feanor_math/rings/zn/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
use crate::divisibility::DivisibilityRingStore;
use crate::pid::EuclideanRingStore;
use crate::pid::PrincipalIdealRing;
use crate::primitive_int::StaticRing;
use crate::ring::*;
use crate::divisibility::DivisibilityRing;
use crate::algorithms;
use crate::integer::*;
use crate::homomorphism::*;
use crate::ordered::*;
use super::field::AsFieldBase;
use super::finite::FiniteRing;
use crate::rings::finite::FiniteRingStore;
use crate::pid::*;

///
/// This module contains [`zn_big::Zn`], a general-purpose implementation of
/// Barett reduction. It is relatively slow when instantiated with small fixed-size
/// integer type. 
/// 
pub mod zn_big;
///
/// This module contains [`zn_64::Zn`], the new, heavily optimized implementation of `Z/nZ`
/// for moduli `n` of size slightly smaller than 64 bits.
/// 
pub mod zn_64;
///
/// This module contains [`zn_static::Zn`], an implementation of `Z/nZ` for a small `n`
/// that is known at compile-time.
/// 
pub mod zn_static;
///
/// This module contains [`zn_rns::Zn`], a residue number system (RNS) implementation of
/// `Z/nZ` for highly composite `n`. 
/// 
pub mod zn_rns;

///
/// Trait for all rings that represent a quotient of the integers `Z/nZ` for some integer `n`.
/// 
pub trait ZnRing: PrincipalIdealRing + FiniteRing + CanHomFrom<Self::IntegerRingBase> {

    /// 
    /// there seems to be a problem with associated type bounds, hence we cannot use `Integers: IntegerRingStore`
    /// or `Integers: RingStore<Type: IntegerRing>`
    /// 
    type IntegerRingBase: IntegerRing + ?Sized;
    type IntegerRing: RingStore<Type = Self::IntegerRingBase>;

    fn integer_ring(&self) -> &Self::IntegerRing;
    fn modulus(&self) -> &El<Self::IntegerRing>;

    ///
    /// Computes the smallest positive lift for some `x` in `Z/nZ`, i.e. the smallest positive integer `m` such that
    /// `m = x mod n`.
    /// 
    /// This will be one of `0, 1, ..., n - 1`. If an integer in `-(n - 1)/2, ..., -1, 0, 1, ..., (n - 1)/2` (for odd `n`)
    /// is needed instead, use [`ZnRing::smallest_lift()`].
    /// 
    fn smallest_positive_lift(&self, el: Self::Element) -> El<Self::IntegerRing>;

    ///
    /// Computes any lift for some `x` in `Z/nZ`, i.e. the some integer `m` such that `m = x mod n`.
    /// 
    /// The only requirement is that `m` is a valid element of the integer ring, in particular that
    /// it fits within the required amount of bits, if [`ZnRing::IntegerRing`] is a fixed-size integer ring.
    /// 
    fn any_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
        self.smallest_positive_lift(el)
    }

    ///
    /// If the given integer is within `{ 0, ..., n - 1 }`, returns the corresponding
    /// element in `Z/nZ`. Any other input is considered a logic error.
    /// 
    /// Unless the context is absolutely performance-critical, it might be safer to use
    /// the homomorphism provided by [`CanHomFrom`] which performs proper modular reduction
    /// of the input.
    /// 
    /// This function never causes undefined behavior, but an invalid input leads to
    /// a logic error. In particular, the result in such a case does not have to be
    /// congruent to the input mod `n`, nor does it even have to be a valid element
    /// of the ring (i.e. operations involving it may not follow the ring axioms).
    /// Implementors are strongly encouraged to check the element during debug builds. 
    /// 
    fn from_int_promise_reduced(&self, x: El<Self::IntegerRing>) -> Self::Element;

    ///
    /// Computes the smallest lift for some `x` in `Z/nZ`, i.e. the smallest integer `m` such that
    /// `m = x mod n`.
    /// 
    /// This will be one of `-(n - 1)/2, ..., -1, 0, 1, ..., (n - 1)/2` (for odd `n`). If an integer 
    /// in `0, 1, ..., n - 1` is needed instead, use [`ZnRing::smallest_positive_lift()`].
    /// 
    fn smallest_lift(&self, el: Self::Element) -> El<Self::IntegerRing> {
        let result = self.smallest_positive_lift(el);
        let mut mod_half = self.integer_ring().clone_el(self.modulus());
        self.integer_ring().euclidean_div_pow_2(&mut mod_half, 1);
        if self.integer_ring().is_gt(&result, &mod_half) {
            return self.integer_ring().sub_ref_snd(result, self.modulus());
        } else {
            return result;
        }
    }

