pub struct Dim<I>where
I: ?Sized,{ /* private fields */ }Expand description
Dimension description.
Dim describes the number of axes and the length of each axis
in an array. It is also used as an index type.
See also the Dimension trait for its methods and
operations.
§Examples
To create an array with a particular dimension, you’d just pass
a tuple (in this example (3, 2) is used), which is converted to
Dim by the array constructor.
use ndarray::Array2;
use ndarray::Dim;
let mut array = Array2::zeros((3, 2));
array[[0, 0]] = 1.;
assert_eq!(array.raw_dim(), Dim([3, 2]));Implementations§
Trait Implementations§
Source§impl<'a, I> AddAssign<&'a Dim<I>> for Dim<I>
impl<'a, I> AddAssign<&'a Dim<I>> for Dim<I>
Source§fn add_assign(&mut self, rhs: &Dim<I>)
fn add_assign(&mut self, rhs: &Dim<I>)
+= operation. Read moreSource§impl AddAssign<usize> for Dim<[usize; 1]>
impl AddAssign<usize> for Dim<[usize; 1]>
Source§fn add_assign(&mut self, rhs: usize)
fn add_assign(&mut self, rhs: usize)
+= operation. Read moreSource§impl<I> AddAssign for Dim<I>
impl<I> AddAssign for Dim<I>
Source§fn add_assign(&mut self, rhs: Dim<I>)
fn add_assign(&mut self, rhs: Dim<I>)
+= operation. Read moreSource§impl<'de, I> Deserialize<'de> for Dim<I>where
I: Deserialize<'de>,
Requires crate feature "serde"
impl<'de, I> Deserialize<'de> for Dim<I>where
I: Deserialize<'de>,
Requires crate feature "serde"
Source§fn deserialize<D>(
deserializer: D,
) -> Result<Dim<I>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Dim<I>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§impl<'de> Deserialize<'de> for Dim<IxDynImpl>
Requires crate feature "serde"
impl<'de> Deserialize<'de> for Dim<IxDynImpl>
Requires crate feature "serde"
Source§fn deserialize<D>(
deserializer: D,
) -> Result<Dim<IxDynImpl>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Dim<IxDynImpl>, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
Source§impl Dimension for Dim<[usize; 0]>
impl Dimension for Dim<[usize; 0]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§fn into_pattern(self) -> <Dim<[usize; 0]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 0]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 0]>
fn zeros(ndim: usize) -> Dim<[usize; 0]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<[usize; 1]>
impl Dimension for Dim<[usize; 1]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§fn into_pattern(self) -> <Dim<[usize; 1]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 1]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 1]>
fn zeros(ndim: usize) -> Dim<[usize; 1]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<[usize; 2]>
impl Dimension for Dim<[usize; 2]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§type Pattern = (usize, usize)
type Pattern = (usize, usize)
Source§fn into_pattern(self) -> <Dim<[usize; 2]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 2]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 2]>
fn zeros(ndim: usize) -> Dim<[usize; 2]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<[usize; 3]>
impl Dimension for Dim<[usize; 3]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§type Pattern = (usize, usize, usize)
type Pattern = (usize, usize, usize)
Source§fn into_pattern(self) -> <Dim<[usize; 3]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 3]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 3]>
fn zeros(ndim: usize) -> Dim<[usize; 3]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<[usize; 4]>
impl Dimension for Dim<[usize; 4]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§type Pattern = (usize, usize, usize, usize)
type Pattern = (usize, usize, usize, usize)
Source§fn into_pattern(self) -> <Dim<[usize; 4]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 4]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 4]>
fn zeros(ndim: usize) -> Dim<[usize; 4]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<[usize; 5]>
impl Dimension for Dim<[usize; 5]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§type Pattern = (usize, usize, usize, usize, usize)
type Pattern = (usize, usize, usize, usize, usize)
Source§fn into_pattern(self) -> <Dim<[usize; 5]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 5]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 5]>
fn zeros(ndim: usize) -> Dim<[usize; 5]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<[usize; 6]>
impl Dimension for Dim<[usize; 6]>
Source§const NDIM: Option<usize>
const NDIM: Option<usize>
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§type Pattern = (usize, usize, usize, usize, usize, usize)
type Pattern = (usize, usize, usize, usize, usize, usize)
Source§fn into_pattern(self) -> <Dim<[usize; 6]> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<[usize; 6]> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<[usize; 6]>
fn zeros(ndim: usize) -> Dim<[usize; 6]>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
fn as_array_view(&self) -> ArrayBase<ViewRepr<&usize>, Dim<[usize; 1]>>
Source§impl Dimension for Dim<IxDynImpl>
IxDyn is a “dynamic” index, pretty hard to use when indexing,
and memory wasteful, but it allows an arbitrary and dynamic number of axes.
