aglobal(NULL), varatom(NULL)
{
if (narg < 6) error->all(FLERR,"Illegal compute reduce/chunk command");
int n = strlen(arg[3]) + 1;
idchunk = new char[n];
strcpy(idchunk,arg[3]);
init_chunk();
if (strcmp(arg[4],"sum") == 0) mode = SUM;
else if (strcmp(arg[4],"min") == 0) mode = MINN;
else if (strcmp(arg[4],"max") == 0) mode = MAXX;
else error->all(FLERR,"Illegal compute reduce/chunk command");
int iarg = 5;
int expand = 0;
char **earg;
int nargnew = input->expand_args(narg-iarg,&arg[iarg],1,earg);
if (earg != &arg[iarg]) expand = 1;
arg = earg;
which = new int[nargnew];
argindex = new int[nargnew];
ids = new char*[nargnew];
value2index = new int[nargnew];
for (int i=0; i < nargnew; ++i) {
which[i] = argindex[i] = value2index[i] = UNKNOWN;
ids[i] = NULL;
}
nvalues = 0;
iarg = 0;
while (iarg < nargnew) {
ids[nvalues] = NULL;
if (strncmp(arg[iarg],"c_",2) == 0 ||
strncmp(arg[iarg],"f_",2) == 0 ||
strncmp(arg[iarg],"v_",2) == 0) {
if (arg[iarg][0] == 'c') which[nvalues] = COMPUTE;
else if (arg[iarg][0] == 'f') which[nvalues] = FIX;
else if (arg[iarg][0] == 'v') which[nvalues] = VARIABLE;
int n = strlen(arg[iarg]);
char *suffix = new char[n];
strcpy(suffix,&arg[iarg][2]);
char *ptr = strchr(suffix,'[');
if (ptr) {
if (suffix[strlen(suffix)-1] != ']')
error->all(FLERR,"Illegal compute reduce/chunk command");
argindex[nvalues] = atoi(ptr+1);
*ptr = '\0';
} else argindex[nvalues] = 0;
n = strlen(suffix) + 1;
ids[nvalues] = new char[n];
strcpy(ids[nvalues],suffix);
nvalues++;
delete [] suffix;
} else error->all(FLERR,"Illegal compute reduce/chunk command");
iarg++;
}
if (expand) {
for (int i = 0; i < nargnew; i++) delete [] earg[i];
memory->sfree(earg);
}
for (int i = 0; i < nvalues; i++) {
if (which[i] == COMPUTE) {
int icompute = modify->find_compute(ids[i]);
if (icompute < 0)
error->all(FLERR,"Compute ID for compute reduce/chunk does not exist");
if (!modify->compute[icompute]->peratom_flag)
error->all(FLERR,"Compute reduce/chunk compute does not "
"calculate per-atom values");
if (argindex[i] == 0 &&
modify->compute[icompute]->size_peratom_cols != 0)
error->all(FLERR,"Compute reduce/chunk compute does not "
"calculate a per-atom vector");
if (argindex[i] && modify->compute[icompute]->size_peratom_cols == 0)
error->all(FLERR,"Compute reduce/chunk compute does not "
"calculate a per-atom array");
if (argindex[i] &&
argindex[i] > modify->compute[icompute]->size_peratom_cols)
error->all(FLERR,
"Compute reduce/chunk compute array is accessed out-of-range");
} else if (which[i] == FIX) {
int ifix = modify->find_fix(ids[i]);
if (ifix < 0)
error->all(FLERR,"Fix ID for compute reduce/chunk does not exist");
if (!modify->fix[ifix]->peratom_flag)
error->all(FLERR,"Compute reduce/chunk fix does not "
"calculate per-atom values");
if (argindex[i] == 0 &&
modify->fix[ifix]->size_peratom_cols != 0)
error->all(FLERR,"Compute reduce/chunk fix does not "
"calculate a per-atom vector");
if (argindex[i] && modify->fix[ifix]->size_peratom_cols == 0)
error->all(FLERR,"Compute reduce/chunk fix does not "
"calculate a per-atom array");
if (argindex[i] && argindex[i] > modify->fix[ifix]->size_peratom_cols)
error->all(FLERR,"Compute reduce/chunk fix array is "
"accessed out-of-range");
} else if (which[i] == VARIABLE) {
int ivariable = input->variable->find(ids[i]);
if (ivariable < 0)
error->all(FLERR,"Variable name for compute reduce/chunk does not exist");
if (input->variable->atomstyle(ivariable) == 0)
error->all(FLERR,"Compute reduce/chunk variable is "
"not atom-style variable");
}
}
if (nvalues == 1) {
vector_flag = 1;
size_vector_variable = 1;
extvector = 0;
} else {
array_flag = 1;
size_array_rows_variable = 1;
size_array_cols = nvalues;
extarray = 0;
}
if (mode == SUM) initvalue = 0.0;
else if (mode == MINN) initvalue = BIG;
else if (mode == MAXX) initvalue = -BIG;
maxchunk = 0;
vlocal = vglobal = NULL;
alocal = aglobal = NULL;
maxatom = 0;
varatom = NULL;
}
ComputeReduceChunk::~ComputeReduceChunk()
{
delete [] idchunk;
delete [] which;
delete [] argindex;
for (int m = 0; m < nvalues; m++) delete [] ids[m];
delete [] ids;
delete [] value2index;
memory->destroy(vlocal);
memory->destroy(vglobal);
memory->destroy(alocal);
memory->destroy(aglobal);
memory->destroy(varatom);
}
void ComputeReduceChunk::init()
{
init_chunk();
for (int m = 0; m < nvalues; m++) {
if (which[m] == COMPUTE) {
int icompute = modify->find_compute(ids[m]);
if (icompute < 0)
error->all(FLERR,"Compute ID for compute reduce/chunk does not exist");
value2index[m] = icompute;
} else if (which[m] == FIX) {
int ifix = modify->find_fix(ids[m]);
if (ifix < 0)
error->all(FLERR,"Fix ID for compute reduce/chunk does not exist");
value2index[m] = ifix;