    ///
    /// Returns whether this ring is a field, i.e. whether `n` is prime.
    /// 
    fn is_field(&self) -> bool {
        algorithms::miller_rabin::is_prime_base(RingRef::new(self), 10)
    }
}

///
/// Trait for implementations of [`ZnRing`] that can be created (possibly with a 
/// default configuration) from just the integer modulus.
/// 
/// I am not yet sure whether to use this trait, or opt for a factory trait (which
/// would then offer more flexibility).
/// 
#[stability::unstable(feature = "enable")]
pub trait FromModulusCreateableZnRing: Sized + ZnRing {

    fn create<F, E>(create_modulus: F) -> Result<Self, E>
        where F: FnOnce(&Self::IntegerRingBase) -> Result<El<Self::IntegerRing>, E>;
}

pub mod generic_impls {
    use std::alloc::Global;
    use std::marker::PhantomData;

    use crate::algorithms::convolution::STANDARD_CONVOLUTION;
    use crate::algorithms::int_bisect;
    use crate::ordered::*;
    use crate::primitive_int::{StaticRing, StaticRingBase};
    use crate::field::*;
    use crate::rings::zn::*;
    use crate::divisibility::DivisibilityRingStore;
    use crate::integer::{IntegerRing, IntegerRingStore};
    use crate::rings::extension::galois_field::{GaloisField, GaloisFieldOver};

    ///
    /// A generic `ZZ -> Z/nZ` homomorphism. Optimized for the case that values of `ZZ` can be very
    /// large, but allow for efficient estimation of their approximate size.
    /// 
    pub struct BigIntToZnHom<I: ?Sized + IntegerRing, J: ?Sized + IntegerRing, R: ?Sized + ZnRing>
        where I: CanIsoFromTo<R::IntegerRingBase> + CanIsoFromTo<J>
    {
        highbit_mod: usize,
        highbit_bound: usize,
        int_ring: PhantomData<I>,
        to_large_int_ring: PhantomData<J>,
        hom: <I as CanHomFrom<R::IntegerRingBase>>::Homomorphism,
        iso: <I as CanIsoFromTo<R::IntegerRingBase>>::Isomorphism,
        iso2: <I as CanIsoFromTo<J>>::Isomorphism
    }

    ///
    /// See [`map_in_from_bigint()`].
    /// 
    /// This will only ever return `None` if one of the integer ring `has_canonical_hom/iso` returns `None`.
    /// 
    #[stability::unstable(feature = "enable")]
    pub fn has_canonical_hom_from_bigint<I: ?Sized + IntegerRing, J: ?Sized + IntegerRing, R: ?Sized + ZnRing>(from: &I, to: &R, to_large_int_ring: &J, bounded_reduce_bound: Option<&J::Element>) -> Option<BigIntToZnHom<I, J, R>>
        where I: CanIsoFromTo<R::IntegerRingBase> + CanIsoFromTo<J>
    {
        if let Some(bound) = bounded_reduce_bound {
            Some(BigIntToZnHom {
                highbit_mod: to.integer_ring().abs_highest_set_bit(to.modulus()).unwrap(),
                highbit_bound: to_large_int_ring.abs_highest_set_bit(bound).unwrap(),
                int_ring: PhantomData,
                to_large_int_ring: PhantomData,
                hom: from.has_canonical_hom(to.integer_ring().get_ring())?,
                iso: from.has_canonical_iso(to.integer_ring().get_ring())?,
                iso2: from.has_canonical_iso(to_large_int_ring)?
            })
        } else {
            Some(BigIntToZnHom {
                highbit_mod: to.integer_ring().abs_highest_set_bit(to.modulus()).unwrap(),
                highbit_bound: usize::MAX,
                int_ring: PhantomData,
                to_large_int_ring: PhantomData,
                hom: from.has_canonical_hom(to.integer_ring().get_ring())?,
                iso: from.has_canonical_iso(to.integer_ring().get_ring())?,
                iso2: from.has_canonical_iso(to_large_int_ring)?
            })
        }
    }

