pub struct OwnedRepr<A> { /* private fields */ }Expand description
Array’s representation.
Don’t use this type directly—use the type alias
Array for the array type!
Trait Implementations§
Source§impl<A> DataOwned for OwnedRepr<A>
impl<A> DataOwned for OwnedRepr<A>
Source§type MaybeUninit = OwnedRepr<MaybeUninit<A>>
type MaybeUninit = OwnedRepr<MaybeUninit<A>>
Corresponding owned data with MaybeUninit elements
Source§impl<A, Si> Factorize<OwnedRepr<A>> for ArrayBase<Si, Dim<[usize; 2]>>
impl<A, Si> Factorize<OwnedRepr<A>> for ArrayBase<Si, Dim<[usize; 2]>>
Source§fn factorize(&self) -> Result<LUFactorized<OwnedRepr<A>>, LinalgError>
fn factorize(&self) -> Result<LUFactorized<OwnedRepr<A>>, LinalgError>
Computes the LU factorization
A = P*L*U, where P is a permutation
matrix.Source§impl<A, Si> FactorizeC<OwnedRepr<A>> for ArrayBase<Si, Dim<[usize; 2]>>
impl<A, Si> FactorizeC<OwnedRepr<A>> for ArrayBase<Si, Dim<[usize; 2]>>
Source§fn factorizec(
&self,
uplo: UPLO,
) -> Result<CholeskyFactorized<OwnedRepr<A>>, LinalgError>
fn factorizec( &self, uplo: UPLO, ) -> Result<CholeskyFactorized<OwnedRepr<A>>, LinalgError>
Computes the Cholesky decomposition of the Hermitian (or real
symmetric) positive definite matrix. Read more
Source§impl<A, Si> FactorizeH<OwnedRepr<A>> for ArrayBase<Si, Dim<[usize; 2]>>
impl<A, Si> FactorizeH<OwnedRepr<A>> for ArrayBase<Si, Dim<[usize; 2]>>
Source§fn factorizeh(&self) -> Result<BKFactorized<OwnedRepr<A>>, LinalgError>
fn factorizeh(&self) -> Result<BKFactorized<OwnedRepr<A>>, LinalgError>
Computes the Bunch–Kaufman factorization of a Hermitian (or real
symmetric) matrix.
Source§impl<A, B> RawDataSubst<B> for OwnedRepr<A>
impl<A, B> RawDataSubst<B> for OwnedRepr<A>
impl<A> Data for OwnedRepr<A>
impl<A> DataMut for OwnedRepr<A>
impl<A> RawDataClone for OwnedRepr<A>where
A: Clone,
impl<A> RawDataMut for OwnedRepr<A>
impl<A> Send for OwnedRepr<A>where
A: Send,
impl<A> Sync for OwnedRepr<A>where
A: Sync,
Auto Trait Implementations§
impl<A> Freeze for OwnedRepr<A>
impl<A> RefUnwindSafe for OwnedRepr<A>where
A: RefUnwindSafe,
impl<A> Unpin for OwnedRepr<A>
impl<A> UnwindSafe for OwnedRepr<A>where
A: RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.