impl Dimension for Dim<IxDynImpl>
IxDyn is a “dynamic” index, pretty hard to use when indexing, and memory wasteful, but it allows an arbitrary and dynamic number of axes.
Source§const NDIM: Option<usize> = None
const NDIM: Option<usize> = None
Ix2), this should be
Some(ndim), and for variable-size dimension representations (e.g.
IxDyn), this should be None.Source§type Pattern = Dim<IxDynImpl>
type Pattern = Dim<IxDynImpl>
Source§fn into_pattern(self) -> <Dim<IxDynImpl> as Dimension>::Pattern
fn into_pattern(self) -> <Dim<IxDynImpl> as Dimension>::Pattern
Source§fn zeros(ndim: usize) -> Dim<IxDynImpl>
fn zeros(ndim: usize) -> Dim<IxDynImpl>
Source§fn into_dyn(self) -> Dim<IxDynImpl>
fn into_dyn(self) -> Dim<IxDynImpl>
Source§fn size_checked(&self) -> Option<usize>
fn size_checked(&self) -> Option<usize>
Source§impl<E, D1, D2> LeastSquaresSvd<D2, E, Dim<[usize; 1]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for immutable references and a single
column vector as a right-hand side.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
impl<E, D1, D2> LeastSquaresSvd<D2, E, Dim<[usize; 1]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for immutable references and a single
column vector as a right-hand side.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
Source§fn least_squares(
&self,
rhs: &ArrayBase<D2, Dim<[usize; 1]>>,
) -> Result<LeastSquaresResult<E, Dim<[usize; 1]>>, LinalgError>
fn least_squares( &self, rhs: &ArrayBase<D2, Dim<[usize; 1]>>, ) -> Result<LeastSquaresResult<E, Dim<[usize; 1]>>, LinalgError>
Solve a least squares problem of the form Ax = rhs
by calling A.least_squares(&rhs), where rhs is a
single column vector. A and rhs are unchanged.
A and rhs must have the same layout, i.e. they must
be both either row- or column-major format, otherwise a
IncompatibleShape error is raised.
Source§impl<E, D1, D2> LeastSquaresSvd<D2, E, Dim<[usize; 2]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for immutable references and matrix
(=mulitipe vectors) as a right-hand side.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
impl<E, D1, D2> LeastSquaresSvd<D2, E, Dim<[usize; 2]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for immutable references and matrix
(=mulitipe vectors) as a right-hand side.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
Source§fn least_squares(
&self,
rhs: &ArrayBase<D2, Dim<[usize; 2]>>,
) -> Result<LeastSquaresResult<E, Dim<[usize; 2]>>, LinalgError>
fn least_squares( &self, rhs: &ArrayBase<D2, Dim<[usize; 2]>>, ) -> Result<LeastSquaresResult<E, Dim<[usize; 2]>>, LinalgError>
Solve a least squares problem of the form Ax = rhs
by calling A.least_squares(&rhs), where rhs is
matrix. A and rhs are unchanged.
A and rhs must have the same layout, i.e. they must
be both either row- or column-major format, otherwise a
IncompatibleShape error is raised.