    ///
    /// A parameterized, generic variant of the reduction `Z -> Z/nZ`.
    /// It considers the following situations:
    ///  - the source ring `Z` might not be large enough to represent `n`
    ///  - the integer ring associated to the destination ring `Z/nZ` might not be large enough to represent the input
    ///  - the destination ring might use Barett reductions (or similar) for fast modular reduction if the input is bounded by some fixed bound `B`
    ///  - general modular reduction modulo `n` is only performed in the source ring if necessary
    /// 
    /// In particular, we use the following additional parameters:
    ///  - `to_large_int_ring`: an integer ring that can represent all integers for which we can perform fast modular reduction (i.e. those bounded by `B`)
    ///  - `from_positive_representative_exact`: a function that performs the restricted reduction `{0, ..., n - 1} -> Z/nZ`
    ///  - `from_positive_representative_bounded`: a function that performs the restricted reduction `{0, ..., B - 1} -> Z/nZ`
    /// 
    /// It first estimates the size of numbers by their bitlength, so don't use this for small integers (i.e. `ixx`-types), as the estimation
    /// is likely to take longer than the actual modular reduction.
    /// 
    /// Note that the input size estimates consider only the bitlength of numbers, and so there is a small margin in which a reduction method for larger
    /// numbers than necessary is used. Furthermore, if the integer rings used can represent some but not all positive numbers of a certain bitlength, 
    /// there might be rare edge cases with panics/overflows. 
    /// 
    /// In particular, if the input integer ring `Z` can represent the input `x`, but not `n` AND `x` and `n` have the same bitlength, this function might
    /// decide that we have to perform generic modular reduction (even though `x < n`), and try to map `n` into `Z`. This is never a problem if the primitive
    /// integer rings `StaticRing::<ixx>::RING` are used, or if `B >= 2n`.
    /// 
    #[stability::unstable(feature = "enable")]
    pub fn map_in_from_bigint<I: ?Sized + IntegerRing, J: ?Sized + IntegerRing, R: ?Sized + ZnRing, F, G>(from: &I, to: &R, to_large_int_ring: &J, el: I::Element, hom: &BigIntToZnHom<I, J, R>, from_positive_representative_exact: F, from_positive_representative_bounded: G) -> R::Element
        where I: CanIsoFromTo<R::IntegerRingBase> + CanIsoFromTo<J>,
            F: FnOnce(El<R::IntegerRing>) -> R::Element,
            G: FnOnce(J::Element) -> R::Element
    {
        let (neg, n) = if from.is_neg(&el) {
            (true, from.negate(el))
        } else {
            (false, el)
        };
        let ZZ = to.integer_ring().get_ring();
        let highbit_el = from.abs_highest_set_bit(&n).unwrap_or(0);

        let reduced = if highbit_el < hom.highbit_mod {
            from_positive_representative_exact(from.map_out(ZZ, n, &hom.iso))
        } else if highbit_el < hom.highbit_bound {
            from_positive_representative_bounded(from.map_out(to_large_int_ring, n, &hom.iso2))
        } else {
            from_positive_representative_exact(from.map_out(ZZ, from.euclidean_rem(n, &from.map_in_ref(ZZ, to.modulus(), &hom.hom)), &hom.iso))
        };
        if neg {
            to.negate(reduced)
        } else {
            reduced
        }
    }

    ///
    /// Generates a uniformly random element of `Z/nZ` using the randomness of `rng`.
    /// Designed to be used when implementing [`crate::rings::finite::FiniteRing::random_element()`].
    /// 
    #[stability::unstable(feature = "enable")]
    pub fn random_element<R: ZnRing, G: FnMut() -> u64>(ring: &R, rng: G) -> R::Element {
        ring.map_in(
            ring.integer_ring().get_ring(), 
            ring.integer_ring().get_uniformly_random(ring.modulus(), rng), 
            &ring.has_canonical_hom(ring.integer_ring().get_ring()).unwrap()
        )
    }

