stm32g0 0.16.0

Device support crates for STM32G0 devices
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
///Register `CFGR2` reader
pub type R = crate::R<CFGR2rs>;
///Register `CFGR2` writer
pub type W = crate::W<CFGR2rs>;
/**Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum OVSE {
    ///0: Oversampler disabled
    Disabled = 0,
    ///1: Oversampler enabled
    Enabled = 1,
}
impl From<OVSE> for bool {
    #[inline(always)]
    fn from(variant: OVSE) -> Self {
        variant as u8 != 0
    }
}
///Field `OVSE` reader - Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type OVSE_R = crate::BitReader<OVSE>;
impl OVSE_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> OVSE {
        match self.bits {
            false => OVSE::Disabled,
            true => OVSE::Enabled,
        }
    }
    ///Oversampler disabled
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        *self == OVSE::Disabled
    }
    ///Oversampler enabled
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        *self == OVSE::Enabled
    }
}
///Field `OVSE` writer - Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type OVSE_W<'a, REG> = crate::BitWriter<'a, REG, OVSE>;
impl<'a, REG> OVSE_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
{
    ///Oversampler disabled
    #[inline(always)]
    pub fn disabled(self) -> &'a mut crate::W<REG> {
        self.variant(OVSE::Disabled)
    }
    ///Oversampler enabled
    #[inline(always)]
    pub fn enabled(self) -> &'a mut crate::W<REG> {
        self.variant(OVSE::Enabled)
    }
}
/**Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum OVSR {
    ///0: 2x
    Mul2 = 0,
    ///1: 4x
    Mul4 = 1,
    ///2: 8x
    Mul8 = 2,
    ///3: 16x
    Mul16 = 3,
    ///4: 32x
    Mul32 = 4,
    ///5: 64x
    Mul64 = 5,
    ///6: 128x
    Mul128 = 6,
    ///7: 256x
    Mul256 = 7,
}
impl From<OVSR> for u8 {
    #[inline(always)]
    fn from(variant: OVSR) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for OVSR {
    type Ux = u8;
}
impl crate::IsEnum for OVSR {}
///Field `OVSR` reader - Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type OVSR_R = crate::FieldReader<OVSR>;
impl OVSR_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> OVSR {
        match self.bits {
            0 => OVSR::Mul2,
            1 => OVSR::Mul4,
            2 => OVSR::Mul8,
            3 => OVSR::Mul16,
            4 => OVSR::Mul32,
            5 => OVSR::Mul64,
            6 => OVSR::Mul128,
            7 => OVSR::Mul256,
            _ => unreachable!(),
        }
    }
    ///2x
    #[inline(always)]
    pub fn is_mul2(&self) -> bool {
        *self == OVSR::Mul2
    }
    ///4x
    #[inline(always)]
    pub fn is_mul4(&self) -> bool {
        *self == OVSR::Mul4
    }
    ///8x
    #[inline(always)]
    pub fn is_mul8(&self) -> bool {
        *self == OVSR::Mul8
    }
    ///16x
    #[inline(always)]
    pub fn is_mul16(&self) -> bool {
        *self == OVSR::Mul16
    }
    ///32x
    #[inline(always)]
    pub fn is_mul32(&self) -> bool {
        *self == OVSR::Mul32
    }
    ///64x
    #[inline(always)]
    pub fn is_mul64(&self) -> bool {
        *self == OVSR::Mul64
    }
    ///128x
    #[inline(always)]
    pub fn is_mul128(&self) -> bool {
        *self == OVSR::Mul128
    }
    ///256x
    #[inline(always)]
    pub fn is_mul256(&self) -> bool {
        *self == OVSR::Mul256
    }
}
///Field `OVSR` writer - Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type OVSR_W<'a, REG> = crate::FieldWriter<'a, REG, 3, OVSR, crate::Safe>;
impl<'a, REG> OVSR_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///2x
    #[inline(always)]
    pub fn mul2(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul2)
    }
    ///4x
    #[inline(always)]
    pub fn mul4(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul4)
    }
    ///8x
    #[inline(always)]
    pub fn mul8(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul8)
    }
    ///16x
    #[inline(always)]
    pub fn mul16(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul16)
    }
    ///32x
    #[inline(always)]
    pub fn mul32(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul32)
    }
    ///64x
    #[inline(always)]
    pub fn mul64(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul64)
    }
    ///128x
    #[inline(always)]
    pub fn mul128(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul128)
    }
    ///256x
    #[inline(always)]
    pub fn mul256(self) -> &'a mut crate::W<REG> {
        self.variant(OVSR::Mul256)
    }
}
/**Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum OVSS {
    ///0: No shift
    NoShift = 0,
    ///1: Shift 1-bit
    Shift1 = 1,
    ///2: Shift 2-bits
    Shift2 = 2,
    ///3: Shift 3-bits
    Shift3 = 3,
    ///4: Shift 4-bits
    Shift4 = 4,
    ///5: Shift 5-bits
    Shift5 = 5,
    ///6: Shift 6-bits
    Shift6 = 6,
    ///7: Shift 7-bits
    Shift7 = 7,
    ///8: Shift 8-bits
    Shift8 = 8,
