stm32ral 0.5.0

Register access layer for all STM32 microcontrollers
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#![allow(non_snake_case, non_upper_case_globals)]
#![allow(non_camel_case_types)]
//! CCU

use crate::{RORegister, RWRegister};
#[cfg(not(feature = "nosync"))]
use core::marker::PhantomData;

/// Clock calibration unit core release register
pub mod FCCAN_CCU_CREL {

    /// DAY
    pub mod DAY {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (8 bits: 0xff << 0)
        pub const mask: u32 = 0xff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// MON
    pub mod MON {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (8 bits: 0xff << 8)
        pub const mask: u32 = 0xff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// YEAR
    pub mod YEAR {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (4 bits: 0b1111 << 16)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SUBSTEP
    pub mod SUBSTEP {
        /// Offset (20 bits)
        pub const offset: u32 = 20;
        /// Mask (4 bits: 0b1111 << 20)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// STEP
    pub mod STEP {
        /// Offset (24 bits)
        pub const offset: u32 = 24;
        /// Mask (4 bits: 0b1111 << 24)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// REL
    pub mod REL {
        /// Offset (28 bits)
        pub const offset: u32 = 28;
        /// Mask (4 bits: 0b1111 << 28)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// Calibration configuration register
pub mod FCCAN_CCU_CCFG {

    /// TQBT
    pub mod TQBT {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (5 bits: 0b11111 << 0)
        pub const mask: u32 = 0b11111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// BCC
    pub mod BCC {
        /// Offset (6 bits)
        pub const offset: u32 = 6;
        /// Mask (1 bit: 1 << 6)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CFL
    pub mod CFL {
        /// Offset (7 bits)
        pub const offset: u32 = 7;
        /// Mask (1 bit: 1 << 7)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// OCPM
    pub mod OCPM {
        /// Offset (8 bits)
        pub const offset: u32 = 8;
        /// Mask (8 bits: 0xff << 8)
        pub const mask: u32 = 0xff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CDIV
    pub mod CDIV {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (4 bits: 0b1111 << 16)
        pub const mask: u32 = 0b1111 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// SWR
    pub mod SWR {
        /// Offset (31 bits)
        pub const offset: u32 = 31;
        /// Mask (1 bit: 1 << 31)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// Calibration status register
pub mod FCCAN_CCU_CSTAT {

    /// OCPC
    pub mod OCPC {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (18 bits: 0x3ffff << 0)
        pub const mask: u32 = 0x3ffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// TQC
    pub mod TQC {
        /// Offset (18 bits)
        pub const offset: u32 = 18;
        /// Mask (11 bits: 0x7ff << 18)
        pub const mask: u32 = 0x7ff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CALS
    pub mod CALS {
        /// Offset (30 bits)
        pub const offset: u32 = 30;
        /// Mask (2 bits: 0b11 << 30)
        pub const mask: u32 = 0b11 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The calibration watchdog is started after the first falling edge when the calibration FSM is in state Not_Calibrated (CCU_CSTAT.CALS = 00). In this state the calibration watchdog monitors the message received. In case no message was received until the calibration watchdog has counted down to 0, the calibration FSM stays in state Not_Calibrated (CCU_CSTAT.CALS = 00), the counter is reloaded with FDCAN_RWD.WDC and basic calibration is restarted after the next falling edge. When in state Basic_Calibrated (CCU_CSTAT.CALS = 01), the calibration watchdog is restarted with each received message . In case no message was received until the calibration watchdog has counted down to 0, the calibration FSM returns to state Not_Calibrated (CCU_CSTAT.CALS = 00), the counter is reloaded with FDCAN_RWD.WDC and basic calibration is restarted after the next falling edge. When a quartz message is received, state Precision_Calibrated (CCU_CSTAT.CALS = 10) is entered and the calibration watchdog is restarted. In this state the calibration watchdog monitors the quartz message received input. In case no message from a quartz controlled node is received by the attached TTCAN until the calibration watchdog has counted down to 0, the calibration FSM transits back to state Basic_Calibrated (CCU_CSTAT.CALS = 01). The signal is active when the CAN protocol engine on the attached TTCAN is started i.e. when the INIT bit is reset. A calibration watchdog event also sets interrupt flag CCU_IR.CWE. If enabled by CCU_IE.CWEE, interrupt line is activated (set to high). Interrupt line remains active until interrupt flag CCU_IR.CWE is reset.
pub mod FCCAN_CCU_CWD {