    ///
    /// Computes the checked division in `Z/nZ`. Designed to be used when implementing
    /// [`crate::divisibility::DivisibilityRing::checked_left_div()`].
    /// 
    #[stability::unstable(feature = "enable")]
    pub fn checked_left_div<R: ZnRingStore>(ring: R, lhs: &El<R>, rhs: &El<R>) -> Option<El<R>>
        where R::Type: ZnRing
    {
        if ring.is_zero(lhs) {
            return Some(ring.zero());
        }
        let int_ring = ring.integer_ring();
        let lhs_lift = ring.smallest_positive_lift(ring.clone_el(lhs));
        let rhs_lift = ring.smallest_positive_lift(ring.clone_el(rhs));
        let (s, _, d) = int_ring.extended_ideal_gen(&rhs_lift, ring.modulus());
        if let Some(quotient) = int_ring.checked_div(&lhs_lift, &d) {
            Some(ring.mul(ring.coerce(int_ring, quotient), ring.coerce(int_ring, s)))
        } else {
            None
        }
    }
    
    #[stability::unstable(feature = "enable")]
    pub fn checked_div_min<R: ZnRingStore>(ring: R, lhs: &El<R>, rhs: &El<R>) -> Option<El<R>>
        where R::Type: ZnRing
    {
        if ring.is_zero(lhs) && ring.is_zero(rhs) {
            return Some(ring.one());
        }
        assert!(ring.is_noetherian());
        let int_ring = ring.integer_ring();
        let rhs_ann = int_ring.checked_div(ring.modulus(), &int_ring.ideal_gen(ring.modulus(), &ring.smallest_positive_lift(ring.clone_el(rhs)))).unwrap();
        let some_sol = ring.smallest_positive_lift(ring.checked_div(lhs, rhs)?);
        let minimal_solution = int_ring.euclidean_rem(some_sol, &rhs_ann);
        if int_ring.is_zero(&minimal_solution) {
            return Some(ring.coerce(&int_ring, rhs_ann));
        } else {
            return Some(ring.coerce(&int_ring, minimal_solution));
        }
    }

    #[stability::unstable(feature = "enable")]
    pub fn interpolation_ring<R: ZnRingStore>(ring: R, count: usize) -> GaloisFieldOver<R>
        where R: Clone,
            R::Type: ZnRing + Field + SelfIso + CanHomFrom<StaticRingBase<i64>>
    {
        let ZZbig = BigIntRing::RING;
        let modulus = int_cast(ring.integer_ring().clone_el(ring.modulus()), ZZbig, ring.integer_ring());
        let count = int_cast(count as i64, ZZbig, StaticRing::<i64>::RING);
        let degree = int_bisect::find_root_floor(StaticRing::<i64>::RING, 1, |d| if *d > 0 && ZZbig.is_gt(&ZZbig.pow(ZZbig.clone_el(&modulus), *d as usize), &count) {
            1
        } else {
            -1
        }) + 1;
        assert!(degree >= 1);
        return GaloisField::new_with(ring, degree as usize, Global, STANDARD_CONVOLUTION);
    }
}

///
/// The [`crate::ring::RingStore`] corresponding to [`ZnRing`].
/// 
pub trait ZnRingStore: FiniteRingStore
    where Self::Type: ZnRing
{    
    delegate!{ ZnRing, fn integer_ring(&self) -> &<Self::Type as ZnRing>::IntegerRing }
    delegate!{ ZnRing, fn modulus(&self) -> &El<<Self::Type as ZnRing>::IntegerRing> }
    delegate!{ ZnRing, fn smallest_positive_lift(&self, el: El<Self>) -> El<<Self::Type as ZnRing>::IntegerRing> }
    delegate!{ ZnRing, fn smallest_lift(&self, el: El<Self>) -> El<<Self::Type as ZnRing>::IntegerRing> }
    delegate!{ ZnRing, fn any_lift(&self, el: El<Self>) -> El<<Self::Type as ZnRing>::IntegerRing> }
    delegate!{ ZnRing, fn is_field(&self) -> bool }

    fn as_field(self) -> Result<RingValue<AsFieldBase<Self>>, Self> 
        where Self: Sized
    {
        if self.is_field() {
            Ok(RingValue::from(AsFieldBase::promise_is_perfect_field(self)))
        } else {
            Err(self)
        }
    }
}

impl<R: RingStore> ZnRingStore for R
    where R::Type: ZnRing
{}

///
/// Trait for algorithms that require some implementation of
/// `Z/nZ`, but do not care which. 
/// 
/// See [`choose_zn_impl()`] for details.
/// 
pub trait ZnOperation {
    
    type Output<'a>
        where Self: 'a;

    fn call<'a, R>(self, ring: R) -> Self::Output<'a>
        where Self: 'a, 
            R: 'a + RingStore + Send + Sync, 
            R::Type: ZnRing, 
            El<R>: Send;
}