}
impl From<OVSS> for u8 {
    #[inline(always)]
    fn from(variant: OVSS) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for OVSS {
    type Ux = u8;
}
impl crate::IsEnum for OVSS {}
///Field `OVSS` reader - Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type OVSS_R = crate::FieldReader<OVSS>;
impl OVSS_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> Option<OVSS> {
        match self.bits {
            0 => Some(OVSS::NoShift),
            1 => Some(OVSS::Shift1),
            2 => Some(OVSS::Shift2),
            3 => Some(OVSS::Shift3),
            4 => Some(OVSS::Shift4),
            5 => Some(OVSS::Shift5),
            6 => Some(OVSS::Shift6),
            7 => Some(OVSS::Shift7),
            8 => Some(OVSS::Shift8),
            _ => None,
        }
    }
    ///No shift
    #[inline(always)]
    pub fn is_no_shift(&self) -> bool {
        *self == OVSS::NoShift
    }
    ///Shift 1-bit
    #[inline(always)]
    pub fn is_shift1(&self) -> bool {
        *self == OVSS::Shift1
    }
    ///Shift 2-bits
    #[inline(always)]
    pub fn is_shift2(&self) -> bool {
        *self == OVSS::Shift2
    }
    ///Shift 3-bits
    #[inline(always)]
    pub fn is_shift3(&self) -> bool {
        *self == OVSS::Shift3
    }
    ///Shift 4-bits
    #[inline(always)]
    pub fn is_shift4(&self) -> bool {
        *self == OVSS::Shift4
    }
    ///Shift 5-bits
    #[inline(always)]
    pub fn is_shift5(&self) -> bool {
        *self == OVSS::Shift5
    }
    ///Shift 6-bits
    #[inline(always)]
    pub fn is_shift6(&self) -> bool {
        *self == OVSS::Shift6
    }
    ///Shift 7-bits
    #[inline(always)]
    pub fn is_shift7(&self) -> bool {
        *self == OVSS::Shift7
    }
    ///Shift 8-bits
    #[inline(always)]
    pub fn is_shift8(&self) -> bool {
        *self == OVSS::Shift8
    }
}
///Field `OVSS` writer - Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type OVSS_W<'a, REG> = crate::FieldWriter<'a, REG, 4, OVSS>;
impl<'a, REG> OVSS_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///No shift
    #[inline(always)]
    pub fn no_shift(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::NoShift)
    }
    ///Shift 1-bit
    #[inline(always)]
    pub fn shift1(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift1)
    }
    ///Shift 2-bits
    #[inline(always)]
    pub fn shift2(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift2)
    }
    ///Shift 3-bits
    #[inline(always)]
    pub fn shift3(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift3)
    }
    ///Shift 4-bits
    #[inline(always)]
    pub fn shift4(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift4)
    }
    ///Shift 5-bits
    #[inline(always)]
    pub fn shift5(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift5)
    }
    ///Shift 6-bits
    #[inline(always)]
    pub fn shift6(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift6)
    }
    ///Shift 7-bits
    #[inline(always)]
    pub fn shift7(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift7)
    }
    ///Shift 8-bits
    #[inline(always)]
    pub fn shift8(self) -> &'a mut crate::W<REG> {
        self.variant(OVSS::Shift8)
    }
}
/**Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TOVS {
    ///0: All oversampled conversions for a channel are done consecutively after a trigger
    TriggerAll = 0,
    ///1: Each oversampled conversion for a channel needs a trigger
    TriggerEach = 1,
}
impl From<TOVS> for bool {
    #[inline(always)]
    fn from(variant: TOVS) -> Self {
        variant as u8 != 0
    }
}
///Field `TOVS` reader - Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type TOVS_R = crate::BitReader<TOVS>;
impl TOVS_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> TOVS {
        match self.bits {
            false => TOVS::TriggerAll,
            true => TOVS::TriggerEach,
        }
    }
    ///All oversampled conversions for a channel are done consecutively after a trigger
    #[inline(always)]
    pub fn is_trigger_all(&self) -> bool {
        *self == TOVS::TriggerAll
    }
    ///Each oversampled conversion for a channel needs a trigger
    #[inline(always)]
    pub fn is_trigger_each(&self) -> bool {
        *self == TOVS::TriggerEach
    }
}
///Field `TOVS` writer - Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
pub type TOVS_W<'a, REG> = crate::BitWriter<'a, REG, TOVS>;
impl<'a, REG> TOVS_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
{
    ///All oversampled conversions for a channel are done consecutively after a trigger
    #[inline(always)]
    pub fn trigger_all(self) -> &'a mut crate::W<REG> {
        self.variant(TOVS::TriggerAll)
    }
    ///Each oversampled conversion for a channel needs a trigger
    #[inline(always)]
    pub fn trigger_each(self) -> &'a mut crate::W<REG> {
        self.variant(TOVS::TriggerEach)
    }
}
/**Low frequency trigger mode enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing).

