pub struct RingRef<'a, R: RingBase + ?Sized> { /* private fields */ }Expand description
The second most basic crate::ring::RingStore. Similarly to
crate::ring::RingValue it is just a no-op container.
§Why do we need this in addition to crate::ring::RingValue?
Before RingValue::from_ref() was added, this was important to
allow using a reference to a RingBase as RingStore. Since then,
it indeed has only a marginal importance, but note that it is currently
the only way of working with unsized rings (an admittedly pretty exotic
case).
Implementations§
Trait Implementations§
Source§impl<'a, R: RingBase + ?Sized> RingStore for RingRef<'a, R>
impl<'a, R: RingBase + ?Sized> RingStore for RingRef<'a, R>
Source§fn add_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
fn add_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
Source§fn add_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
fn add_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
Source§fn sub_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
fn sub_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
Source§fn sub_self_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
fn sub_self_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
Source§fn sub_self_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
fn sub_self_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
Source§fn negate_inplace(&self, lhs: &mut El<Self>)
fn negate_inplace(&self, lhs: &mut El<Self>)
Source§fn mul_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
fn mul_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
Source§fn mul_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
fn mul_assign_ref(&self, lhs: &mut El<Self>, rhs: &El<Self>)
Source§fn zero(&self) -> El<Self>
fn zero(&self) -> El<Self>
See
RingBase::zero()Source§fn one(&self) -> El<Self>
fn one(&self) -> El<Self>
See
RingBase::one()Source§fn is_neg_one(&self, value: &El<Self>) -> bool
fn is_neg_one(&self, value: &El<Self>) -> bool
Source§fn is_commutative(&self) -> bool
fn is_commutative(&self) -> bool
Source§fn is_noetherian(&self) -> bool
fn is_noetherian(&self) -> bool
Source§fn sub_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
fn sub_assign(&self, lhs: &mut El<Self>, rhs: El<Self>)
Source§fn coerce<S>(&self, from: &S, el: El<S>) -> El<Self>
fn coerce<S>(&self, from: &S, el: El<S>) -> El<Self>
Tries to map the given element into this ring. Read more
Source§fn into_identity(self) -> Identity<Self>
fn into_identity(self) -> Identity<Self>
Returns the identity map
self -> self.Source§fn into_can_hom<S>(self, from: S) -> Result<CanHom<S, Self>, (S, Self)>
fn into_can_hom<S>(self, from: S) -> Result<CanHom<S, Self>, (S, Self)>
Returns the canonical homomorphism
from -> self, if it exists,
moving both rings into the CanHom object.Source§fn into_can_iso<S>(self, from: S) -> Result<CanIso<S, Self>, (S, Self)>
fn into_can_iso<S>(self, from: S) -> Result<CanIso<S, Self>, (S, Self)>
Returns the canonical isomorphism
from -> self, if it exists,
moving both rings into the CanHom object.Source§fn can_hom<'a, S>(&'a self, from: &'a S) -> Option<CanHom<&'a S, &'a Self>>
fn can_hom<'a, S>(&'a self, from: &'a S) -> Option<CanHom<&'a S, &'a Self>>
Returns the canonical homomorphism
from -> self, if it exists.Source§fn can_iso<'a, S>(&'a self, from: &'a S) -> Option<CanIso<&'a S, &'a Self>>
fn can_iso<'a, S>(&'a self, from: &'a S) -> Option<CanIso<&'a S, &'a Self>>
Returns the canonical isomorphism
from -> self, if it exists.Source§fn into_int_hom(self) -> IntHom<Self>
fn into_int_hom(self) -> IntHom<Self>
Returns the homomorphism
Z -> self that exists for any ring.Source§fn int_hom<'a>(&'a self) -> IntHom<&'a Self>
fn int_hom<'a>(&'a self) -> IntHom<&'a Self>
Returns the homomorphism
Z -> self that exists for any ring.Source§fn sum<I>(&self, els: I) -> El<Self>where
I: IntoIterator<Item = El<Self>>,
fn sum<I>(&self, els: I) -> El<Self>where
I: IntoIterator<Item = El<Self>>,
Computes the sum of all elements returned by the iterator. Read more
Source§fn try_sum<I, E>(&self, els: I) -> Result<El<Self>, E>
fn try_sum<I, E>(&self, els: I) -> Result<El<Self>, E>
Equivalent of
RingStore::sum() if the producer of the ring elements
can fail, in which case summation is aborted and the error returned.Source§fn prod<I>(&self, els: I) -> El<Self>where
I: IntoIterator<Item = El<Self>>,
fn prod<I>(&self, els: I) -> El<Self>where
I: IntoIterator<Item = El<Self>>,
Computes the product of all elements returned by the iterator. Read more
Source§fn pow(&self, x: El<Self>, power: usize) -> El<Self>
fn pow(&self, x: El<Self>, power: usize) -> El<Self>
Raises the given element to the given power.
