stm32ral 0.5.0

Register access layer for all STM32 microcontrollers
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
#![allow(non_snake_case, non_upper_case_globals)]
#![allow(non_camel_case_types)]
//! SDMMC1

use crate::{RORegister, RWRegister};
#[cfg(not(feature = "nosync"))]
use core::marker::PhantomData;

/// SDMMC power control register
pub mod SDMMC_POWER {

    /// PWRCTRL
    pub mod PWRCTRL {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (2 bits: 0b11 << 0)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// VSWITCH
    pub mod VSWITCH {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (1 bit: 1 << 2)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// VSWITCHEN
    pub mod VSWITCHEN {
        /// Offset (3 bits)
        pub const offset: u32 = 3;
        /// Mask (1 bit: 1 << 3)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DIRPOL
    pub mod DIRPOL {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (1 bit: 1 << 4)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_CLKCR register controls the SDMMC_CK output clock, the sdmmc_rx_ck receive clock, and the bus width.
pub mod SDMMC_CLKCR {

    /// CLKDIV
    pub mod CLKDIV {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (10 bits: 0x3ff << 0)
        pub const mask: u32 = 0x3ff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// PWRSAV
    pub mod PWRSAV {
        /// Offset (12 bits)
        pub const offset: u32 = 12;
        /// Mask (1 bit: 1 << 12)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// WIDBUS
    pub mod WIDBUS {
        /// Offset (14 bits)
        pub const offset: u32 = 14;
        /// Mask (2 bits: 0b11 << 14)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// NEGEDGE
    pub mod NEGEDGE {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (1 bit: 1 << 16)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// HWFC_EN
    pub mod HWFC_EN {
        /// Offset (17 bits)
        pub const offset: u32 = 17;
        /// Mask (1 bit: 1 << 17)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DDR
    pub mod DDR {
        /// Offset (18 bits)
        pub const offset: u32 = 18;
        /// Mask (1 bit: 1 << 18)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BUSSPEED
    pub mod BUSSPEED {
        /// Offset (19 bits)
        pub const offset: u32 = 19;
        /// Mask (1 bit: 1 << 19)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SELCLKRX
    pub mod SELCLKRX {
        /// Offset (20 bits)
        pub const offset: u32 = 20;
        /// Mask (2 bits: 0b11 << 20)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_ARGR register contains a 32-bit command argument, which is sent to a card as part of a command message.
pub mod SDMMC_ARGR {

    /// CMDARG
    pub mod CMDARG {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_CMDR register contains the command index and command type bits. The command index is sent to a card as part of a command message. The command type bits control the command path state machine (CPSM).
pub mod SDMMC_CMDR {

    /// CMDINDEX
    pub mod CMDINDEX {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (6 bits: 0x3f << 0)
        pub const mask: u32 = 0x3f << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDTRANS
    pub mod CMDTRANS {
        /// Offset (6 bits)
        pub const offset: u32 = 6;
        /// Mask (1 bit: 1 << 6)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDSTOP
    pub mod CMDSTOP {
        /// Offset (7 bits)
        pub const offset: u32 = 7;
        /// Mask (1 bit: 1 << 7)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// WAITRESP
    pub mod WAITRESP {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (2 bits: 0b11 << 8)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// WAITINT
    pub mod WAITINT {
        /// Offset (10 bits)
        pub const offset: u32 = 10;
        /// Mask (1 bit: 1 << 10)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// WAITPEND
    pub mod WAITPEND {
        /// Offset (11 bits)
        pub const offset: u32 = 11;
        /// Mask (1 bit: 1 << 11)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CPSMEN
    pub mod CPSMEN {
        /// Offset (12 bits)
        pub const offset: u32 = 12;
        /// Mask (1 bit: 1 << 12)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DTHOLD
    pub mod DTHOLD {
        /// Offset (13 bits)
        pub const offset: u32 = 13;
        /// Mask (1 bit: 1 << 13)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BOOTMODE
    pub mod BOOTMODE {
        /// Offset (14 bits)
        pub const offset: u32 = 14;
        /// Mask (1 bit: 1 << 14)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BOOTEN
    pub mod BOOTEN {
        /// Offset (15 bits)
        pub const offset: u32 = 15;
        /// Mask (1 bit: 1 << 15)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDSUSPEND
    pub mod CMDSUSPEND {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (1 bit: 1 << 16)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_RESPCMDR register contains the command index field of the last command response received. If the command response transmission does not contain the command index field (long or OCR response), the RESPCMD field is unknown, although it must contain 111111b (the value of the reserved field from the response).
pub mod SDMMC_RESPCMDR {

    /// RESPCMD
    pub mod RESPCMD {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (6 bits: 0x3f << 0)
        pub const mask: u32 = 0x3f << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
pub mod SDMMC_RESP1R {

    /// CARDSTATUS1
    pub mod CARDSTATUS1 {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
pub mod SDMMC_RESP2R {

    /// CARDSTATUS2
    pub mod CARDSTATUS2 {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
pub mod SDMMC_RESP3R {

    /// CARDSTATUS3
    pub mod CARDSTATUS3 {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
pub mod SDMMC_RESP4R {

    /// CARDSTATUS4
    pub mod CARDSTATUS4 {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_DTIMER register contains the data timeout period, in card bus clock periods. A counter loads the value from the SDMMC_DTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0 while the DPSM is in either of these states, the timeout status flag is set.
pub mod SDMMC_DTIMER {

    /// DATATIME
    pub mod DATATIME {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_DLENR register contains the number of data bytes to be transferred. The value is loaded into the data counter when data transfer starts.
pub mod SDMMC_DLENR {

