pub struct LUFactorizedTridiagonal<A>where
A: Scalar,{
pub a: Tridiagonal<A>,
pub du2: Vec<A>,
pub ipiv: Vec<i32>,
pub a_opnorm_one: <A as Scalar>::Real,
}Expand description
Represents the LU factorization of a tridiagonal matrix A as A = P*L*U.
Fields§
§a: Tridiagonal<A>A tridiagonal matrix which consists of
- l : layout of raw matrix
- dl: (n-1) multipliers that define the matrix L.
- d : (n) diagonal elements of the upper triangular matrix U.
- du: (n-1) elements of the first super-diagonal of U.
du2: Vec<A>(n-2) elements of the second super-diagonal of U.
ipiv: Vec<i32>The pivot indices that define the permutation matrix P.
a_opnorm_one: <A as Scalar>::RealTrait Implementations§
Source§impl<A> Clone for LUFactorizedTridiagonal<A>
impl<A> Clone for LUFactorizedTridiagonal<A>
Source§fn clone(&self) -> LUFactorizedTridiagonal<A>
fn clone(&self) -> LUFactorizedTridiagonal<A>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<A> PartialEq for LUFactorizedTridiagonal<A>
impl<A> PartialEq for LUFactorizedTridiagonal<A>
Source§impl<A> ReciprocalConditionNumTridiagonal<A> for LUFactorizedTridiagonal<A>
impl<A> ReciprocalConditionNumTridiagonal<A> for LUFactorizedTridiagonal<A>
Source§fn rcond_tridiagonal(&self) -> Result<<A as Scalar>::Real, LinalgError>
fn rcond_tridiagonal(&self) -> Result<<A as Scalar>::Real, LinalgError>
Estimates the reciprocal of the condition number of the tridiagonal matrix in
1-norm. Read more
Source§impl<A> ReciprocalConditionNumTridiagonalInto<A> for LUFactorizedTridiagonal<A>
impl<A> ReciprocalConditionNumTridiagonalInto<A> for LUFactorizedTridiagonal<A>
Source§fn rcond_tridiagonal_into(self) -> Result<<A as Scalar>::Real, LinalgError>
fn rcond_tridiagonal_into(self) -> Result<<A as Scalar>::Real, LinalgError>
Estimates the reciprocal of the condition number of the tridiagonal matrix in
1-norm. Read more
Source§impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for LUFactorizedTridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for LUFactorizedTridiagonal<A>
Source§fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
Source§fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_t_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
fn solve_h_tridiagonal<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 2]>>,
) -> Result<ArrayBase<S, Dim<[usize; 2]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for LUFactorizedTridiagonal<A>
Source§fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.impl<A> StructuralPartialEq for LUFactorizedTridiagonal<A>where
A: Scalar,
Auto Trait Implementations§
impl<A> Freeze for LUFactorizedTridiagonal<A>
impl<A> RefUnwindSafe for LUFactorizedTridiagonal<A>
impl<A> Send for LUFactorizedTridiagonal<A>
impl<A> Sync for LUFactorizedTridiagonal<A>
impl<A> Unpin for LUFactorizedTridiagonal<A>
impl<A> UnwindSafe for LUFactorizedTridiagonal<A>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.