feanor_math/divisibility.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
use std::fmt::Debug;
use crate::ring::*;
///
/// Trait for rings that support checking divisibility, i.e.
/// whether for `x, y` there is `k` such that `x = ky`.
///
pub trait DivisibilityRing: RingBase {
///
/// Additional data associated to a fixed ring element that can be used
/// to speed up division by this ring element.
///
/// See also [`DivisibilityRing::prepare_divisor()`].
///
#[stability::unstable(feature = "enable")]
type PreparedDivisorData = ();
///
/// Checks whether there is an element `x` such that `rhs * x = lhs`, and
/// returns it if it exists.
///
/// Note that this does not have to be unique, if rhs is a left zero-divisor.
/// In particular, this function will return any element in the ring if `lhs = rhs = 0`.
/// In rings with many zero-divisors, this can sometimes lead to unintuitive behavior.
/// See also [`crate::pid::PrincipalIdealRing::checked_div_min()`] for a function that,
/// if available, might sometimes behave more intuitively.
///
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::divisibility::*;
/// let ZZ = StaticRing::<i64>::RING;
/// assert_eq!(Some(3), ZZ.checked_left_div(&6, &2));
/// assert_eq!(None, ZZ.checked_left_div(&6, &4));
/// ```
/// In rings that have zero-divisors, there are usually multiple possible results.
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::divisibility::*;
/// # use feanor_math::homomorphism::*;
/// # use feanor_math::rings::zn::zn_64::*;
/// let ring = Zn::new(6);
/// let four_over_four = ring.checked_left_div(&ring.int_hom().map(4), &ring.int_hom().map(4)).unwrap();
/// assert!(ring.eq_el(&four_over_four, &ring.int_hom().map(1)) || ring.eq_el(&four_over_four, &ring.int_hom().map(4)));
/// // note that the output 4 might be unexpected, since it is a zero-divisor itself!
/// ```
///
fn checked_left_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element>;
///
/// Returns whether there is an element `x` such that `rhs * x = lhs`.
/// If you need such an element, consider using [`DivisibilityRing::checked_left_div()`].
///
/// # Example
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::primitive_int::*;
/// # use feanor_math::divisibility::*;
/// let ZZ = StaticRing::<i64>::RING;
/// assert_eq!(true, ZZ.divides_left(&6, &2));
/// assert_eq!(false, ZZ.divides_left(&6, &4));
/// ```
///
fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
self.checked_left_div(lhs, rhs).is_some()
}
///
/// Same as [`DivisibilityRing::divides_left()`], but requires a commutative ring.
///
fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool {
assert!(self.is_commutative());
self.divides_left(lhs, rhs)
}
///
/// Same as [`DivisibilityRing::checked_left_div()`], but requires a commutative ring.
///
fn checked_div(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element> {
assert!(self.is_commutative());
self.checked_left_div(lhs, rhs)
}
///
/// Returns whether the given element is a unit, i.e. has an inverse.
///
fn is_unit(&self, x: &Self::Element) -> bool {
self.checked_left_div(&self.one(), x).is_some()
}
///
/// Function that computes a "balancing" factor of a sequence of ring elements.
/// The only use of the balancing factor is to increase performance, in particular,
/// dividing all elements in the sequence by this factor should make them
/// "smaller" resp. cheaper to process.
///
/// Note that the balancing factor must always be a non-zero divisor.
///
/// Standard cases are reducing fractions (where the sequence would be exactly two
/// elements), or polynomials over fields (where we often want to scale the polynomial
/// to make all denominators 1).
///
/// If balancing does not make sense (as in the case of finite fields) or is not
/// supported by the implementation, it is valid to return `None`.
///
fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
where I: Iterator<Item = &'a Self::Element>,
Self: 'a
{
None
}
///
/// "Prepares" an element of this ring for division.