///
/// Calls the given function with some implementation of the ring
/// `Z/nZ`, chosen depending on `n` to provide best performance.
/// 
/// It is currently necessary to write all the boilerplate code that
/// comes with manually implementing [`ZnOperation`]. I experimented with
/// macros, but currently something simple seems like the best solution.
/// 
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::rings::zn::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::integer::*;
/// # use feanor_math::assert_el_eq;
/// 
/// let int_value = 4;
/// // work in Z/17Z without explicitly choosing an implementation
/// struct DoStuff { int_value: i64 }
/// impl ZnOperation for DoStuff {
///     type Output<'a> = ()
///         where Self: 'a;
/// 
///     fn call<'a, R>(self, Zn: R) -> ()
///         where Self: 'a,
///             R: 'a + RingStore,
///             R::Type: ZnRing
///     {
///         let value = Zn.coerce(Zn.integer_ring(), int_cast(self.int_value, Zn.integer_ring(), &StaticRing::<i64>::RING));
///         assert_el_eq!(Zn, Zn.int_hom().map(-1), Zn.mul_ref(&value, &value));
///     } 
/// }
/// choose_zn_impl(StaticRing::<i64>::RING, 17, DoStuff { int_value });
/// ```
/// 
pub fn choose_zn_impl<'a, I, F>(ZZ: I, n: El<I>, f: F) -> F::Output<'a>
    where I: 'a + RingStore,
        I::Type: IntegerRing,
        F: ZnOperation
{
    if ZZ.abs_highest_set_bit(&n).unwrap_or(0) < 57 {
        f.call(zn_64::Zn::new(StaticRing::<i64>::RING.coerce(&ZZ, n) as u64))
    } else {
        f.call(zn_big::Zn::new(BigIntRing::RING, int_cast(n, &BigIntRing::RING, &ZZ)))
    }
}

#[test]
fn test_choose_zn_impl() {
    let int_value = 4;
    // work in Z/17Z without explicitly choosing an implementation
    struct DoStuff { int_value: i64 }
    impl ZnOperation for DoStuff {

        type Output<'a> = ()
            where Self: 'a;

        fn call<'a, R>(self, Zn: R)
            where R: 'a + RingStore, R::Type: ZnRing
        {
            let value = Zn.coerce(Zn.integer_ring(), int_cast(self.int_value, Zn.integer_ring(), &StaticRing::<i64>::RING));
            assert_el_eq!(Zn, Zn.int_hom().map(-1), Zn.mul_ref(&value, &value));
        } 
    }
    choose_zn_impl(StaticRing::<i64>::RING, 17, DoStuff { int_value });
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum ReductionMapRequirements {
    SmallestLift,
    ExplicitReduce
}

///
/// The homomorphism `Z/nZ -> Z/mZ` that exists whenever `m | n`. In
/// addition to the map, this also provides a function [`ZnReductionMap::smallest_lift()`]
/// that computes the "smallest" preimage under the map, and a function
/// [`ZnReductionMap::mul_quotient_fraction()`], that computes the multiplication
/// with `n/m` while also changing from `Z/mZ` to `Z/nZ`. This is very
/// useful in many number theoretic applications, where one often has to switch
/// between `Z/nZ` and `Z/mZ`.
/// 
/// Furthermore, many implementations of `ZnRing` currently do not support
/// [`CanHomFrom`]-homomorphisms when the moduli are different (but divide each
/// other).
/// 
pub struct ZnReductionMap<R, S>
    where R: RingStore,
        R::Type: ZnRing,
        S: RingStore,
        S::Type: ZnRing
{
    from: R,
    to: S,
    fraction_of_quotients: El<R>,
    to_modulus: El<<R::Type as ZnRing>::IntegerRing>,
    to_from_int: <S::Type as CanHomFrom<<S::Type as ZnRing>::IntegerRingBase>>::Homomorphism,
    from_from_int: <R::Type as CanHomFrom<<R::Type as ZnRing>::IntegerRingBase>>::Homomorphism,
    map_forward_requirement: ReductionMapRequirements
}