Source§fn pow_gen<R: RingStore>(
&self,
x: El<Self>,
power: &El<R>,
integers: R,
) -> El<Self>where
R::Type: IntegerRing,
fn pow_gen<R: RingStore>(
&self,
x: El<Self>,
power: &El<R>,
integers: R,
) -> El<Self>where
R::Type: IntegerRing,
Raises the given element to the given power, which should be a positive integer
belonging to an arbitrary
IntegerRing. Read moreSource§fn format<'a>(
&'a self,
value: &'a El<Self>,
) -> RingElementDisplayWrapper<'a, Self>
fn format<'a>( &'a self, value: &'a El<Self>, ) -> RingElementDisplayWrapper<'a, Self>
Returns an object that represents the given ring element and implements
std::fmt::Display, to use as formatting parameter. Read moreSource§fn println(&self, value: &El<Self>)
fn println(&self, value: &El<Self>)
Prints the given element. Use for quick & dirty debugging.
Source§fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
impl<'a, R: RingBase + ?Sized> Copy for RingRef<'a, R>
Auto Trait Implementations§
impl<'a, R> Freeze for RingRef<'a, R>where
R: ?Sized,
impl<'a, R> RefUnwindSafe for RingRef<'a, R>where
R: RefUnwindSafe + ?Sized,
impl<'a, R> Send for RingRef<'a, R>
impl<'a, R> Sync for RingRef<'a, R>
impl<'a, R> Unpin for RingRef<'a, R>where
R: ?Sized,
impl<'a, R> UnwindSafe for RingRef<'a, R>where
R: RefUnwindSafe + ?Sized,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<R> DivisibilityRingStore for R
impl<R> DivisibilityRingStore for R
Source§impl<R> EuclideanRingStore for R
impl<R> EuclideanRingStore for R
Source§impl<R> FiniteRingStore for R
impl<R> FiniteRingStore for R
Source§fn elements<'a>(&'a self) -> <Self::Type as FiniteRing>::ElementsIter<'a>
fn elements<'a>(&'a self) -> <Self::Type as FiniteRing>::ElementsIter<'a>
Source§fn size<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
fn size<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
See
FiniteRing::size().Source§impl<R> FreeAlgebraStore for R
impl<R> FreeAlgebraStore for R
Source§fn canonical_gen(&self) -> El<Self>
fn canonical_gen(&self) -> El<Self>
Source§fn wrt_canonical_basis<'a>(
&'a self,
el: &'a El<Self>,
) -> <Self::Type as FreeAlgebra>::VectorRepresentation<'a>
fn wrt_canonical_basis<'a>( &'a self, el: &'a El<Self>, ) -> <Self::Type as FreeAlgebra>::VectorRepresentation<'a>
Source§fn from_canonical_basis<V>(&self, vec: V) -> El<Self>where
V: IntoIterator<Item = El<<Self::Type as RingExtension>::BaseRing>>,
V::IntoIter: DoubleEndedIterator,
fn from_canonical_basis<V>(&self, vec: V) -> El<Self>where
V: IntoIterator<Item = El<<Self::Type as RingExtension>::BaseRing>>,
V::IntoIter: DoubleEndedIterator,
Source§fn from_canonical_basis_extended<V>(&self, vec: V) -> El<Self>
fn from_canonical_basis_extended<V>(&self, vec: V) -> El<Self>
Source§fn generating_poly<P, H>(&self, poly_ring: P, hom: H) -> El<P>where
P: PolyRingStore,
P::Type: PolyRing,
H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>,
fn generating_poly<P, H>(&self, poly_ring: P, hom: H) -> El<P>where
P: PolyRingStore,
P::Type: PolyRing,
H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>,
Returns the generating polynomial of this ring, i.e. the monic polynomial
f(X) such that this ring is isomorphic
to R[X]/(f(X)), where R is the base ring.Source§fn as_field(self) -> Result<AsField<Self>, Self>where
Self::Type: DivisibilityRing,
<<Self::Type as RingExtension>::BaseRing as RingStore>::Type: Field + FactorPolyField,
fn as_field(self) -> Result<AsField<Self>, Self>where
Self::Type: DivisibilityRing,
<<Self::Type as RingExtension>::BaseRing as RingStore>::Type: Field + FactorPolyField,
If this ring is a field, returns a wrapper around this ring that implements