    /// DATALENGTH
    pub mod DATALENGTH {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (25 bits: 0x1ffffff << 0)
        pub const mask: u32 = 0x1ffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_DCTRL register control the data path state machine (DPSM).
pub mod SDMMC_DCTRL {

    /// DTEN
    pub mod DTEN {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DTDIR
    pub mod DTDIR {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DTMODE
    pub mod DTMODE {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (2 bits: 0b11 << 2)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DBLOCKSIZE
    pub mod DBLOCKSIZE {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (4 bits: 0b1111 << 4)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RWSTART
    pub mod RWSTART {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (1 bit: 1 << 8)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RWSTOP
    pub mod RWSTOP {
        /// Offset (9 bits)
        pub const offset: u32 = 9;
        /// Mask (1 bit: 1 << 9)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RWMOD
    pub mod RWMOD {
        /// Offset (10 bits)
        pub const offset: u32 = 10;
        /// Mask (1 bit: 1 << 10)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SDIOEN
    pub mod SDIOEN {
        /// Offset (11 bits)
        pub const offset: u32 = 11;
        /// Mask (1 bit: 1 << 11)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BOOTACKEN
    pub mod BOOTACKEN {
        /// Offset (12 bits)
        pub const offset: u32 = 12;
        /// Mask (1 bit: 1 << 12)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// FIFORST
    pub mod FIFORST {
        /// Offset (13 bits)
        pub const offset: u32 = 13;
        /// Mask (1 bit: 1 << 13)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_DCNTR register loads the value from the data length register (see SDMMC_DLENR) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As data is transferred, the counter decrements the value until it reaches 0. The DPSM then moves to the Idle state and when there has been no error, the data status end flag (DATAEND) is set.
pub mod SDMMC_DCNTR {

    /// DATACOUNT
    pub mod DATACOUNT {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (25 bits: 0x1ffffff << 0)
        pub const mask: u32 = 0x1ffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_STAR register is a read-only register. It contains two types of flag: Static flags (bits \[28, 21, 11:0\]): these bits remain asserted until they are cleared by writing to the SDMMC interrupt Clear register (see SDMMC_ICR) Dynamic flags (bits \[20:12\]): these bits change state depending on the state of the underlying logic (for example, FIFO full and empty flags are asserted and de-asserted as data while written to the FIFO)
pub mod SDMMC_STAR {

    /// CCRCFAIL
    pub mod CCRCFAIL {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DCRCFAIL
    pub mod DCRCFAIL {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CTIMEOUT
    pub mod CTIMEOUT {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (1 bit: 1 << 2)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DTIMEOUT
    pub mod DTIMEOUT {
        /// Offset (3 bits)
        pub const offset: u32 = 3;
        /// Mask (1 bit: 1 << 3)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXUNDERR
    pub mod TXUNDERR {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (1 bit: 1 << 4)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXOVERR
    pub mod RXOVERR {
        /// Offset (5 bits)
        pub const offset: u32 = 5;
        /// Mask (1 bit: 1 << 5)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDREND
    pub mod CMDREND {
        /// Offset (6 bits)
        pub const offset: u32 = 6;
        /// Mask (1 bit: 1 << 6)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDSENT
    pub mod CMDSENT {
        /// Offset (7 bits)
        pub const offset: u32 = 7;
        /// Mask (1 bit: 1 << 7)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DATAEND
    pub mod DATAEND {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (1 bit: 1 << 8)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DHOLD
    pub mod DHOLD {
        /// Offset (9 bits)
        pub const offset: u32 = 9;
        /// Mask (1 bit: 1 << 9)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DBCKEND
    pub mod DBCKEND {
        /// Offset (10 bits)
        pub const offset: u32 = 10;
        /// Mask (1 bit: 1 << 10)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DABORT
    pub mod DABORT {
        /// Offset (11 bits)
        pub const offset: u32 = 11;
        /// Mask (1 bit: 1 << 11)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DPSMACT
    pub mod DPSMACT {
        /// Offset (12 bits)
        pub const offset: u32 = 12;
        /// Mask (1 bit: 1 << 12)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CPSMACT
    pub mod CPSMACT {
        /// Offset (13 bits)
        pub const offset: u32 = 13;
        /// Mask (1 bit: 1 << 13)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXFIFOHE
    pub mod TXFIFOHE {
        /// Offset (14 bits)
        pub const offset: u32 = 14;
        /// Mask (1 bit: 1 << 14)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXFIFOHF
    pub mod RXFIFOHF {
        /// Offset (15 bits)
        pub const offset: u32 = 15;
        /// Mask (1 bit: 1 << 15)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXFIFOF
    pub mod TXFIFOF {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (1 bit: 1 << 16)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXFIFOF
    pub mod RXFIFOF {
        /// Offset (17 bits)
        pub const offset: u32 = 17;
        /// Mask (1 bit: 1 << 17)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXFIFOE
    pub mod TXFIFOE {
        /// Offset (18 bits)
        pub const offset: u32 = 18;
        /// Mask (1 bit: 1 << 18)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXFIFOE
    pub mod RXFIFOE {
        /// Offset (19 bits)
        pub const offset: u32 = 19;
        /// Mask (1 bit: 1 << 19)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BUSYD0
    pub mod BUSYD0 {
        /// Offset (20 bits)
        pub const offset: u32 = 20;
        /// Mask (1 bit: 1 << 20)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BUSYD0END
    pub mod BUSYD0END {
        /// Offset (21 bits)
        pub const offset: u32 = 21;
        /// Mask (1 bit: 1 << 21)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SDIOIT
    pub mod SDIOIT {
        /// Offset (22 bits)
        pub const offset: u32 = 22;
        /// Mask (1 bit: 1 << 22)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ACKFAIL
    pub mod ACKFAIL {
        /// Offset (23 bits)
        pub const offset: u32 = 23;
        /// Mask (1 bit: 1 << 23)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ACKTIMEOUT
    pub mod ACKTIMEOUT {
        /// Offset (24 bits)
        pub const offset: u32 = 24;
        /// Mask (1 bit: 1 << 24)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// VSWEND
    pub mod VSWEND {
        /// Offset (25 bits)
        pub const offset: u32 = 25;
        /// Mask (1 bit: 1 << 25)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CKSTOP
    pub mod CKSTOP {
        /// Offset (26 bits)
        pub const offset: u32 = 26;
        /// Mask (1 bit: 1 << 26)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// IDMATE
    pub mod IDMATE {
        /// Offset (27 bits)
        pub const offset: u32 = 27;
        /// Mask (1 bit: 1 << 27)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// IDMABTC
    pub mod IDMABTC {
        /// Offset (28 bits)
        pub const offset: u32 = 28;
        /// Mask (1 bit: 1 << 28)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_ICR register is a write-only register. Writing a bit with 1 clears the corresponding bit in the SDMMC_STAR status register.
pub mod SDMMC_ICR {