    /// WDC
    pub mod WDC {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (16 bits: 0xffff << 0)
        pub const mask: u32 = 0xffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// WDV
    pub mod WDV {
        /// Offset (16 bits)
        pub const offset: u32 = 16;
        /// Mask (16 bits: 0xffff << 16)
        pub const mask: u32 = 0xffff << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The flags are set when one of the listed conditions is detected (edge-sensitive). The flags remain set until the Host clears them. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect. A hard reset will clear the register. The configuration of CCU_IE controls whether an interrupt is generated or not.
pub mod FCCAN_CCU_IR {

    /// CWE
    pub mod CWE {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CSC
    pub mod CSC {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}

/// The settings in the CU interrupt enable register determine whether a status change in the CU interrupt register will be signaled on an interrupt line.
pub mod FCCAN_CCU_IE {

    /// CWEE
    pub mod CWEE {
        /// Offset (0 bits)
        pub const offset: u32 = 0;
        /// Mask (1 bit: 1 << 0)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }

    /// CSCE
    pub mod CSCE {
        /// Offset (1 bits)
        pub const offset: u32 = 1;
        /// Mask (1 bit: 1 << 1)
        pub const mask: u32 = 1 << offset;
        /// Read-only values (empty)
        pub mod R {}
        /// Write-only values (empty)
        pub mod W {}
        /// Read-write values (empty)
        pub mod RW {}
    }
}
#[repr(C)]
pub struct RegisterBlock {
    /// Clock calibration unit core release register
    pub FCCAN_CCU_CREL: RORegister<u32>,

    /// Calibration configuration register
    pub FCCAN_CCU_CCFG: RWRegister<u32>,

    /// Calibration status register
    pub FCCAN_CCU_CSTAT: RORegister<u32>,

    /// The calibration watchdog is started after the first falling edge when the calibration FSM is in state Not_Calibrated (CCU_CSTAT.CALS = 00). In this state the calibration watchdog monitors the message received. In case no message was received until the calibration watchdog has counted down to 0, the calibration FSM stays in state Not_Calibrated (CCU_CSTAT.CALS = 00), the counter is reloaded with FDCAN_RWD.WDC and basic calibration is restarted after the next falling edge. When in state Basic_Calibrated (CCU_CSTAT.CALS = 01), the calibration watchdog is restarted with each received message . In case no message was received until the calibration watchdog has counted down to 0, the calibration FSM returns to state Not_Calibrated (CCU_CSTAT.CALS = 00), the counter is reloaded with FDCAN_RWD.WDC and basic calibration is restarted after the next falling edge. When a quartz message is received, state Precision_Calibrated (CCU_CSTAT.CALS = 10) is entered and the calibration watchdog is restarted. In this state the calibration watchdog monitors the quartz message received input. In case no message from a quartz controlled node is received by the attached TTCAN until the calibration watchdog has counted down to 0, the calibration FSM transits back to state Basic_Calibrated (CCU_CSTAT.CALS = 01). The signal is active when the CAN protocol engine on the attached TTCAN is started i.e. when the INIT bit is reset. A calibration watchdog event also sets interrupt flag CCU_IR.CWE. If enabled by CCU_IE.CWEE, interrupt line is activated (set to high). Interrupt line remains active until interrupt flag CCU_IR.CWE is reset.
    pub FCCAN_CCU_CWD: RWRegister<u32>,

    /// The flags are set when one of the listed conditions is detected (edge-sensitive). The flags remain set until the Host clears them. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect. A hard reset will clear the register. The configuration of CCU_IE controls whether an interrupt is generated or not.
    pub FCCAN_CCU_IR: RWRegister<u32>,

