feanor_math/
pid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use crate::ring::*;
use crate::divisibility::*;

///
/// Trait for rings that are principal ideal rings, i.e. every ideal is generated
/// by a single element. 
/// 
/// A principal ideal ring currently must be commutative, since otherwise we would
/// have to distinguish left-, right-and two-sided ideals.
/// 
pub trait PrincipalIdealRing: DivisibilityRing {

    ///
    /// Similar to [`DivisibilityRing::checked_left_div()`] this computes a "quotient" `q`
    /// of `lhs` and `rhs`, if it exists. However, we impose the additional constraint
    /// that this quotient be minimal, i.e. there is no `q'` with `q' | q` properly and
    /// `q' * rhs = lhs`.
    /// 
    /// In domains, this is always satisfied, i.e. this function behaves exactly like
    /// [`DivisibilityRing::checked_left_div()`]. However, if there are zero-divisors, weird
    /// things can happen. For example in `Z/6Z`, `checked_div(4, 4)` may return `4`, however
    /// this is not minimal since `1 | 4` and `1 * 4 = 4`.
    /// 
    /// In particular, this function can be used to compute a generator of the annihilator ideal
    /// of an element `x`, by using it as `checked_div_min(0, x)`.
    /// 
    fn checked_div_min(&self, lhs: &Self::Element, rhs: &Self::Element) -> Option<Self::Element>;

    ///
    /// Returns the (w.r.t. divisibility) smallest element `x` such that `x * val = 0`.
    /// 
    /// If the ring is a domain, this returns `0` for all ring elements except zero (for
    /// which it returns any unit).
    /// 
    /// # Example
    /// ```
    /// # use feanor_math::assert_el_eq;
    /// # use feanor_math::ring::*;
    /// # use feanor_math::pid::*;
    /// # use feanor_math::homomorphism::*;
    /// # use feanor_math::rings::zn::zn_64::*;
    /// let Z6 = Zn::new(6);
    /// assert_el_eq!(Z6, Z6.int_hom().map(3), Z6.annihilator(&Z6.int_hom().map(2)));
    /// ```
    /// 
    fn annihilator(&self, val: &Self::Element) -> Self::Element {
        self.checked_div_min(&self.zero(), val).unwrap()
    }

    ///
    /// Computes a Bezout identity for the generator `g` of the ideal `(lhs, rhs)`
    /// as `g = s * lhs + t * rhs`.
    /// 
    /// More concretely, this returns (s, t, g) such that g is a generator 
    /// of the ideal `(lhs, rhs)` and `g = s * lhs + t * rhs`. This `g` is also known
    /// as the greatest common divisor of `lhs` and `rhs`, since `g | lhs, rhs` and
    /// for every `g'` with this property, have `g' | g`. Note that this `g` is only
    /// unique up to multiplication by units.
    /// 
    fn extended_ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element, Self::Element);

    ///
    /// Creates a matrix `A` of unit determinant such that `A * (a, b)^T = (d, 0)`.
    /// Returns `(A, d)`.
    /// 
    #[stability::unstable(feature = "enable")]
    fn create_elimination_matrix(&self, a: &Self::Element, b: &Self::Element) -> ([Self::Element; 4], Self::Element) {
        assert!(self.is_commutative());
        let old_gcd = self.ideal_gen(a, b);
        let new_a = self.checked_div_min(a, &old_gcd).unwrap();
        let new_b = self.checked_div_min(b, &old_gcd).unwrap();
        let (s, t, gcd_new) = self.extended_ideal_gen(&new_a, &new_b);
        debug_assert!(self.is_unit(&gcd_new));
        
        let subtract_factor = self.checked_left_div(&self.sub(self.mul_ref(b, &new_a), self.mul_ref(a, &new_b)), &gcd_new).unwrap();
        // this has unit determinant and will map `(a, b)` to `(d, b * new_a - a * new_b)`; after a subtraction step, we are done
        let mut result = [s, t, self.negate(new_b), new_a];
    
        let sub1 = self.mul_ref(&result[0], &subtract_factor);
        self.sub_assign(&mut result[2], sub1);
        let sub2 = self.mul_ref_fst(&result[1], subtract_factor);
        self.sub_assign(&mut result[3], sub2);
        debug_assert!(self.is_unit(&self.sub(self.mul_ref(&result[0], &result[3]), self.mul_ref(&result[1], &result[2]))));
        return (result, gcd_new);
    }
    

    ///
    /// Computes a generator `g` of the ideal `(lhs, rhs) = (g)`, also known as greatest
    /// common divisor.
    /// 
    /// If you require also a Bezout identiy, i.e. `g = s * lhs + t * rhs`, consider
    /// using [`PrincipalIdealRing::extended_ideal_gen()`].
    /// 
    fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.extended_ideal_gen(lhs, rhs).2
    }