    /// CCRCFAILC
    pub mod CCRCFAILC {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DCRCFAILC
    pub mod DCRCFAILC {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CTIMEOUTC
    pub mod CTIMEOUTC {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (1 bit: 1 << 2)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DTIMEOUTC
    pub mod DTIMEOUTC {
        /// Offset (3 bits)
        pub const offset: u32 = 3;
        /// Mask (1 bit: 1 << 3)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXUNDERRC
    pub mod TXUNDERRC {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (1 bit: 1 << 4)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXOVERRC
    pub mod RXOVERRC {
        /// Offset (5 bits)
        pub const offset: u32 = 5;
        /// Mask (1 bit: 1 << 5)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDRENDC
    pub mod CMDRENDC {
        /// Offset (6 bits)
        pub const offset: u32 = 6;
        /// Mask (1 bit: 1 << 6)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDSENTC
    pub mod CMDSENTC {
        /// Offset (7 bits)
        pub const offset: u32 = 7;
        /// Mask (1 bit: 1 << 7)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DATAENDC
    pub mod DATAENDC {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (1 bit: 1 << 8)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DHOLDC
    pub mod DHOLDC {
        /// Offset (9 bits)
        pub const offset: u32 = 9;
        /// Mask (1 bit: 1 << 9)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DBCKENDC
    pub mod DBCKENDC {
        /// Offset (10 bits)
        pub const offset: u32 = 10;
        /// Mask (1 bit: 1 << 10)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DABORTC
    pub mod DABORTC {
        /// Offset (11 bits)
        pub const offset: u32 = 11;
        /// Mask (1 bit: 1 << 11)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BUSYD0ENDC
    pub mod BUSYD0ENDC {
        /// Offset (21 bits)
        pub const offset: u32 = 21;
        /// Mask (1 bit: 1 << 21)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SDIOITC
    pub mod SDIOITC {
        /// Offset (22 bits)
        pub const offset: u32 = 22;
        /// Mask (1 bit: 1 << 22)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ACKFAILC
    pub mod ACKFAILC {
        /// Offset (23 bits)
        pub const offset: u32 = 23;
        /// Mask (1 bit: 1 << 23)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ACKTIMEOUTC
    pub mod ACKTIMEOUTC {
        /// Offset (24 bits)
        pub const offset: u32 = 24;
        /// Mask (1 bit: 1 << 24)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// VSWENDC
    pub mod VSWENDC {
        /// Offset (25 bits)
        pub const offset: u32 = 25;
        /// Mask (1 bit: 1 << 25)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CKSTOPC
    pub mod CKSTOPC {
        /// Offset (26 bits)
        pub const offset: u32 = 26;
        /// Mask (1 bit: 1 << 26)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// IDMATEC
    pub mod IDMATEC {
        /// Offset (27 bits)
        pub const offset: u32 = 27;
        /// Mask (1 bit: 1 << 27)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// IDMABTCC
    pub mod IDMABTCC {
        /// Offset (28 bits)
        pub const offset: u32 = 28;
        /// Mask (1 bit: 1 << 28)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The interrupt mask register determines which status flags generate an interrupt request by setting the corresponding bit to 1.
pub mod SDMMC_MASKR {