Source§impl<E, D1, D2> LeastSquaresSvdInPlace<D2, E, Dim<[usize; 1]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for mutable references and a vector
as a right-hand side. Both values are overwritten in the
call.
impl<E, D1, D2> LeastSquaresSvdInPlace<D2, E, Dim<[usize; 1]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for mutable references and a vector as a right-hand side. Both values are overwritten in the call.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
Source§fn least_squares_in_place(
&mut self,
rhs: &mut ArrayBase<D2, Dim<[usize; 1]>>,
) -> Result<LeastSquaresResult<E, Dim<[usize; 1]>>, LinalgError>
fn least_squares_in_place( &mut self, rhs: &mut ArrayBase<D2, Dim<[usize; 1]>>, ) -> Result<LeastSquaresResult<E, Dim<[usize; 1]>>, LinalgError>
Solve a least squares problem of the form Ax = rhs
by calling A.least_squares(rhs), where rhs is a
vector. A and rhs are overwritten in the call.
A and rhs must have the same layout, i.e. they must
be both either row- or column-major format, otherwise a
IncompatibleShape error is raised.
Source§impl<E, D1, D2> LeastSquaresSvdInPlace<D2, E, Dim<[usize; 2]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for mutable references and a matrix
as a right-hand side. Both values are overwritten in the
call.
impl<E, D1, D2> LeastSquaresSvdInPlace<D2, E, Dim<[usize; 2]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for mutable references and a matrix as a right-hand side. Both values are overwritten in the call.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
Source§fn least_squares_in_place(
&mut self,
rhs: &mut ArrayBase<D2, Dim<[usize; 2]>>,
) -> Result<LeastSquaresResult<E, Dim<[usize; 2]>>, LinalgError>
fn least_squares_in_place( &mut self, rhs: &mut ArrayBase<D2, Dim<[usize; 2]>>, ) -> Result<LeastSquaresResult<E, Dim<[usize; 2]>>, LinalgError>
Solve a least squares problem of the form Ax = rhs
by calling A.least_squares(rhs), where rhs is a
matrix. A and rhs are overwritten in the call.
A and rhs must have the same layout, i.e. they must
be both either row- or column-major format, otherwise a
IncompatibleShape error is raised.
Source§impl<E, D1, D2> LeastSquaresSvdInto<D2, E, Dim<[usize; 1]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for owned values and a single
column vector as a right-hand side. The matrix and the RHS
vector are consumed.
impl<E, D1, D2> LeastSquaresSvdInto<D2, E, Dim<[usize; 1]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for owned values and a single column vector as a right-hand side. The matrix and the RHS vector are consumed.
E is one of f32, f64, c32, c64. D can be any
valid representation for ArrayBase.
Source§fn least_squares_into(
self,
rhs: ArrayBase<D2, Dim<[usize; 1]>>,
) -> Result<LeastSquaresResult<E, Dim<[usize; 1]>>, LinalgError>
fn least_squares_into( self, rhs: ArrayBase<D2, Dim<[usize; 1]>>, ) -> Result<LeastSquaresResult<E, Dim<[usize; 1]>>, LinalgError>
Solve a least squares problem of the form Ax = rhs
by calling A.least_squares(rhs), where rhs is a
single column vector. A and rhs are consumed.
A and rhs must have the same layout, i.e. they must
be both either row- or column-major format, otherwise a
IncompatibleShape error is raised.
Source§impl<E, D1, D2> LeastSquaresSvdInto<D2, E, Dim<[usize; 2]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for owned values and a matrix
as a right-hand side. The matrix and the RHS matrix
are consumed.
impl<E, D1, D2> LeastSquaresSvdInto<D2, E, Dim<[usize; 2]>> for ArrayBase<D1, Dim<[usize; 2]>>
Solve least squares for owned values and a matrix as a right-hand side. The matrix and the RHS matrix are consumed.