} else if (which[m] == VARIABLE) {
int ivariable = input->variable->find(ids[m]);
if (ivariable < 0)
error->all(FLERR,"Variable name for compute reduce/chunk does not exist");
value2index[m] = ivariable;
}
}
}
void ComputeReduceChunk::init_chunk()
{
int icompute = modify->find_compute(idchunk);
if (icompute < 0)
error->all(FLERR,"Chunk/atom compute does not exist for "
"compute reduce/chunk");
cchunk = (ComputeChunkAtom *) modify->compute[icompute];
if (strcmp(cchunk->style,"chunk/atom") != 0)
error->all(FLERR,"Compute reduce/chunk does not use chunk/atom compute");
}
void ComputeReduceChunk::compute_vector()
{
invoked_vector = update->ntimestep;
nchunk = cchunk->setup_chunks();
cchunk->compute_ichunk();
ichunk = cchunk->ichunk;
if (!nchunk) return;
size_vector = nchunk;
if (nchunk > maxchunk) {
memory->destroy(vlocal);
memory->destroy(vglobal);
maxchunk = nchunk;
memory->create(vlocal,maxchunk,"reduce/chunk:vlocal");
memory->create(vglobal,maxchunk,"reduce/chunk:vglobal");
vector = vglobal;
}
compute_one(0,vlocal,1);
if (mode == SUM)
MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_SUM,world);
else if (mode == MINN)
MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MIN,world);
else if (mode == MAXX)
MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MAX,world);
}
void ComputeReduceChunk::compute_array()
{
invoked_array = update->ntimestep;
nchunk = cchunk->setup_chunks();
cchunk->compute_ichunk();
ichunk = cchunk->ichunk;
if (!nchunk) return;
size_array_rows = nchunk;
if (nchunk > maxchunk) {
memory->destroy(alocal);
memory->destroy(aglobal);
maxchunk = nchunk;
memory->create(alocal,maxchunk,nvalues,"reduce/chunk:alocal");
memory->create(aglobal,maxchunk,nvalues,"reduce/chunk:aglobal");
array = aglobal;
}
for (int m = 0; m < nvalues; m++) compute_one(m,&alocal[0][m],nvalues);
if (mode == SUM)
MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues,
MPI_DOUBLE,MPI_SUM,world);
else if (mode == MINN)
MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues,
MPI_DOUBLE,MPI_MIN,world);
else if (mode == MAXX)
MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues,
MPI_DOUBLE,MPI_MAX,world);
}
void ComputeReduceChunk::compute_one(int m, double *vchunk, int nstride)
{
for (int i = 0; i < nchunk; i += nstride) vchunk[i] = initvalue;
int *mask = atom->mask;
int nlocal = atom->nlocal;
int index = -1;
int vidx = value2index[m];
if (vidx == UNKNOWN) {
init();
vidx = value2index[m];
}
if (which[m] == COMPUTE) {
Compute *compute = modify->compute[vidx];
if (!(compute->invoked_flag & INVOKED_PERATOM)) {
compute->compute_peratom();
compute->invoked_flag |= INVOKED_PERATOM;
}
if (argindex[m] == 0) {
double *vcompute = compute->vector_atom;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],vcompute[i]);
}
} else {
double **acompute = compute->array_atom;
int argindexm1 = argindex[m] - 1;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],acompute[i][argindexm1]);
}
}
} else if (which[m] == FIX) {
Fix *fix = modify->fix[vidx];
if (update->ntimestep % fix->peratom_freq)
error->all(FLERR,"Fix used in compute reduce/chunk not "
"computed at compatible time");
if (argindex[m] == 0) {
double *vfix = fix->vector_atom;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],vfix[i]);
}
} else {
double **afix = fix->array_atom;
int argindexm1 = argindex[m] - 1;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],afix[i][argindexm1]);
}
}
} else if (which[m] == VARIABLE) {
if (atom->nmax > maxatom) {
memory->destroy(varatom);
maxatom = atom->nmax;
memory->create(varatom,maxatom,"reduce/chunk:varatom");
}
input->variable->compute_atom(vidx,igroup,varatom,1,0);
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],varatom[i]);
}
}
}
void ComputeReduceChunk::combine(double &one, double two)
{
if (mode == SUM) one += two;
else if (mode == MINN) {
if (two < one) one = two;
} else if (mode == MAXX) {
if (two > one) one = two;
}
}
void ComputeReduceChunk::lock_enable()
{
cchunk->lockcount++;
}
void ComputeReduceChunk::lock_disable()
{
int icompute = modify->find_compute(idchunk);
if (icompute >= 0) {
cchunk = (ComputeChunkAtom *) modify->compute[icompute];
cchunk->lockcount--;
}
}
int ComputeReduceChunk::lock_length()
{
nchunk = cchunk->setup_chunks();
return nchunk;
}
void ComputeReduceChunk::lock(Fix *fixptr, bigint startstep, bigint stopstep)
{
cchunk->lock(fixptr,startstep,stopstep);
}
void ComputeReduceChunk::unlock(Fix *fixptr)
{
cchunk->unlock(fixptr);
}
double ComputeReduceChunk::memory_usage()
{
double bytes = (bigint) maxatom * sizeof(double);
if (nvalues == 1) bytes += (bigint) maxchunk * 2 * sizeof(double);
else bytes += (bigint) maxchunk * nvalues * 2 * sizeof(double);
return bytes;
}