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum LFTRIG {
    ///0: Low Frequency Trigger Mode disabled
    Disabled = 0,
    ///1: Low Frequency Trigger Mode enabled
    Enabled = 1,
}
impl From<LFTRIG> for bool {
    #[inline(always)]
    fn from(variant: LFTRIG) -> Self {
        variant as u8 != 0
    }
}
///Field `LFTRIG` reader - Low frequency trigger mode enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing).
pub type LFTRIG_R = crate::BitReader<LFTRIG>;
impl LFTRIG_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> LFTRIG {
        match self.bits {
            false => LFTRIG::Disabled,
            true => LFTRIG::Enabled,
        }
    }
    ///Low Frequency Trigger Mode disabled
    #[inline(always)]
    pub fn is_disabled(&self) -> bool {
        *self == LFTRIG::Disabled
    }
    ///Low Frequency Trigger Mode enabled
    #[inline(always)]
    pub fn is_enabled(&self) -> bool {
        *self == LFTRIG::Enabled
    }
}
///Field `LFTRIG` writer - Low frequency trigger mode enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing).
pub type LFTRIG_W<'a, REG> = crate::BitWriter<'a, REG, LFTRIG>;
impl<'a, REG> LFTRIG_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
{
    ///Low Frequency Trigger Mode disabled
    #[inline(always)]
    pub fn disabled(self) -> &'a mut crate::W<REG> {
        self.variant(LFTRIG::Disabled)
    }
    ///Low Frequency Trigger Mode enabled
    #[inline(always)]
    pub fn enabled(self) -> &'a mut crate::W<REG> {
        self.variant(LFTRIG::Enabled)
    }
}
/**ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).

Value on reset: 0*/
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[repr(u8)]
pub enum CKMODE {
    ///0: ADCCLK (Asynchronous clock mode)
    Adclk = 0,
    ///1: PCLK/2 (Synchronous clock mode)
    PclkDiv2 = 1,
    ///2: PCLK/4 (Synchronous clock mode)
    PclkDiv4 = 2,
    ///3: PCLK (Synchronous clock mode)
    Pclk = 3,
}
impl From<CKMODE> for u8 {
    #[inline(always)]
    fn from(variant: CKMODE) -> Self {
        variant as _
    }
}
impl crate::FieldSpec for CKMODE {
    type Ux = u8;
}
impl crate::IsEnum for CKMODE {}
///Field `CKMODE` reader - ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
pub type CKMODE_R = crate::FieldReader<CKMODE>;
impl CKMODE_R {
    ///Get enumerated values variant
    #[inline(always)]
    pub const fn variant(&self) -> CKMODE {
        match self.bits {
            0 => CKMODE::Adclk,
            1 => CKMODE::PclkDiv2,
            2 => CKMODE::PclkDiv4,
            3 => CKMODE::Pclk,
            _ => unreachable!(),
        }
    }
    ///ADCCLK (Asynchronous clock mode)
    #[inline(always)]
    pub fn is_adclk(&self) -> bool {
        *self == CKMODE::Adclk
    }
    ///PCLK/2 (Synchronous clock mode)
    #[inline(always)]
    pub fn is_pclk_div2(&self) -> bool {
        *self == CKMODE::PclkDiv2
    }
    ///PCLK/4 (Synchronous clock mode)
    #[inline(always)]
    pub fn is_pclk_div4(&self) -> bool {
        *self == CKMODE::PclkDiv4
    }
    ///PCLK (Synchronous clock mode)
    #[inline(always)]
    pub fn is_pclk(&self) -> bool {
        *self == CKMODE::Pclk
    }
}
///Field `CKMODE` writer - ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
pub type CKMODE_W<'a, REG> = crate::FieldWriter<'a, REG, 2, CKMODE, crate::Safe>;
impl<'a, REG> CKMODE_W<'a, REG>
where
    REG: crate::Writable + crate::RegisterSpec,
    REG::Ux: From<u8>,
{
    ///ADCCLK (Asynchronous clock mode)
    #[inline(always)]
    pub fn adclk(self) -> &'a mut crate::W<REG> {
        self.variant(CKMODE::Adclk)
    }
    ///PCLK/2 (Synchronous clock mode)
    #[inline(always)]
    pub fn pclk_div2(self) -> &'a mut crate::W<REG> {
        self.variant(CKMODE::PclkDiv2)
    }
    ///PCLK/4 (Synchronous clock mode)
    #[inline(always)]