impl<R, S> ZnReductionMap<R, S>
    where R: RingStore,
        R::Type: ZnRing,
        S: RingStore,
        S::Type: ZnRing
{
    pub fn new(from: R, to: S) -> Option<Self> {
        let from_char = from.characteristic(&BigIntRing::RING).unwrap();
        let to_char = to.characteristic(&BigIntRing::RING).unwrap();
        if let Some(frac) = BigIntRing::RING.checked_div(&from_char, &to_char) {
            let map_forward_requirement: ReductionMapRequirements = if to.integer_ring().get_ring().representable_bits().is_none() || BigIntRing::RING.is_lt(&from_char, &BigIntRing::RING.power_of_two(to.integer_ring().get_ring().representable_bits().unwrap())) {
                ReductionMapRequirements::SmallestLift
            } else {
                ReductionMapRequirements::ExplicitReduce
            };
            Some(Self {
                map_forward_requirement: map_forward_requirement,
                to_modulus: int_cast(to.integer_ring().clone_el(to.modulus()), from.integer_ring(), to.integer_ring()),
                to_from_int: to.get_ring().has_canonical_hom(to.integer_ring().get_ring()).unwrap(),
                from_from_int: from.get_ring().has_canonical_hom(from.integer_ring().get_ring()).unwrap(),
                fraction_of_quotients: from.can_hom(from.integer_ring()).unwrap().map(int_cast(frac, from.integer_ring(), BigIntRing::RING)),
                from: from,
                to: to,
            })
        } else {
            None
        }
    }

    ///
    /// Computes the additive group homomorphism `Z/mZ -> Z/nZ, x -> (n/m)x`.
    /// 
    /// # Example
    /// ```
    /// # use feanor_math::assert_el_eq;
    /// # use feanor_math::ring::*;
    /// # use feanor_math::homomorphism::*;
    /// # use feanor_math::rings::zn::*;
    /// # use feanor_math::rings::zn::zn_64::*;
    /// let Z5 = Zn::new(5);
    /// let Z25 = Zn::new(25);
    /// let f = ZnReductionMap::new(&Z25, &Z5).unwrap();
    /// assert_el_eq!(Z25, Z25.int_hom().map(15), f.mul_quotient_fraction(Z5.int_hom().map(3)));
    /// ```
    /// 
    pub fn mul_quotient_fraction(&self, x: El<S>) -> El<R> {
        self.from.mul_ref_snd(self.any_preimage(x), &self.fraction_of_quotients)
    }

    ///
    /// Computes the smallest preimage under the reduction map `Z/nZ -> Z/mZ`, where
    /// "smallest" refers to the element that has the smallest lift to `Z`.
    /// 
    /// # Example
    /// ```
    /// # use feanor_math::assert_el_eq;
    /// # use feanor_math::ring::*;
    /// # use feanor_math::homomorphism::*;
    /// # use feanor_math::rings::zn::*;
    /// # use feanor_math::rings::zn::zn_64::*;
    /// let Z5 = Zn::new(5);
    /// let Z25 = Zn::new(25);
    /// let f = ZnReductionMap::new(&Z25, &Z5).unwrap();
    /// assert_el_eq!(Z25, Z25.int_hom().map(-2), f.smallest_lift(Z5.int_hom().map(3)));
    /// ```
    /// 
    pub fn smallest_lift(&self, x: El<S>) -> El<R> {
        self.from.get_ring().map_in(self.from.integer_ring().get_ring(), int_cast(self.to.smallest_lift(x), self.from.integer_ring(), self.to.integer_ring()), &self.from_from_int)
    }

    pub fn any_preimage(&self, x: El<S>) -> El<R> {
        // the problem is that we don't know if `to.any_lift(x)` will fit into `from.integer_ring()`;
        // furthermore, profiling indicates that it won't help a lot anyway, since taking the smallest lift
        // now will usually make reduction cheaper later
        self.smallest_lift(x)
    }

    pub fn smallest_lift_ref(&self, x: &El<S>) -> El<R> {
        self.smallest_lift(self.codomain().clone_el(x))
    }
}

impl<R, S> Homomorphism<R::Type, S::Type> for ZnReductionMap<R, S>
    where R: RingStore,
        R::Type: ZnRing,
        S: RingStore,
        S::Type: ZnRing
{
    type CodomainStore = S;
    type DomainStore = R;