///
/// The returned [`DivisibilityRing::PreparedDivisor`] can then be used in calls
/// to [`DivisibilityRing::checked_left_div_prepared()`] and other "prepared" division
/// functions, which can be faster than for an "unprepared" element.
///
/// See also [`DivisibilityRing::prepare_divisor()`].
///
/// # Caveat
///
/// Previously, this was its own trait, but that caused problems, since using this properly
/// would require fully-fledged specialization. Hence, we now inlude it in [`DivisibilityRing`]
/// but provide defaults for all `*_prepared()` functions.
///
/// This is not perfect, and in particular, if you specialize [`DivisibilityRing::PreparedDivisorData`]
/// and not [`DivisibilityRing::prepare_divisor()`], this will currently not cause a compile error, but
/// panic at runtime when calling [`DivisibilityRing::prepare_divisor()`] (unfortunately). However,
/// it seems like the most usable solution, and does not require unsafe code.
///
/// TODO: at the next breaking release, remove default implementation of `prepare_divisor()`.
///
/// # Example
///
/// Assume we want to go through all positive integers `<= 1000` that are divisible by `257`. The naive
/// way would be the following
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::divisibility::*;
/// # use feanor_math::primitive_int::*;
/// let ring = StaticRing::<i128>::RING;
/// for integer in 0..1000 {
/// if ring.divides(&integer, &257) {
/// assert!(integer == 0 || integer == 257 || integer == 514 || integer == 771);
/// }
/// }
/// ```
/// It can be faster to instead prepare the divisor `257` once and use this "prepared" divisor for
/// all checks (of course, it will be much faster to iterate over `(0..10000).step_by(257)`, but
/// for the sake of this example, let's use individual divisibility checks).
/// ```
/// # use feanor_math::ring::*;
/// # use feanor_math::divisibility::*;
/// # use feanor_math::primitive_int::*;
/// # let ring = StaticRing::<i128>::RING;
/// let prepared_257 = ring.get_ring().prepare_divisor(257);
/// for integer in 0..1000 {
/// if ring.get_ring().divides_left_prepared(&integer, &prepared_257) {
/// assert!(integer == 0 || integer == 257 || integer == 514 || integer == 771);
/// }
/// }
/// ```
///
#[stability::unstable(feature = "enable")]
fn prepare_divisor(&self, x: Self::Element) -> PreparedDivisor<Self> {
struct ProduceUnitType;
trait ProduceValue<T> {
fn produce() -> T;
}
impl<T> ProduceValue<T> for ProduceUnitType {
default fn produce() -> T {
panic!("if you specialize DivisibilityRing::PreparedDivisorData, you must also specialize DivisibilityRing::prepare_divisor()")
}
}
impl ProduceValue<()> for ProduceUnitType {
fn produce() -> () {}
}
PreparedDivisor {
element: x,
data: <ProduceUnitType as ProduceValue<Self::PreparedDivisorData>>::produce()
}
}
///
/// Same as [`DivisibilityRing::checked_left_div()`] but for a prepared divisor.
///
/// See also [`DivisibilityRing::prepare_divisor()`].
///
#[stability::unstable(feature = "enable")]
fn checked_left_div_prepared(&self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>) -> Option<Self::Element> {
self.checked_left_div(lhs, &rhs.element)
}
///
/// Same as [`DivisibilityRing::divides_left()`] but for a prepared divisor.
///
/// See also [`DivisibilityRing::prepare_divisor()`].
///
#[stability::unstable(feature = "enable")]
fn divides_left_prepared(&self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>) -> bool {
self.divides_left(lhs, &rhs.element)
}
///
/// Same as [`DivisibilityRing::is_unit()`] but for a prepared divisor.
///
/// See also [`DivisibilityRing::prepare_divisor()`].
///
#[stability::unstable(feature = "enable")]
fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool {
self.is_unit(&x.element)
}
///
/// If the given element is a unit, returns its inverse, otherwise `None`.
///
/// This is equivalent (but possibly faster) than `ring.checked_div(ring.one(), el)`.