    /// CCRCFAILIE
    pub mod CCRCFAILIE {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DCRCFAILIE
    pub mod DCRCFAILIE {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CTIMEOUTIE
    pub mod CTIMEOUTIE {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (1 bit: 1 << 2)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DTIMEOUTIE
    pub mod DTIMEOUTIE {
        /// Offset (3 bits)
        pub const offset: u32 = 3;
        /// Mask (1 bit: 1 << 3)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXUNDERRIE
    pub mod TXUNDERRIE {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (1 bit: 1 << 4)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXOVERRIE
    pub mod RXOVERRIE {
        /// Offset (5 bits)
        pub const offset: u32 = 5;
        /// Mask (1 bit: 1 << 5)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDRENDIE
    pub mod CMDRENDIE {
        /// Offset (6 bits)
        pub const offset: u32 = 6;
        /// Mask (1 bit: 1 << 6)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CMDSENTIE
    pub mod CMDSENTIE {
        /// Offset (7 bits)
        pub const offset: u32 = 7;
        /// Mask (1 bit: 1 << 7)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DATAENDIE
    pub mod DATAENDIE {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (1 bit: 1 << 8)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DHOLDIE
    pub mod DHOLDIE {
        /// Offset (9 bits)
        pub const offset: u32 = 9;
        /// Mask (1 bit: 1 << 9)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DBCKENDIE
    pub mod DBCKENDIE {
        /// Offset (10 bits)
        pub const offset: u32 = 10;
        /// Mask (1 bit: 1 << 10)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// DABORTIE
    pub mod DABORTIE {
        /// Offset (11 bits)
        pub const offset: u32 = 11;
        /// Mask (1 bit: 1 << 11)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXFIFOHEIE
    pub mod TXFIFOHEIE {
        /// Offset (14 bits)
        pub const offset: u32 = 14;
        /// Mask (1 bit: 1 << 14)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXFIFOHFIE
    pub mod RXFIFOHFIE {
        /// Offset (15 bits)
        pub const offset: u32 = 15;
        /// Mask (1 bit: 1 << 15)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// RXFIFOFIE
    pub mod RXFIFOFIE {
        /// Offset (17 bits)
        pub const offset: u32 = 17;
        /// Mask (1 bit: 1 << 17)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TXFIFOEIE
    pub mod TXFIFOEIE {
        /// Offset (18 bits)
        pub const offset: u32 = 18;
        /// Mask (1 bit: 1 << 18)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BUSYD0ENDIE
    pub mod BUSYD0ENDIE {
        /// Offset (21 bits)
        pub const offset: u32 = 21;
        /// Mask (1 bit: 1 << 21)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SDIOITIE
    pub mod SDIOITIE {
        /// Offset (22 bits)
        pub const offset: u32 = 22;
        /// Mask (1 bit: 1 << 22)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ACKFAILIE
    pub mod ACKFAILIE {
        /// Offset (23 bits)
        pub const offset: u32 = 23;
        /// Mask (1 bit: 1 << 23)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ACKTIMEOUTIE
    pub mod ACKTIMEOUTIE {
        /// Offset (24 bits)
        pub const offset: u32 = 24;
        /// Mask (1 bit: 1 << 24)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// VSWENDIE
    pub mod VSWENDIE {
        /// Offset (25 bits)
        pub const offset: u32 = 25;
        /// Mask (1 bit: 1 << 25)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CKSTOPIE
    pub mod CKSTOPIE {
        /// Offset (26 bits)
        pub const offset: u32 = 26;
        /// Mask (1 bit: 1 << 26)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// IDMABTCIE
    pub mod IDMABTCIE {
        /// Offset (28 bits)
        pub const offset: u32 = 28;
        /// Mask (1 bit: 1 << 28)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_ACKTIMER register contains the acknowledgment timeout period, in SDMMC_CK bus clock periods. A counter loads the value from the SDMMC_ACKTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_Ack state. If the timer reaches 0 while the DPSM is in this states, the acknowledgment timeout status flag is set.
pub mod SDMMC_ACKTIMER {

    /// ACKTIME
    pub mod ACKTIME {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (25 bits: 0x1ffffff << 0)
        pub const mask: u32 = 0x1ffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO.
pub mod SDMMC_IDMACTRLR {

    /// IDMAEN
    pub mod IDMAEN {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// IDMABMODE
    pub mod IDMABMODE {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_IDMABSIZER register contains the buffer size when in linked list configuration.
pub mod SDMMC_IDMABSIZER {

    /// IDMABNDT
    pub mod IDMABNDT {
        /// Offset (5 bits)
        pub const offset: u32 = 5;
        /// Mask (12 bits: 0xfff << 5)
        pub const mask: u32 = 0xfff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The SDMMC_IDMABASER register contains the memory buffer base address in single buffer configuration and linked list configuration.
pub mod SDMMC_IDMABASER {

    /// IDMABASE
    pub mod IDMABASE {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// SDMMC IDMA linked list address register
pub mod SDMMC_IDMALAR {

    /// IDMALA
    pub mod IDMALA {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (14 bits: 0x3fff << 2)
        pub const mask: u32 = 0x3fff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ABR
    pub mod ABR {
        /// Offset (29 bits)
        pub const offset: u32 = 29;
        /// Mask (1 bit: 1 << 29)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ULS
    pub mod ULS {
        /// Offset (30 bits)
        pub const offset: u32 = 30;
        /// Mask (1 bit: 1 << 30)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// ULA
    pub mod ULA {
        /// Offset (31 bits)
        pub const offset: u32 = 31;
        /// Mask (1 bit: 1 << 31)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// SDMMC IDMA linked list memory base register
pub mod SDMMC_IDMABAR {

    /// IDMABA
    pub mod IDMABA {
        /// Offset (2 bits)
        pub const offset: u32 = 2;
        /// Mask (30 bits: 0x3fffffff << 2)
        pub const mask: u32 = 0x3fffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR0 {

    /// FIFODATA
    pub mod FIFODATA {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR1 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR2 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR3 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR4 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR5 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR6 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR7 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR8 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR9 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR10 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR11 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR12 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR13 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR14 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
pub mod SDMMC_FIFOR15 {
    pub use super::SDMMC_FIFOR0::FIFODATA;
}