crate::field::FieldStore. Read moreSource§fn poly_repr<P, H>(&self, to: P, el: &El<Self>, hom: H) -> El<P>where
P: PolyRingStore,
P::Type: PolyRing,
H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>,
fn poly_repr<P, H>(&self, to: P, el: &El<Self>, hom: H) -> El<P>where
P: PolyRingStore,
P::Type: PolyRing,
H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>,
Returns the polynomial representation of the given element
y, i.e. the polynomial f(X) of degree at most
FreeAlgebraStore::rank() such that f(x) = y, where y is the canonical generator of this ring, as given by
FreeAlgebraStore::canonical_gen().Source§fn discriminant(&self) -> El<<Self::Type as RingExtension>::BaseRing>
fn discriminant(&self) -> El<<Self::Type as RingExtension>::BaseRing>
Computes the discriminant of the canonical basis of this ring extension,
which is defined as the determinant of the trace matrix
(Tr(a^(i + j))),
where a is the canonical generator of this ring extension. Read moreSource§fn charpoly<P, H>(&self, el: &El<Self>, poly_ring: P, hom: H) -> El<P>where
P: RingStore,
P::Type: PolyRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing,
H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>,
fn charpoly<P, H>(&self, el: &El<Self>, poly_ring: P, hom: H) -> El<P>where
P: RingStore,
P::Type: PolyRing,
<<P::Type as RingExtension>::BaseRing as RingStore>::Type: LinSolveRing,
H: Homomorphism<<<Self::Type as RingExtension>::BaseRing as RingStore>::Type, <<P::Type as RingExtension>::BaseRing as RingStore>::Type>,
See also
FreeAlgebra::charpoly().fn with_wrapped_generator<'a, F, const M: usize>( &'a self, f: F, ) -> [El<Self>; M]
Source§impl<R> HashableElRingStore for R
impl<R> HashableElRingStore for R
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<R> LinSolveRingStore for R
impl<R> LinSolveRingStore for R
Source§fn solve_right<V1, V2, V3>(
&self,
lhs: SubmatrixMut<'_, V1, El<Self>>,
rhs: SubmatrixMut<'_, V2, El<Self>>,
out: SubmatrixMut<'_, V3, El<Self>>,
) -> SolveResultwhere
V1: AsPointerToSlice<El<Self>>,
V2: AsPointerToSlice<El<Self>>,
V3: AsPointerToSlice<El<Self>>,
fn solve_right<V1, V2, V3>(
&self,
lhs: SubmatrixMut<'_, V1, El<Self>>,
rhs: SubmatrixMut<'_, V2, El<Self>>,
out: SubmatrixMut<'_, V3, El<Self>>,
) -> SolveResultwhere
V1: AsPointerToSlice<El<Self>>,
V2: AsPointerToSlice<El<Self>>,
V3: AsPointerToSlice<El<Self>>,
Solves a linear system
lhs * X = rhs. Read moreSource§fn solve_right_with<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, El<Self>>,
rhs: SubmatrixMut<'_, V2, El<Self>>,
out: SubmatrixMut<'_, V3, El<Self>>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<El<Self>>,
V2: AsPointerToSlice<El<Self>>,
V3: AsPointerToSlice<El<Self>>,
A: Allocator,
fn solve_right_with<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, El<Self>>,
rhs: SubmatrixMut<'_, V2, El<Self>>,
out: SubmatrixMut<'_, V3, El<Self>>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<El<Self>>,
V2: AsPointerToSlice<El<Self>>,
V3: AsPointerToSlice<El<Self>>,
A: Allocator,
Solves a linear system
lhs * X = rhs. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R> PrincipalIdealRingStore for R
impl<R> PrincipalIdealRingStore for R
Source§fn extended_ideal_gen(
&self,
lhs: &El<Self>,
rhs: &El<Self>,
) -> (El<Self>, El<Self>, El<Self>)
fn extended_ideal_gen( &self, lhs: &El<Self>, rhs: &El<Self>, ) -> (El<Self>, El<Self>, El<Self>)
Source§fn annihilator(&self, val: &El<Self>) -> El<Self>
fn annihilator(&self, val: &El<Self>) -> El<Self>
Source§impl<R> RingExtensionStore for R
impl<R> RingExtensionStore for R
Source§fn into_inclusion(self) -> Inclusion<Self>
fn into_inclusion(self) -> Inclusion<Self>
Returns the inclusion map of the base ring
R -> self.