E is one of f32, f64, c32, c64. D1, D2 can be any
valid representation for ArrayBase (over E).
Source§fn least_squares_into(
self,
rhs: ArrayBase<D2, Dim<[usize; 2]>>,
) -> Result<LeastSquaresResult<E, Dim<[usize; 2]>>, LinalgError>
fn least_squares_into( self, rhs: ArrayBase<D2, Dim<[usize; 2]>>, ) -> Result<LeastSquaresResult<E, Dim<[usize; 2]>>, LinalgError>
Solve a least squares problem of the form Ax = rhs
by calling A.least_squares(rhs), where rhs is a
matrix. A and rhs are consumed.
A and rhs must have the same layout, i.e. they must
be both either row- or column-major format, otherwise a
IncompatibleShape error is raised.
Source§impl<'a, I> MulAssign<&'a Dim<I>> for Dim<I>
impl<'a, I> MulAssign<&'a Dim<I>> for Dim<I>
Source§fn mul_assign(&mut self, rhs: &Dim<I>)
fn mul_assign(&mut self, rhs: &Dim<I>)
*= operation. Read moreSource§impl<I> MulAssign<usize> for Dim<I>
impl<I> MulAssign<usize> for Dim<I>
Source§fn mul_assign(&mut self, rhs: usize)
fn mul_assign(&mut self, rhs: usize)
*= operation. Read moreSource§impl<I> MulAssign for Dim<I>
impl<I> MulAssign for Dim<I>
Source§fn mul_assign(&mut self, rhs: Dim<I>)
fn mul_assign(&mut self, rhs: Dim<I>)
*= operation. Read moreSource§impl<I> Serialize for Dim<I>where
I: Serialize,
Requires crate feature "serde"
impl<I> Serialize for Dim<I>where
I: Serialize,
Requires crate feature "serde"
Source§fn serialize<Se>(
&self,
serializer: Se,
) -> Result<<Se as Serializer>::Ok, <Se as Serializer>::Error>where
Se: Serializer,
fn serialize<Se>(
&self,
serializer: Se,
) -> Result<<Se as Serializer>::Ok, <Se as Serializer>::Error>where
Se: Serializer,
Source§impl Serialize for Dim<IxDynImpl>
Requires crate feature "serde"
impl Serialize for Dim<IxDynImpl>
Requires crate feature "serde"
Source§fn serialize<Se>(
&self,
serializer: Se,
) -> Result<<Se as Serializer>::Ok, <Se as Serializer>::Error>where
Se: Serializer,
fn serialize<Se>(
&self,
serializer: Se,
) -> Result<<Se as Serializer>::Ok, <Se as Serializer>::Error>where
Se: Serializer,
Source§impl<A, Si, So> SolveTriangularInplace<So, Dim<[usize; 2]>> for ArrayBase<Si, Dim<[usize; 2]>>
impl<A, Si, So> SolveTriangularInplace<So, Dim<[usize; 2]>> for ArrayBase<Si, Dim<[usize; 2]>>
Source§impl<A, S> SolveTridiagonal<A, Dim<[usize; 1]>> for ArrayBase<S, Dim<[usize; 2]>>
impl<A, S> SolveTridiagonal<A, Dim<[usize; 1]>> for ArrayBase<S, Dim<[usize; 2]>>
Source§fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for LUFactorizedTridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for LUFactorizedTridiagonal<A>
Source§fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for Tridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for Tridiagonal<A>
Source§fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A, S> SolveTridiagonal<A, Dim<[usize; 2]>> for ArrayBase<S, Dim<[usize; 2]>>
impl<A, S> SolveTridiagonal<A, Dim<[usize; 2]>> for ArrayBase<S, Dim<[usize; 2]>>
Source§fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
Source§fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for Tridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for Tridiagonal<A>
Source§fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A, S> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for ArrayBase<S, Dim<[usize; 2]>>