    fn map(&self, x: El<R>) -> El<S> {
        let value = match self.map_forward_requirement {
            ReductionMapRequirements::SmallestLift => self.from.smallest_lift(x),
            ReductionMapRequirements::ExplicitReduce => self.from.integer_ring().euclidean_rem(self.from.any_lift(x), &self.to_modulus)
        };
        self.to.get_ring().map_in(self.to.integer_ring().get_ring(), int_cast(value, self.to.integer_ring(), self.from.integer_ring()), &self.to_from_int)
    }

    fn codomain<'a>(&'a self) -> &'a Self::CodomainStore {
        &self.to
    }

    fn domain<'a>(&'a self) -> &'a Self::DomainStore {
        &self.from
    }
}

#[cfg(any(test, feature = "generic_tests"))]
pub mod generic_tests {

    use super::*;
    use crate::primitive_int::{StaticRingBase, StaticRing};

    pub fn test_zn_axioms<R: RingStore>(R: R)
        where R::Type: ZnRing,
            <R::Type as ZnRing>::IntegerRingBase: CanIsoFromTo<StaticRingBase<i128>> + CanIsoFromTo<StaticRingBase<i32>>
    {
        let ZZ = R.integer_ring();
        let n = R.modulus();

        assert!(R.is_zero(&R.coerce(ZZ, ZZ.clone_el(n))));
        assert!(R.is_field() == algorithms::miller_rabin::is_prime(ZZ, n, 10));

        let mut k = ZZ.one();
        while ZZ.is_lt(&k, &n) {
            assert!(!R.is_zero(&R.coerce(ZZ, ZZ.clone_el(&k))));
            ZZ.add_assign(&mut k, ZZ.one());
        }

        let all_elements = R.elements().collect::<Vec<_>>();
        assert_eq!(int_cast(ZZ.clone_el(n), &StaticRing::<i128>::RING, &ZZ) as usize, all_elements.len());
        for (i, x) in all_elements.iter().enumerate() {
            for (j, y) in all_elements.iter().enumerate() {
                assert!(i == j || !R.eq_el(x, y));
            }
        }
    }

    pub fn test_map_in_large_int<R: RingStore>(R: R)
        where <R as RingStore>::Type: ZnRing + CanHomFrom<BigIntRingBase>
    {
        let ZZ_big = BigIntRing::RING;
        let n = ZZ_big.power_of_two(1000);
        let x = R.coerce(&ZZ_big, n);
        assert!(R.eq_el(&R.pow(R.int_hom().map(2), 1000), &x));
    }
}

#[test]
fn test_reduction_map_large_value() {
    let ring1 = zn_64::Zn::new(1 << 42);
    let ring2 = zn_big::Zn::new(BigIntRing::RING, BigIntRing::RING.power_of_two(666));
    let reduce = ZnReductionMap::new(&ring2, ring1).unwrap();
    assert_el_eq!(ring1, ring1.zero(), reduce.map(ring2.pow(ring2.int_hom().map(2), 665)));
}

#[test]
fn test_reduction_map() {
    let ring1 = zn_64::Zn::new(257);
    let ring2 = zn_big::Zn::new(StaticRing::<i128>::RING, 257 * 7);

    crate::homomorphism::generic_tests::test_homomorphism_axioms(ZnReductionMap::new(&ring2, &ring1).unwrap(), ring2.elements().step_by(8));

    let ring1 = zn_big::Zn::new(StaticRing::<i16>::RING, 3);
    let ring2 = zn_big::Zn::new(BigIntRing::RING, BigIntRing::RING.int_hom().map(65537 * 3));

    crate::homomorphism::generic_tests::test_homomorphism_axioms(ZnReductionMap::new(&ring2, &ring1).unwrap(), ring2.elements().step_by(1024));
}

#[test]
fn test_generic_impl_checked_div_min() {
    let ring = zn_64::Zn::new(5 * 7 * 11 * 13);
    let actual = ring.annihilator(&ring.int_hom().map(1001));
    let expected = ring.int_hom().map(5);
    assert!(ring.checked_div(&expected, &actual).is_some());
    assert!(ring.checked_div(&actual, &expected).is_some());

    let actual = ring.annihilator(&ring.zero());
    let expected = ring.one();
    assert!(ring.checked_div(&expected, &actual).is_some());
    assert!(ring.checked_div(&actual, &expected).is_some());
}