    ///
    /// Computes a generator of the ideal `(lhs) ∩ (rhs)`, also known as least common
    /// multiple.
    /// 
    /// In other words, computes a ring element `g` such that `lhs, rhs | g` and for every
    /// `g'` with this property, have `g | g'`. Note that such an `g` is only unique up to
    /// multiplication by units.
    /// 
    fn lcm(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element {
        self.checked_left_div(&self.mul_ref(lhs, rhs), &self.ideal_gen(lhs, rhs)).unwrap()
    }
}

///
/// Trait for [`RingStore`]s that store [`PrincipalIdealRing`]s. Mainly used
/// to provide a convenient interface to the `PrincipalIdealRing`-functions.
/// 
pub trait PrincipalIdealRingStore: RingStore
    where Self::Type: PrincipalIdealRing
{
    delegate!{ PrincipalIdealRing, fn checked_div_min(&self, lhs: &El<Self>, rhs: &El<Self>) -> Option<El<Self>> }
    delegate!{ PrincipalIdealRing, fn extended_ideal_gen(&self, lhs: &El<Self>, rhs: &El<Self>) -> (El<Self>, El<Self>, El<Self>) }
    delegate!{ PrincipalIdealRing, fn ideal_gen(&self, lhs: &El<Self>, rhs: &El<Self>) -> El<Self> }
    delegate!{ PrincipalIdealRing, fn annihilator(&self, val: &El<Self>) -> El<Self> }
    delegate!{ PrincipalIdealRing, fn lcm(&self, lhs: &El<Self>, rhs: &El<Self>) -> El<Self> }

    ///
    /// Alias for [`PrincipalIdealRingStore::ideal_gen()`].
    /// 
    fn gcd(&self, lhs: &El<Self>, rhs: &El<Self>) -> El<Self> {
        self.ideal_gen(lhs, rhs)
    }
}

impl<R> PrincipalIdealRingStore for R
    where R: RingStore,
        R::Type: PrincipalIdealRing
{}

///
/// Trait for rings that support euclidean division.
/// 
/// In other words, there is a degree function d(.) 
/// returning nonnegative integers such that for every `x, y` 
/// with `y != 0` there are `q, r` with `x = qy + r` and 
/// `d(r) < d(y)`. Note that `q, r` do not have to be unique, 
/// and implementations are free to use any choice.
/// 
/// # Example
/// ```
/// # use feanor_math::assert_el_eq;
/// # use feanor_math::ring::*;
/// # use feanor_math::pid::*;
/// # use feanor_math::primitive_int::*;
/// let ring = StaticRing::<i64>::RING;
/// let (q, r) = ring.euclidean_div_rem(14, &6);
/// assert_el_eq!(ring, 14, ring.add(ring.mul(q, 6), r));
/// assert!(ring.euclidean_deg(&r) < ring.euclidean_deg(&6));
/// ```
/// 
pub trait EuclideanRing: PrincipalIdealRing {

    ///
    /// Computes euclidean division with remainder.
    /// 
    /// In general, the euclidean division of `lhs` by `rhs` is a tuple `(q, r)` such that
    /// `lhs = q * rhs + r`, and `r` is "smaller" than "rhs". The notion of smallness is
    /// given by the smallness of the euclidean degree function [`EuclideanRing::euclidean_deg()`].
    /// 
    fn euclidean_div_rem(&self, lhs: Self::Element, rhs: &Self::Element) -> (Self::Element, Self::Element);

    ///
    /// Defines how "small" an element is. For details, see [`EuclideanRing`].
    /// 
    fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>;

    ///
    /// Computes euclidean division without remainder.
    /// 
    /// In general, the euclidean division of `lhs` by `rhs` is a tuple `(q, r)` such that
    /// `lhs = q * rhs + r`, and `r` is "smaller" than "rhs". The notion of smallness is
    /// given by the smallness of the euclidean degree function [`EuclideanRing::euclidean_deg()`].
    /// 
    fn euclidean_div(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.euclidean_div_rem(lhs, rhs).0
    }

    ///
    /// Computes only the remainder of euclidean division.
    /// 
    /// In general, the euclidean division of `lhs` by `rhs` is a tuple `(q, r)` such that
    /// `lhs = q * rhs + r`, and `r` is "smaller" than "rhs". The notion of smallness is
    /// given by the smallness of the euclidean degree function [`EuclideanRing::euclidean_deg()`].
    /// 
    fn euclidean_rem(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element {
        self.euclidean_div_rem(lhs, rhs).1
    }
}

///
/// [`RingStore`] for [`EuclideanRing`]s
/// 
pub trait EuclideanRingStore: RingStore + DivisibilityRingStore
    where Self::Type: EuclideanRing
{
    delegate!{ EuclideanRing, fn euclidean_div_rem(&self, lhs: El<Self>, rhs: &El<Self>) -> (El<Self>, El<Self>) }
    delegate!{ EuclideanRing, fn euclidean_div(&self, lhs: El<Self>, rhs: &El<Self>) -> El<Self> }
    delegate!{ EuclideanRing, fn euclidean_rem(&self, lhs: El<Self>, rhs: &El<Self>) -> El<Self> }
    delegate!{ EuclideanRing, fn euclidean_deg(&self, val: &El<Self>) -> Option<usize> }
}

impl<R> EuclideanRingStore for R
    where R: RingStore, R::Type: EuclideanRing
{}