/// SDMMC version register
pub mod SDMMC_VERR {

    /// MINREV
    pub mod MINREV {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (4 bits: 0b1111 << 0)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// MAJREV
    pub mod MAJREV {
        /// Offset (4 bits)
        pub const offset: u32 = 4;
        /// Mask (4 bits: 0b1111 << 4)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// SDMMC identification register
pub mod SDMMC_IPIDR {

    /// IP_ID
    pub mod IP_ID {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// SDMMC size ID register
pub mod SDMMC_SIDR {

    /// SID
    pub mod SID {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (32 bits: 0xffffffff << 0)
        pub const mask: u32 = 0xffffffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}
#[repr(C)]
pub struct RegisterBlock {
    /// SDMMC power control register
    pub SDMMC_POWER: RWRegister<u32>,

    /// The SDMMC_CLKCR register controls the SDMMC_CK output clock, the sdmmc_rx_ck receive clock, and the bus width.
    pub SDMMC_CLKCR: RWRegister<u32>,

    /// The SDMMC_ARGR register contains a 32-bit command argument, which is sent to a card as part of a command message.
    pub SDMMC_ARGR: RWRegister<u32>,

    /// The SDMMC_CMDR register contains the command index and command type bits. The command index is sent to a card as part of a command message. The command type bits control the command path state machine (CPSM).
    pub SDMMC_CMDR: RWRegister<u32>,

    /// The SDMMC_RESPCMDR register contains the command index field of the last command response received. If the command response transmission does not contain the command index field (long or OCR response), the RESPCMD field is unknown, although it must contain 111111b (the value of the reserved field from the response).
    pub SDMMC_RESPCMDR: RORegister<u32>,

    /// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
    pub SDMMC_RESP1R: RORegister<u32>,

    /// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
    pub SDMMC_RESP2R: RORegister<u32>,

    /// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
    pub SDMMC_RESP3R: RORegister<u32>,

    /// The SDMMC_RESP1/2/3/4R registers contain the status of a card, which is part of the received response.
    pub SDMMC_RESP4R: RORegister<u32>,

    /// The SDMMC_DTIMER register contains the data timeout period, in card bus clock periods. A counter loads the value from the SDMMC_DTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0 while the DPSM is in either of these states, the timeout status flag is set.
    pub SDMMC_DTIMER: RWRegister<u32>,

    /// The SDMMC_DLENR register contains the number of data bytes to be transferred. The value is loaded into the data counter when data transfer starts.
    pub SDMMC_DLENR: RWRegister<u32>,

    /// The SDMMC_DCTRL register control the data path state machine (DPSM).
    pub SDMMC_DCTRL: RWRegister<u32>,

    /// The SDMMC_DCNTR register loads the value from the data length register (see SDMMC_DLENR) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As data is transferred, the counter decrements the value until it reaches 0. The DPSM then moves to the Idle state and when there has been no error, the data status end flag (DATAEND) is set.
    pub SDMMC_DCNTR: RORegister<u32>,

    /// The SDMMC_STAR register is a read-only register. It contains two types of flag: Static flags (bits \[28, 21, 11:0\]): these bits remain asserted until they are cleared by writing to the SDMMC interrupt Clear register (see SDMMC_ICR) Dynamic flags (bits \[20:12\]): these bits change state depending on the state of the underlying logic (for example, FIFO full and empty flags are asserted and de-asserted as data while written to the FIFO)
    pub SDMMC_STAR: RORegister<u32>,

    /// The SDMMC_ICR register is a write-only register. Writing a bit with 1 clears the corresponding bit in the SDMMC_STAR status register.
    pub SDMMC_ICR: RWRegister<u32>,

    /// The interrupt mask register determines which status flags generate an interrupt request by setting the corresponding bit to 1.
    pub SDMMC_MASKR: RWRegister<u32>,

    /// The SDMMC_ACKTIMER register contains the acknowledgment timeout period, in SDMMC_CK bus clock periods. A counter loads the value from the SDMMC_ACKTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_Ack state. If the timer reaches 0 while the DPSM is in this states, the acknowledgment timeout status flag is set.
    pub SDMMC_ACKTIMER: RWRegister<u32>,

    _reserved1: [u32; 3],

    /// The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO.
    pub SDMMC_IDMACTRLR: RWRegister<u32>,

    /// The SDMMC_IDMABSIZER register contains the buffer size when in linked list configuration.
    pub SDMMC_IDMABSIZER: RWRegister<u32>,

    /// The SDMMC_IDMABASER register contains the memory buffer base address in single buffer configuration and linked list configuration.
    pub SDMMC_IDMABASER: RWRegister<u32>,

    _reserved2: [u32; 2],

    /// SDMMC IDMA linked list address register
    pub SDMMC_IDMALAR: RWRegister<u32>,

    /// SDMMC IDMA linked list memory base register
    pub SDMMC_IDMABAR: RWRegister<u32>,

    _reserved3: [u32; 5],

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR0: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR1: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR2: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR3: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR4: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR5: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR6: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR7: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR8: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR9: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR10: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR11: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR12: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR13: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR14: RWRegister<u32>,

    /// The receive and transmit FIFOs can be only read or written as word (32-bit) wide registers. The FIFOs contain 16 entries on sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. The FIFO register interface takes care of correct data alignment inside the FIFO, the FIFO register address used by the CPU does matter. When accessing SDMMC_FIFOR with half word or byte access an AHB bus fault is generated.
    pub SDMMC_FIFOR15: RWRegister<u32>,