impl<A, S> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for ArrayBase<S, Dim<[usize; 2]>>
Source§fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
Source§fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for Tridiagonal<A>
impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for Tridiagonal<A>
Source§fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^T * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
A^H * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§impl<'a, I> SubAssign<&'a Dim<I>> for Dim<I>
impl<'a, I> SubAssign<&'a Dim<I>> for Dim<I>
Source§fn sub_assign(&mut self, rhs: &Dim<I>)
fn sub_assign(&mut self, rhs: &Dim<I>)
-= operation. Read moreSource§impl SubAssign<usize> for Dim<[usize; 1]>
impl SubAssign<usize> for Dim<[usize; 1]>
Source§fn sub_assign(&mut self, rhs: usize)
fn sub_assign(&mut self, rhs: usize)
-= operation. Read moreSource§impl<I> SubAssign for Dim<I>
impl<I> SubAssign for Dim<I>
Source§fn sub_assign(&mut self, rhs: Dim<I>)
fn sub_assign(&mut self, rhs: Dim<I>)
-= operation. Read moreimpl<I> Copy for Dim<I>
impl<I> Eq for Dim<I>
impl NdIndex<Dim<[usize; 0]>> for [usize; 0]
impl NdIndex<Dim<[usize; 0]>> for ()
impl NdIndex<Dim<[usize; 1]>> for [usize; 1]
impl NdIndex<Dim<[usize; 1]>> for usize
impl NdIndex<Dim<[usize; 2]>> for [usize; 2]
impl NdIndex<Dim<[usize; 2]>> for (usize, usize)
impl NdIndex<Dim<[usize; 3]>> for [usize; 3]
impl NdIndex<Dim<[usize; 3]>> for (usize, usize, usize)
impl NdIndex<Dim<[usize; 4]>> for [usize; 4]
impl NdIndex<Dim<[usize; 4]>> for (usize, usize, usize, usize)
impl NdIndex<Dim<[usize; 5]>> for [usize; 5]
impl NdIndex<Dim<[usize; 5]>> for (usize, usize, usize, usize, usize)
impl NdIndex<Dim<[usize; 6]>> for [usize; 6]
impl NdIndex<Dim<[usize; 6]>> for (usize, usize, usize, usize, usize, usize)
impl<'a> NdIndex<Dim<IxDynImpl>> for &'a [usize]
impl<'a> NdIndex<Dim<IxDynImpl>> for &'a Dim<IxDynImpl>
impl<const N: usize> NdIndex<Dim<IxDynImpl>> for [usize; N]
impl<const N: usize> NdIndex<Dim<IxDynImpl>> for Dim<[usize; N]>
impl NdIndex<Dim<IxDynImpl>> for usize
impl<I> StructuralPartialEq for Dim<I>where
I: ?Sized,
Auto Trait Implementations§
impl<I> Freeze for Dim<I>
impl<I> RefUnwindSafe for Dim<I>where
I: RefUnwindSafe + ?Sized,
impl<I> Send for Dim<I>
impl<I> Sync for Dim<I>
impl<I> Unpin for Dim<I>
impl<I> UnwindSafe for Dim<I>where
I: UnwindSafe + ?Sized,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<D> IntoDimension for Dwhere
D: Dimension,
impl<D> IntoDimension for Dwhere
D: Dimension,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> ShapeArg for Twhere
T: IntoDimension,
impl<T> ShapeArg for Twhere
T: IntoDimension,
Source§impl<T> ShapeBuilder for Twhere
T: IntoDimension,
impl<T> ShapeBuilder for Twhere
T: IntoDimension,
type Dim = <T as IntoDimension>::Dim
type Strides = T
fn into_shape_with_order(self) -> Shape<<T as ShapeBuilder>::Dim>
fn f(self) -> Shape<<T as ShapeBuilder>::Dim>
fn set_f(self, is_f: bool) -> Shape<<T as ShapeBuilder>::Dim>
fn strides(self, st: T) -> StrideShape<<T as ShapeBuilder>::Dim>
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.