#[allow(missing_docs)]
#[cfg(any(test, feature = "generic_tests"))]
pub mod generic_tests {
    use super::*;
    use crate::{algorithms::int_factor::factor, homomorphism::Homomorphism, integer::{int_cast, BigIntRing, IntegerRingStore}, ordered::OrderedRingStore, primitive_int::StaticRing, ring::El};

    pub fn test_euclidean_ring_axioms<R: RingStore, I: Iterator<Item = El<R>>>(ring: R, edge_case_elements: I) 
        where R::Type: EuclideanRing
    {
        assert!(ring.is_commutative());
        assert!(ring.is_noetherian());
        let elements = edge_case_elements.collect::<Vec<_>>();
        for a in &elements {
            for b in &elements {
                if ring.is_zero(b) {
                    continue;
                }
                let (q, r) = ring.euclidean_div_rem(ring.clone_el(a), b);
                assert!(ring.euclidean_deg(b).is_none() || ring.euclidean_deg(&r).unwrap_or(usize::MAX) < ring.euclidean_deg(b).unwrap());
                assert_el_eq!(ring, a, ring.add(ring.mul(q, ring.clone_el(b)), r));
            }
        }
    }

    pub fn test_principal_ideal_ring_axioms<R: RingStore, I: Iterator<Item = El<R>>>(ring: R, edge_case_elements: I)
        where R::Type: PrincipalIdealRing
    {
        assert!(ring.is_commutative());
        assert!(ring.is_noetherian());
        let elements = edge_case_elements.collect::<Vec<_>>();

        let expected_unit = ring.checked_div_min(&ring.zero(), &ring.zero()).unwrap();
        assert!(ring.is_unit(&expected_unit), "checked_div_min() returned a non-minimal quotient {} * {} = {}", ring.format(&expected_unit), ring.format(&ring.zero()), ring.format(&ring.zero()));
        let expected_zero = ring.checked_div_min(&ring.zero(), &ring.one()).unwrap();
        assert!(ring.is_zero(&expected_zero), "checked_div_min() returned a wrong quotient {} * {} = {}", ring.format(&expected_zero), ring.format(&ring.one()), ring.format(&ring.zero()));

        for a in &elements {
            let expected_unit = ring.checked_div_min(a, a).unwrap();
            assert!(ring.is_unit(&expected_unit), "checked_div_min() returned a non-minimal quotient {} * {} = {}", ring.format(&expected_unit), ring.format(a), ring.format(a));
        }

        for a in &elements {
            for b in &elements {
                for c in &elements {
                    let g1 = ring.mul_ref(a, b);
                    let g2 = ring.mul_ref(a, c);
                    let (s, t, g) = ring.extended_ideal_gen(&g1, &g2);
                    assert!(ring.checked_div(&g, a).is_some(), "Wrong ideal generator: ({}) contains the ideal I = ({}, {}), but extended_ideal_gen() found a generator I = ({}) that does not satisfy {} | {}", ring.format(a), ring.format(&g1), ring.format(&g2), ring.format(&g), ring.format(a), ring.format(&g));
                    assert_el_eq!(ring, g, ring.add(ring.mul_ref(&s, &g1), ring.mul_ref(&t, &g2)));
                }
            }
        }
        for a in &elements {
            for b in &elements {
                let g1 = ring.mul_ref(a, b);
                let g2 = ring.mul_ref_fst(a, ring.add_ref_fst(b, ring.one()));
                let (s, t, g) = ring.extended_ideal_gen(&g1, &g2);
                assert!(ring.checked_div(&g, a).is_some() && ring.checked_div(a, &g).is_some(), "Expected ideals ({}) and I = ({}, {}) to be equal, but extended_ideal_gen() returned generator {} of I", ring.format(a), ring.format(&g1), ring.format(&g2), ring.format(&g));
                assert_el_eq!(ring, g, ring.add(ring.mul_ref(&s, &g1), ring.mul_ref(&t, &g2)));
            }
        }

        let ZZbig = BigIntRing::RING;
        let char = ring.characteristic(ZZbig).unwrap();
        if !ZZbig.is_zero(&char) && ZZbig.is_leq(&char, &ZZbig.power_of_two(30)) {
            let p = factor(ZZbig, ZZbig.clone_el(&char)).into_iter().next().unwrap().0;
            let expected = ring.int_hom().map(int_cast(ZZbig.checked_div(&char, &p).unwrap(), StaticRing::<i32>::RING, ZZbig));
            let ann_p = ring.annihilator(&ring.int_hom().map(int_cast(p, StaticRing::<i32>::RING, ZZbig)));
            assert!(ring.checked_div(&ann_p, &expected).is_some());
            assert!(ring.checked_div(&expected, &ann_p).is_some());
        }
    }
}