///
fn invert(&self, el: &Self::Element) -> Option<Self::Element> {
self.checked_div(&self.one(), el)
}
}
///
/// Struct for ring elements that are stored with associated data to
/// enable faster divisions.
///
/// For details, see [`DivisibilityRing::prepare_divisor()`].
///
pub struct PreparedDivisor<R>
where R: ?Sized + RingBase + DivisibilityRing
{
pub element: R::Element,
pub data: R::PreparedDivisorData
}
impl<R> Debug for PreparedDivisor<R>
where R: ?Sized + RingBase + DivisibilityRing,
R::Element: Debug,
R::PreparedDivisorData: Debug
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "PreparedDivisor {{ element: {:?}, data: {:?} }}", &self.element, &self.data)
}
}
impl<R> Clone for PreparedDivisor<R>
where R: ?Sized + RingBase + DivisibilityRing,
R::Element: Clone,
R::PreparedDivisorData: Clone
{
fn clone(&self) -> Self {
Self {
element: self.element.clone(),
data: self.data.clone()
}
}
}
impl<R> Copy for PreparedDivisor<R>
where R: ?Sized + RingBase + DivisibilityRing,
R::Element: Copy,
R::PreparedDivisorData: Copy
{}
///
/// Trait for rings that are integral, i.e. have no zero divisors.
///
/// A zero divisor is a nonzero element `a` such that there is a nonzero
/// element `b` with `ab = 0`.
///
pub trait Domain: DivisibilityRing {}
///
/// Trait for [`RingStore`]s that store [`DivisibilityRing`]s. Mainly used
/// to provide a convenient interface to the `DivisibilityRing`-functions.
///
pub trait DivisibilityRingStore: RingStore
where Self::Type: DivisibilityRing
{
delegate!{ DivisibilityRing, fn checked_left_div(&self, lhs: &El<Self>, rhs: &El<Self>) -> Option<El<Self>> }
delegate!{ DivisibilityRing, fn divides_left(&self, lhs: &El<Self>, rhs: &El<Self>) -> bool }
delegate!{ DivisibilityRing, fn is_unit(&self, x: &El<Self>) -> bool }
delegate!{ DivisibilityRing, fn checked_div(&self, lhs: &El<Self>, rhs: &El<Self>) -> Option<El<Self>> }
delegate!{ DivisibilityRing, fn divides(&self, lhs: &El<Self>, rhs: &El<Self>) -> bool }
delegate!{ DivisibilityRing, fn invert(&self, lhs: &El<Self>) -> Option<El<Self>> }
}
impl<R> DivisibilityRingStore for R
where R: RingStore, R::Type: DivisibilityRing
{}
#[cfg(any(test, feature = "generic_tests"))]
pub mod generic_tests {
use crate::ring::El;
use super::*;
pub fn test_divisibility_axioms<R: DivisibilityRingStore, I: Iterator<Item = El<R>>>(ring: R, edge_case_elements: I)
where R::Type: DivisibilityRing
{
let elements = edge_case_elements.collect::<Vec<_>>();
for a in &elements {
for b in &elements {
let ab = ring.mul(ring.clone_el(a), ring.clone_el(b));
let c = ring.checked_left_div(&ab, &a);
assert!(c.is_some(), "Divisibility existence failed: there should exist b = {} such that {} = b * {}, but none was found", ring.format(b), ring.format(&ab), ring.format(&a));
assert!(ring.eq_el(&ab, &ring.mul_ref_snd(ring.clone_el(a), c.as_ref().unwrap())), "Division failed: {} * {} != {} but {} = checked_div({}, {})", ring.format(a), ring.format(c.as_ref().unwrap()), ring.format(&ab), ring.format(c.as_ref().unwrap()), ring.format(&ab), ring.format(&a));
if !ring.is_unit(a) {
let ab_plus_one = ring.add(ring.clone_el(&ab), ring.one());