    pub fn pclk_div4(self) -> &'a mut crate::W<REG> {
        self.variant(CKMODE::PclkDiv4)
    }
    ///PCLK (Synchronous clock mode)
    #[inline(always)]
    pub fn pclk(self) -> &'a mut crate::W<REG> {
        self.variant(CKMODE::Pclk)
    }
}
impl R {
    ///Bit 0 - Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn ovse(&self) -> OVSE_R {
        OVSE_R::new((self.bits & 1) != 0)
    }
    ///Bits 2:4 - Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn ovsr(&self) -> OVSR_R {
        OVSR_R::new(((self.bits >> 2) & 7) as u8)
    }
    ///Bits 5:8 - Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn ovss(&self) -> OVSS_R {
        OVSS_R::new(((self.bits >> 5) & 0x0f) as u8)
    }
    ///Bit 9 - Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn tovs(&self) -> TOVS_R {
        TOVS_R::new(((self.bits >> 9) & 1) != 0)
    }
    ///Bit 29 - Low frequency trigger mode enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn lftrig(&self) -> LFTRIG_R {
        LFTRIG_R::new(((self.bits >> 29) & 1) != 0)
    }
    ///Bits 30:31 - ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
    #[inline(always)]
    pub fn ckmode(&self) -> CKMODE_R {
        CKMODE_R::new(((self.bits >> 30) & 3) as u8)
    }
}
impl core::fmt::Debug for R {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("CFGR2")
            .field("ovse", &self.ovse())
            .field("ovsr", &self.ovsr())
            .field("ovss", &self.ovss())
            .field("tovs", &self.tovs())
            .field("lftrig", &self.lftrig())
            .field("ckmode", &self.ckmode())
            .finish()
    }
}
impl W {
    ///Bit 0 - Oversampler Enable This bit is set and cleared by software. Note: Software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn ovse(&mut self) -> OVSE_W<CFGR2rs> {
        OVSE_W::new(self, 0)
    }
    ///Bits 2:4 - Oversampling ratio This bit filed defines the number of oversampling ratio. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn ovsr(&mut self) -> OVSR_W<CFGR2rs> {
        OVSR_W::new(self, 2)
    }
    ///Bits 5:8 - Oversampling shift This bit is set and cleared by software. Others: Reserved Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn ovss(&mut self) -> OVSS_W<CFGR2rs> {
        OVSS_W::new(self, 5)
    }
    ///Bit 9 - Triggered Oversampling This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn tovs(&mut self) -> TOVS_W<CFGR2rs> {
        TOVS_W::new(self, 9)
    }
    ///Bit 29 - Low frequency trigger mode enable This bit is set and cleared by software. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing).
    #[inline(always)]
    pub fn lftrig(&mut self) -> LFTRIG_W<CFGR2rs> {
        LFTRIG_W::new(self, 29)
    }
    ///Bits 30:31 - ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL=0, ADSTART=0, ADSTP=0, ADDIS=0 and ADEN=0).
    #[inline(always)]
    pub fn ckmode(&mut self) -> CKMODE_W<CFGR2rs> {
        CKMODE_W::new(self, 30)
    }
}
/**ADC configuration register 2

You can [`read`](crate::Reg::read) this register and get [`cfgr2::R`](R). You can [`reset`](crate::Reg::reset), [`write`](crate::Reg::write), [`write_with_zero`](crate::Reg::write_with_zero) this register using [`cfgr2::W`](W). You can also [`modify`](crate::Reg::modify) this register. See [API](https://docs.rs/svd2rust/#read--modify--write-api).

See register [structure](https://stm32-rs.github.io/stm32-rs/STM32G070.html#ADC:CFGR2)*/
pub struct CFGR2rs;
impl crate::RegisterSpec for CFGR2rs {
    type Ux = u32;
}
///`read()` method returns [`cfgr2::R`](R) reader structure
impl crate::Readable for CFGR2rs {}
///`write(|w| ..)` method takes [`cfgr2::W`](W) writer structure
impl crate::Writable for CFGR2rs {
    type Safety = crate::Unsafe;
}
///`reset()` method sets CFGR2 to value 0
impl crate::Resettable for CFGR2rs {}