    _reserved4: [u32; 205],

    /// SDMMC version register
    pub SDMMC_VERR: RORegister<u32>,

    /// SDMMC identification register
    pub SDMMC_IPIDR: RORegister<u32>,

    /// SDMMC size ID register
    pub SDMMC_SIDR: RORegister<u32>,
}
pub struct ResetValues {
    pub SDMMC_POWER: u32,
    pub SDMMC_CLKCR: u32,
    pub SDMMC_ARGR: u32,
    pub SDMMC_CMDR: u32,
    pub SDMMC_RESPCMDR: u32,
    pub SDMMC_RESP1R: u32,
    pub SDMMC_RESP2R: u32,
    pub SDMMC_RESP3R: u32,
    pub SDMMC_RESP4R: u32,
    pub SDMMC_DTIMER: u32,
    pub SDMMC_DLENR: u32,
    pub SDMMC_DCTRL: u32,
    pub SDMMC_DCNTR: u32,
    pub SDMMC_STAR: u32,
    pub SDMMC_ICR: u32,
    pub SDMMC_MASKR: u32,
    pub SDMMC_ACKTIMER: u32,
    pub SDMMC_IDMACTRLR: u32,
    pub SDMMC_IDMABSIZER: u32,
    pub SDMMC_IDMABASER: u32,
    pub SDMMC_IDMALAR: u32,
    pub SDMMC_IDMABAR: u32,
    pub SDMMC_FIFOR0: u32,
    pub SDMMC_FIFOR1: u32,
    pub SDMMC_FIFOR2: u32,
    pub SDMMC_FIFOR3: u32,
    pub SDMMC_FIFOR4: u32,
    pub SDMMC_FIFOR5: u32,
    pub SDMMC_FIFOR6: u32,
    pub SDMMC_FIFOR7: u32,
    pub SDMMC_FIFOR8: u32,
    pub SDMMC_FIFOR9: u32,
    pub SDMMC_FIFOR10: u32,
    pub SDMMC_FIFOR11: u32,
    pub SDMMC_FIFOR12: u32,
    pub SDMMC_FIFOR13: u32,
    pub SDMMC_FIFOR14: u32,
    pub SDMMC_FIFOR15: u32,
    pub SDMMC_VERR: u32,
    pub SDMMC_IPIDR: u32,
    pub SDMMC_SIDR: u32,
}
#[cfg(not(feature = "nosync"))]
pub struct Instance {
    pub(crate) addr: u32,
    pub(crate) _marker: PhantomData<*const RegisterBlock>,
}
#[cfg(not(feature = "nosync"))]
impl ::core::ops::Deref for Instance {
    type Target = RegisterBlock;
    #[inline(always)]
    fn deref(&self) -> &RegisterBlock {
        unsafe { &*(self.addr as *const _) }
    }
}
#[cfg(feature = "rtic")]
unsafe impl Send for Instance {}

/// Access functions for the SDMMC1 peripheral instance
pub mod SDMMC1 {
    use super::ResetValues;

    #[cfg(not(feature = "nosync"))]
    use super::Instance;

    #[cfg(not(feature = "nosync"))]
    const INSTANCE: Instance = Instance {
        addr: 0x58005000,
        _marker: ::core::marker::PhantomData,
    };

    /// Reset values for each field in SDMMC1
    pub const reset: ResetValues = ResetValues {
        SDMMC_POWER: 0x00000000,
        SDMMC_CLKCR: 0x00000000,
        SDMMC_ARGR: 0x00000000,
        SDMMC_CMDR: 0x00000000,
        SDMMC_RESPCMDR: 0x00000000,
        SDMMC_RESP1R: 0x00000000,
        SDMMC_RESP2R: 0x00000000,
        SDMMC_RESP3R: 0x00000000,
        SDMMC_RESP4R: 0x00000000,
        SDMMC_DTIMER: 0x00000000,
        SDMMC_DLENR: 0x00000000,
        SDMMC_DCTRL: 0x00000000,
        SDMMC_DCNTR: 0x00000000,
        SDMMC_STAR: 0x00000000,
        SDMMC_ICR: 0x00000000,
        SDMMC_MASKR: 0x00000000,
        SDMMC_ACKTIMER: 0x00000000,
        SDMMC_IDMACTRLR: 0x00000000,
        SDMMC_IDMABSIZER: 0x00000000,
        SDMMC_IDMABASER: 0x00000000,
        SDMMC_IDMALAR: 0x00000000,
        SDMMC_IDMABAR: 0x00000000,
        SDMMC_FIFOR0: 0x00000000,
        SDMMC_FIFOR1: 0x00000000,
        SDMMC_FIFOR2: 0x00000000,
        SDMMC_FIFOR3: 0x00000000,
        SDMMC_FIFOR4: 0x00000000,
        SDMMC_FIFOR5: 0x00000000,
        SDMMC_FIFOR6: 0x00000000,
        SDMMC_FIFOR7: 0x00000000,
        SDMMC_FIFOR8: 0x00000000,
        SDMMC_FIFOR9: 0x00000000,
        SDMMC_FIFOR10: 0x00000000,
        SDMMC_FIFOR11: 0x00000000,
        SDMMC_FIFOR12: 0x00000000,
        SDMMC_FIFOR13: 0x00000000,
        SDMMC_FIFOR14: 0x00000000,
        SDMMC_FIFOR15: 0x00000000,
        SDMMC_VERR: 0x00000020,
        SDMMC_IPIDR: 0x00140022,
        SDMMC_SIDR: 0xA3C5DD01,
    };

    #[cfg(not(feature = "nosync"))]
    #[allow(renamed_and_removed_lints)]
    #[allow(private_no_mangle_statics)]
    #[no_mangle]
    static mut SDMMC1_TAKEN: bool = false;