    /// The settings in the CU interrupt enable register determine whether a status change in the CU interrupt register will be signaled on an interrupt line.
    pub FCCAN_CCU_IE: RWRegister<u32>,
}
pub struct ResetValues {
    pub FCCAN_CCU_CREL: u32,
    pub FCCAN_CCU_CCFG: u32,
    pub FCCAN_CCU_CSTAT: u32,
    pub FCCAN_CCU_CWD: u32,
    pub FCCAN_CCU_IR: u32,
    pub FCCAN_CCU_IE: u32,
}
#[cfg(not(feature = "nosync"))]
pub struct Instance {
    pub(crate) addr: u32,
    pub(crate) _marker: PhantomData<*const RegisterBlock>,
}
#[cfg(not(feature = "nosync"))]
impl ::core::ops::Deref for Instance {
    type Target = RegisterBlock;
    #[inline(always)]
    fn deref(&self) -> &RegisterBlock {
        unsafe { &*(self.addr as *const _) }
    }
}
#[cfg(feature = "rtic")]
unsafe impl Send for Instance {}

/// Access functions for the CCU peripheral instance
pub mod CCU {
    use super::ResetValues;

    #[cfg(not(feature = "nosync"))]
    use super::Instance;

    #[cfg(not(feature = "nosync"))]
    const INSTANCE: Instance = Instance {
        addr: 0x44010000,
        _marker: ::core::marker::PhantomData,
    };

    /// Reset values for each field in CCU
    pub const reset: ResetValues = ResetValues {
        FCCAN_CCU_CREL: 0x11141218,
        FCCAN_CCU_CCFG: 0x00000004,
        FCCAN_CCU_CSTAT: 0x0203FFFF,
        FCCAN_CCU_CWD: 0x00000000,
        FCCAN_CCU_IR: 0x00000000,
        FCCAN_CCU_IE: 0x00000000,
    };

    #[cfg(not(feature = "nosync"))]
    #[allow(renamed_and_removed_lints)]
    #[allow(private_no_mangle_statics)]
    #[no_mangle]
    static mut CCU_TAKEN: bool = false;

    /// Safe access to CCU
    ///
    /// This function returns `Some(Instance)` if this instance is not
    /// currently taken, and `None` if it is. This ensures that if you
    /// do get `Some(Instance)`, you are ensured unique access to
    /// the peripheral and there cannot be data races (unless other
    /// code uses `unsafe`, of course). You can then pass the
    /// `Instance` around to other functions as required. When you're
    /// done with it, you can call `release(instance)` to return it.
    ///
    /// `Instance` itself dereferences to a `RegisterBlock`, which
    /// provides access to the peripheral's registers.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn take() -> Option<Instance> {
        external_cortex_m::interrupt::free(|_| unsafe {
            if CCU_TAKEN {
                None
            } else {
                CCU_TAKEN = true;
                Some(INSTANCE)
            }
        })
    }

    /// Release exclusive access to CCU
    ///
    /// This function allows you to return an `Instance` so that it
    /// is available to `take()` again. This function will panic if
    /// you return a different `Instance` or if this instance is not
    /// already taken.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub fn release(inst: Instance) {
        external_cortex_m::interrupt::free(|_| unsafe {
            if CCU_TAKEN && inst.addr == INSTANCE.addr {
                CCU_TAKEN = false;
            } else {
                panic!("Released a peripheral which was not taken");
            }
        });
    }

    /// Unsafely steal CCU
    ///
    /// This function is similar to take() but forcibly takes the
    /// Instance, marking it as taken irregardless of its previous
    /// state.
    #[cfg(not(feature = "nosync"))]
    #[inline]
    pub unsafe fn steal() -> Instance {
        CCU_TAKEN = true;
        INSTANCE
    }
}

/// Raw pointer to CCU
///
/// Dereferencing this is unsafe because you are not ensured unique
/// access to the peripheral, so you may encounter data races with
/// other users of this peripheral. It is up to you to ensure you
/// will not cause data races.
///
/// This constant is provided for ease of use in unsafe code: you can
/// simply call for example `write_reg!(gpio, GPIOA, ODR, 1);`.
pub const CCU: *const RegisterBlock = 0x44010000 as *const _;