let c = ring.checked_left_div(&ab_plus_one, &a);
assert!(c.is_none(), "Unit check failed: is_unit({}) is false but checked_div({}, {}) = {}", ring.format(a), ring.format(&ab_plus_one), ring.format(a), ring.format(c.as_ref().unwrap()));
let ab_minus_one = ring.sub(ring.clone_el(&ab), ring.one());
let c = ring.checked_left_div(&ab_minus_one, &a);
assert!(c.is_none(), "Unit check failed: is_unit({}) is false but checked_div({}, {}) = {}", ring.format(a), ring.format(&ab_minus_one), ring.format(a), ring.format(c.as_ref().unwrap()));
} else {
let inv = ring.checked_left_div(&ring.one(), a);
assert!(inv.is_some(), "Unit check failed: is_unit({}) is true but checked_div({}, {}) is None", ring.format(a), ring.format(&ring.one()), ring.format(&a));
let prod = ring.mul_ref(a, inv.as_ref().unwrap());
assert!(ring.eq_el(&ring.one(), &prod), "Division failed: {} != {} * {} but checked_div({}, {}) = {}", ring.format(&ring.one()), ring.format(a), ring.format(inv.as_ref().unwrap()), ring.format(&ring.one()), ring.format(a), ring.format(c.as_ref().unwrap()));
}
}
}
for a in &elements {
let a_prepared_divisor = ring.get_ring().prepare_divisor(ring.clone_el(a));
for b in &elements {
let ab = ring.mul(ring.clone_el(a), ring.clone_el(b));
let c = ring.get_ring().checked_left_div_prepared(&ab, &a_prepared_divisor);
assert!(c.is_some(), "Divisibility existence failed for prepared divisor: there should exist b = {} such that {} = b * {}, but none was found", ring.format(b), ring.format(&ab), ring.format(&a));
assert!(ring.eq_el(&ab, &ring.mul_ref_snd(ring.clone_el(a), c.as_ref().unwrap())), "Division failed: {} * {} != {} but {} = checked_div({}, {})", ring.format(a), ring.format(c.as_ref().unwrap()), ring.format(&ab), ring.format(c.as_ref().unwrap()), ring.format(&ab), ring.format(&a));
if !ring.get_ring().is_unit_prepared(&a_prepared_divisor) {
let ab_plus_one = ring.add(ring.clone_el(&ab), ring.one());
let c = ring.get_ring().checked_left_div_prepared(&ab_plus_one, &a_prepared_divisor);
assert!(c.is_none(), "Unit check failed for prepared divisor: is_unit({}) is false but checked_div({}, {}) = {}", ring.format(a), ring.format(&ab_plus_one), ring.format(a), ring.format(c.as_ref().unwrap()));
let ab_minus_one = ring.sub(ring.clone_el(&ab), ring.one());
let c = ring.get_ring().checked_left_div_prepared(&ab_minus_one, &a_prepared_divisor);
assert!(c.is_none(), "Unit check failed for prepared divisor: is_unit({}) is false but checked_div({}, {}) = {}", ring.format(a), ring.format(&ab_minus_one), ring.format(a), ring.format(c.as_ref().unwrap()));
} else {
let inv = ring.get_ring().checked_left_div_prepared(&ring.one(), &a_prepared_divisor);
assert!(inv.is_some(), "Unit check failed for prepared divisor: is_unit({}) is true but checked_div({}, {}) is None", ring.format(a), ring.format(&ring.one()), ring.format(&a));
let prod = ring.mul_ref(a, inv.as_ref().unwrap());
assert!(ring.eq_el(&ring.one(), &prod), "Division failed for prepared divisor: {} != {} * {} but checked_div({}, {}) = {}", ring.format(&ring.one()), ring.format(a), ring.format(inv.as_ref().unwrap()), ring.format(&ring.one()), ring.format(a), ring.format(c.as_ref().unwrap()));
}
}
}
}
}