    /// Safe access to SDMMC1
    ///
    /// This function returns `Some(Instance)` if this instance is not
    /// currently taken, and `None` if it is. This ensures that if you
    /// do get `Some(Instance)`, you are ensured unique access to
    /// the peripheral and there cannot be data races (unless other
    /// code uses `unsafe`, of course). You can then pass the
    /// `Instance` around to other functions as required. When you're
    /// done with it, you can call `release(instance)` to return it.
    ///
    /// `Instance` itself dereferences to a `RegisterBlock`, which
    /// provides access to the peripheral's registers.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn take() -> Option<Instance> {
        external_cortex_m::interrupt::free(|_| unsafe {
            if SDMMC1_TAKEN {
                None
            } else {
                SDMMC1_TAKEN = true;
                Some(INSTANCE)
            }
        })
    }

    /// Release exclusive access to SDMMC1
    ///
    /// This function allows you to return an `Instance` so that it
    /// is available to `take()` again. This function will panic if
    /// you return a different `Instance` or if this instance is not
    /// already taken.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn release(inst: Instance) {
        external_cortex_m::interrupt::free(|_| unsafe {
            if SDMMC1_TAKEN && inst.addr == INSTANCE.addr {
                SDMMC1_TAKEN = false;
            } else {
                panic!("Released a peripheral which was not taken");
            }
        });
    }

    /// Unsafely steal SDMMC1
    ///
    /// This function is similar to take() but forcibly takes the
    /// Instance, marking it as taken irregardless of its previous
    /// state.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub unsafe fn steal() -> Instance {
        SDMMC1_TAKEN = true;
        INSTANCE
    }
}

/// Raw pointer to SDMMC1
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const SDMMC1: *const RegisterBlock = 0x58005000 as *const _;

/// Access functions for the SDMMC2 peripheral instance
pub mod SDMMC2 {
    use super::ResetValues;

    #[cfg(not(feature = "nosync"))]
    use super::Instance;

    #[cfg(not(feature = "nosync"))]
    const INSTANCE: Instance = Instance {
        addr: 0x58007000,
        _marker: ::core::marker::PhantomData,
    };

    /// Reset values for each field in SDMMC2
    pub const reset: ResetValues = ResetValues {
        SDMMC_POWER: 0x00000000,
        SDMMC_CLKCR: 0x00000000,
        SDMMC_ARGR: 0x00000000,
        SDMMC_CMDR: 0x00000000,
        SDMMC_RESPCMDR: 0x00000000,
        SDMMC_RESP1R: 0x00000000,
        SDMMC_RESP2R: 0x00000000,
        SDMMC_RESP3R: 0x00000000,
        SDMMC_RESP4R: 0x00000000,
        SDMMC_DTIMER: 0x00000000,
        SDMMC_DLENR: 0x00000000,
        SDMMC_DCTRL: 0x00000000,
        SDMMC_DCNTR: 0x00000000,
        SDMMC_STAR: 0x00000000,
        SDMMC_ICR: 0x00000000,
        SDMMC_MASKR: 0x00000000,
        SDMMC_ACKTIMER: 0x00000000,
        SDMMC_IDMACTRLR: 0x00000000,
        SDMMC_IDMABSIZER: 0x00000000,
        SDMMC_IDMABASER: 0x00000000,
        SDMMC_IDMALAR: 0x00000000,
        SDMMC_IDMABAR: 0x00000000,
        SDMMC_FIFOR0: 0x00000000,
        SDMMC_FIFOR1: 0x00000000,
        SDMMC_FIFOR2: 0x00000000,
        SDMMC_FIFOR3: 0x00000000,
        SDMMC_FIFOR4: 0x00000000,
        SDMMC_FIFOR5: 0x00000000,
        SDMMC_FIFOR6: 0x00000000,
        SDMMC_FIFOR7: 0x00000000,
        SDMMC_FIFOR8: 0x00000000,
        SDMMC_FIFOR9: 0x00000000,
        SDMMC_FIFOR10: 0x00000000,
        SDMMC_FIFOR11: 0x00000000,
        SDMMC_FIFOR12: 0x00000000,
        SDMMC_FIFOR13: 0x00000000,
        SDMMC_FIFOR14: 0x00000000,
        SDMMC_FIFOR15: 0x00000000,
        SDMMC_VERR: 0x00000020,
        SDMMC_IPIDR: 0x00140022,
        SDMMC_SIDR: 0xA3C5DD01,
    };

    #[cfg(not(feature = "nosync"))]
    #[allow(renamed_and_removed_lints)]
    #[allow(private_no_mangle_statics)]
    #[no_mangle]
    static mut SDMMC2_TAKEN: bool = false;

    /// Safe access to SDMMC2
    ///
    /// This function returns `Some(Instance)` if this instance is not
    /// currently taken, and `None` if it is. This ensures that if you
    /// do get `Some(Instance)`, you are ensured unique access to
    /// the peripheral and there cannot be data races (unless other
    /// code uses `unsafe`, of course). You can then pass the
    /// `Instance` around to other functions as required. When you're
    /// done with it, you can call `release(instance)` to return it.
    ///
    /// `Instance` itself dereferences to a `RegisterBlock`, which
    /// provides access to the peripheral's registers.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn take() -> Option<Instance> {
        external_cortex_m::interrupt::free(|_| unsafe {
            if SDMMC2_TAKEN {
                None
            } else {
                SDMMC2_TAKEN = true;
                Some(INSTANCE)
            }
        })
    }

