pub struct Tridiagonal<A>where
A: Scalar,{
pub l: MatrixLayout,
pub dl: Vec<A>,
pub d: Vec<A>,
pub du: Vec<A>,
}Expand description
Represents a tridiagonal matrix as 3 one-dimensional vectors.
[d0, u1, 0, ..., 0,
l1, d1, u2, ...,
0, l2, d2,
... ..., u{n-1},
0, ..., l{n-1}, d{n-1},]Fields§
§l: MatrixLayoutlayout of raw matrix
dl: Vec<A>(n-1) sub-diagonal elements of matrix.
d: Vec<A>(n) diagonal elements of matrix.
du: Vec<A>(n-1) super-diagonal elements of matrix.
Trait Implementations§
Source§impl<A> Clone for Tridiagonal<A>
impl<A> Clone for Tridiagonal<A>
Source§fn clone(&self) -> Tridiagonal<A>
fn clone(&self) -> Tridiagonal<A>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<A> DeterminantTridiagonal<A> for Tridiagonal<A>where
A: Scalar,
impl<A> DeterminantTridiagonal<A> for Tridiagonal<A>where
A: Scalar,
Source§fn det_tridiagonal(&self) -> Result<A, LinalgError>
fn det_tridiagonal(&self) -> Result<A, LinalgError>
Computes the determinant of the matrix.
Unlike
.det() of Determinant trait, this method
doesn’t returns the natural logarithm of the determinant
but the determinant itself.Source§impl<A> FactorizeTridiagonal<A> for Tridiagonal<A>
impl<A> FactorizeTridiagonal<A> for Tridiagonal<A>
Source§fn factorize_tridiagonal(
&self,
) -> Result<LUFactorizedTridiagonal<A>, LinalgError>
fn factorize_tridiagonal( &self, ) -> Result<LUFactorizedTridiagonal<A>, LinalgError>
Computes the LU factorization
A = P*L*U, where P is a permutation
matrix.Source§impl<A> FactorizeTridiagonalInto<A> for Tridiagonal<A>
impl<A> FactorizeTridiagonalInto<A> for Tridiagonal<A>
Source§fn factorize_tridiagonal_into(
self,
) -> Result<LUFactorizedTridiagonal<A>, LinalgError>
fn factorize_tridiagonal_into( self, ) -> Result<LUFactorizedTridiagonal<A>, LinalgError>
Computes the LU factorization
A = P*L*U, where P is a permutation
matrix.Source§impl<A> OperationNorm for Tridiagonal<A>
impl<A> OperationNorm for Tridiagonal<A>
fn opnorm( &self, t: NormType, ) -> Result<<Tridiagonal<A> as OperationNorm>::Output, LinalgError>
Source§fn opnorm_one(&self) -> Result<Self::Output, LinalgError>
fn opnorm_one(&self) -> Result<Self::Output, LinalgError>
the one norm of a matrix (maximum column sum)
Source§fn opnorm_inf(&self) -> Result<Self::Output, LinalgError>
fn opnorm_inf(&self) -> Result<Self::Output, LinalgError>
the infinity norm of a matrix (maximum row sum)
Source§fn opnorm_fro(&self) -> Result<Self::Output, LinalgError>
fn opnorm_fro(&self) -> Result<Self::Output, LinalgError>
the Frobenius norm of a matrix (square root of sum of squares)
Source§impl<A> PartialEq for Tridiagonal<A>
impl<A> PartialEq for Tridiagonal<A>
Source§impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for Tridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 1]>> for Tridiagonal<A>
Source§fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
Sb: Data<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for Tridiagonal<A>
impl<A> SolveTridiagonal<A, Dim<[usize; 2]>> for Tridiagonal<A>
Source§fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_t_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
fn solve_h_tridiagonal<Sb>(
&self,
b: &ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 2]>>, LinalgError>where
Sb: Data<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_into<Sb>(
&self,
b: ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b with tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result.Source§impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for Tridiagonal<A>
impl<A> SolveTridiagonalInplace<A, Dim<[usize; 2]>> for Tridiagonal<A>
Source§fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_t_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^T * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.Source§fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solve_h_tridiagonal_inplace<'a, Sb>(
&self,
rhs: &'a mut ArrayBase<Sb, Dim<[usize; 2]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 2]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A^H * x = b tridiagonal
matrix A, where A is self, b is the argument, and
x is the successful result. The value of x is also assigned to the
argument.impl<A> Eq for Tridiagonal<A>
impl<A> StructuralPartialEq for Tridiagonal<A>where
A: Scalar,
Auto Trait Implementations§
impl<A> Freeze for Tridiagonal<A>
impl<A> RefUnwindSafe for Tridiagonal<A>where
A: RefUnwindSafe,
impl<A> Send for Tridiagonal<A>where
A: Send,
impl<A> Sync for Tridiagonal<A>where
A: Sync,
impl<A> Unpin for Tridiagonal<A>where
A: Unpin,
impl<A> UnwindSafe for Tridiagonal<A>where
A: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.