    /// Release exclusive access to SDMMC2
    ///
    /// This function allows you to return an `Instance` so that it
    /// is available to `take()` again. This function will panic if
    /// you return a different `Instance` or if this instance is not
    /// already taken.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn release(inst: Instance) {
        external_cortex_m::interrupt::free(|_| unsafe {
            if SDMMC2_TAKEN && inst.addr == INSTANCE.addr {
                SDMMC2_TAKEN = false;
            } else {
                panic!("Released a peripheral which was not taken");
            }
        });
    }

    /// Unsafely steal SDMMC2
    ///
    /// This function is similar to take() but forcibly takes the
    /// Instance, marking it as taken irregardless of its previous
    /// state.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub unsafe fn steal() -> Instance {
        SDMMC2_TAKEN = true;
        INSTANCE
    }
}

/// Raw pointer to SDMMC2
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const SDMMC2: *const RegisterBlock = 0x58007000 as *const _;

/// Access functions for the SDMMC3 peripheral instance
pub mod SDMMC3 {
    use super::ResetValues;

    #[cfg(not(feature = "nosync"))]
    use super::Instance;

    #[cfg(not(feature = "nosync"))]
    const INSTANCE: Instance = Instance {
        addr: 0x48004000,
        _marker: ::core::marker::PhantomData,
    };

    /// Reset values for each field in SDMMC3
    pub const reset: ResetValues = ResetValues {
        SDMMC_POWER: 0x00000000,
        SDMMC_CLKCR: 0x00000000,
        SDMMC_ARGR: 0x00000000,
        SDMMC_CMDR: 0x00000000,
        SDMMC_RESPCMDR: 0x00000000,
        SDMMC_RESP1R: 0x00000000,
        SDMMC_RESP2R: 0x00000000,
        SDMMC_RESP3R: 0x00000000,
        SDMMC_RESP4R: 0x00000000,
        SDMMC_DTIMER: 0x00000000,
        SDMMC_DLENR: 0x00000000,
        SDMMC_DCTRL: 0x00000000,
        SDMMC_DCNTR: 0x00000000,
        SDMMC_STAR: 0x00000000,
        SDMMC_ICR: 0x00000000,
        SDMMC_MASKR: 0x00000000,
        SDMMC_ACKTIMER: 0x00000000,
        SDMMC_IDMACTRLR: 0x00000000,
        SDMMC_IDMABSIZER: 0x00000000,
        SDMMC_IDMABASER: 0x00000000,
        SDMMC_IDMALAR: 0x00000000,
        SDMMC_IDMABAR: 0x00000000,
        SDMMC_FIFOR0: 0x00000000,
        SDMMC_FIFOR1: 0x00000000,
        SDMMC_FIFOR2: 0x00000000,
        SDMMC_FIFOR3: 0x00000000,
        SDMMC_FIFOR4: 0x00000000,
        SDMMC_FIFOR5: 0x00000000,
        SDMMC_FIFOR6: 0x00000000,
        SDMMC_FIFOR7: 0x00000000,
        SDMMC_FIFOR8: 0x00000000,
        SDMMC_FIFOR9: 0x00000000,
        SDMMC_FIFOR10: 0x00000000,
        SDMMC_FIFOR11: 0x00000000,
        SDMMC_FIFOR12: 0x00000000,
        SDMMC_FIFOR13: 0x00000000,
        SDMMC_FIFOR14: 0x00000000,
        SDMMC_FIFOR15: 0x00000000,
        SDMMC_VERR: 0x00000020,
        SDMMC_IPIDR: 0x00140022,
        SDMMC_SIDR: 0xA3C5DD01,
    };

    #[cfg(not(feature = "nosync"))]
    #[allow(renamed_and_removed_lints)]
    #[allow(private_no_mangle_statics)]
    #[no_mangle]
    static mut SDMMC3_TAKEN: bool = false;

    /// Safe access to SDMMC3
    ///
    /// This function returns `Some(Instance)` if this instance is not
    /// currently taken, and `None` if it is. This ensures that if you
    /// do get `Some(Instance)`, you are ensured unique access to
    /// the peripheral and there cannot be data races (unless other
    /// code uses `unsafe`, of course). You can then pass the
    /// `Instance` around to other functions as required. When you're
    /// done with it, you can call `release(instance)` to return it.
    ///
    /// `Instance` itself dereferences to a `RegisterBlock`, which
    /// provides access to the peripheral's registers.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn take() -> Option<Instance> {
        external_cortex_m::interrupt::free(|_| unsafe {
            if SDMMC3_TAKEN {
                None
            } else {
                SDMMC3_TAKEN = true;
                Some(INSTANCE)
            }
        })
    }

    /// Release exclusive access to SDMMC3
    ///
    /// This function allows you to return an `Instance` so that it
    /// is available to `take()` again. This function will panic if
    /// you return a different `Instance` or if this instance is not
    /// already taken.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn release(inst: Instance) {
        external_cortex_m::interrupt::free(|_| unsafe {
            if SDMMC3_TAKEN && inst.addr == INSTANCE.addr {
                SDMMC3_TAKEN = false;
            } else {
                panic!("Released a peripheral which was not taken");
            }
        });
    }

    /// Unsafely steal SDMMC3
    ///
    /// This function is similar to take() but forcibly takes the
    /// Instance, marking it as taken irregardless of its previous
    /// state.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub unsafe fn steal() -> Instance {
        SDMMC3_TAKEN = true;
        INSTANCE
    }
}

/// Raw pointer to SDMMC3
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const SDMMC3: *const RegisterBlock = 0x48004000 as *const _;