manifold-rs 0.6.2

Rust wrapper for manifold
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
// Copyright 2021 The Manifold Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "./impl.h"
#include "./parallel.h"

namespace {
using namespace manifold;

// Returns a normalized vector orthogonal to ref, in the plane of ref and in,
// unless in and ref are colinear, in which case it falls back to the plane of
// ref and altIn.
vec3 OrthogonalTo(vec3 in, vec3 altIn, vec3 ref) {
  vec3 out = in - la::dot(in, ref) * ref;
  if (la::dot(out, out) < kPrecision * la::dot(in, in)) {
    out = altIn - la::dot(altIn, ref) * ref;
  }
  return SafeNormalize(out);
}

double Wrap(double radians) {
  return radians < -kPi  ? radians + kTwoPi
         : radians > kPi ? radians - kTwoPi
                         : radians;
}

// Get the angle between two unit-vectors.
double AngleBetween(vec3 a, vec3 b) {
  const double dot = la::dot(a, b);
  return dot >= 1 ? 0 : (dot <= -1 ? kPi : la::acos(dot));
}

// Calculate a tangent vector in the form of a weighted cubic Bezier taking as
// input the desired tangent direction (length doesn't matter) and the edge
// vector to the neighboring vertex. In a symmetric situation where the tangents
// at each end are mirror images of each other, this will result in a circular
// arc.
vec4 CircularTangent(const vec3& tangent, const vec3& edgeVec) {
  const vec3 dir = SafeNormalize(tangent);

  double weight = std::max(0.5, la::dot(dir, SafeNormalize(edgeVec)));
  // Quadratic weighted bezier for circular interpolation
  const vec4 bz2 = vec4(dir * 0.5 * la::length(edgeVec), weight);
  // Equivalent cubic weighted bezier
  const vec4 bz3 = la::lerp(vec4(0, 0, 0, 1), bz2, 2 / 3.0);
  // Convert from homogeneous form to geometric form
  return vec4(vec3(bz3) / bz3.w, bz3.w);
}

struct InterpTri {
  VecView<vec3> vertPos;
  VecView<const Barycentric> vertBary;
  const Manifold::Impl* impl;

  static vec4 Homogeneous(vec4 v) {
    v.x *= v.w;
    v.y *= v.w;
    v.z *= v.w;
    return v;
  }

  static vec4 Homogeneous(vec3 v) { return vec4(v, 1.0); }

  static vec3 HNormalize(vec4 v) {
    return v.w == 0 ? vec3(v) : (vec3(v) / v.w);
  }

  static vec4 Scale(vec4 v, double scale) { return vec4(scale * vec3(v), v.w); }

  static vec4 Bezier(vec3 point, vec4 tangent) {
    return Homogeneous(vec4(point, 0) + tangent);
  }

  static mat4x2 CubicBezier2Linear(vec4 p0, vec4 p1, vec4 p2, vec4 p3,
                                   double x) {
    mat4x2 out;
    vec4 p12 = la::lerp(p1, p2, x);
    out[0] = la::lerp(la::lerp(p0, p1, x), p12, x);
    out[1] = la::lerp(p12, la::lerp(p2, p3, x), x);
    return out;
  }

  static vec3 BezierPoint(mat4x2 points, double x) {
    return HNormalize(la::lerp(points[0], points[1], x));
  }

  static vec3 BezierTangent(mat4x2 points) {
    return SafeNormalize(HNormalize(points[1]) - HNormalize(points[0]));
  }

  static vec3 RotateFromTo(vec3 v, quat start, quat end) {
    return la::qrot(end, la::qrot(la::qconj(start), v));
  }

  static quat Slerp(const quat& x, const quat& y, double a, bool longWay) {
    quat z = y;
    double cosTheta = la::dot(x, y);

    // Take the long way around the sphere only when requested
    if ((cosTheta < 0) != longWay) {
      z = -y;
      cosTheta = -cosTheta;
    }

    if (cosTheta > 1.0 - std::numeric_limits<double>::epsilon()) {
      return la::lerp(x, z, a);  // for numerical stability
    } else {
      double angle = std::acos(cosTheta);
      return (std::sin((1.0 - a) * angle) * x + std::sin(a * angle) * z) /
             std::sin(angle);
    }
  }

  static mat4x2 Bezier2Bezier(const mat3x2& corners, const mat4x2& tangentsX,
                              const mat4x2& tangentsY, double x,
                              const vec3& anchor) {
    const mat4x2 bez = CubicBezier2Linear(
        Homogeneous(corners[0]), Bezier(corners[0], tangentsX[0]),
        Bezier(corners[1], tangentsX[1]), Homogeneous(corners[1]), x);
    const vec3 end = BezierPoint(bez, x);
    const vec3 tangent = BezierTangent(bez);

    const mat3x2 nTangentsX(SafeNormalize(vec3(tangentsX[0])),
                            -SafeNormalize(vec3(tangentsX[1])));
    const mat3x2 biTangents = {
        OrthogonalTo(vec3(tangentsY[0]), (anchor - corners[0]), nTangentsX[0]),
        OrthogonalTo(vec3(tangentsY[1]), (anchor - corners[1]), nTangentsX[1])};

    const quat q0 = la::rotation_quat(mat3(
        nTangentsX[0], biTangents[0], la::cross(nTangentsX[0], biTangents[0])));
    const quat q1 = la::rotation_quat(mat3(
        nTangentsX[1], biTangents[1], la::cross(nTangentsX[1], biTangents[1])));
    const vec3 edge = corners[1] - corners[0];
    const bool longWay =
        la::dot(nTangentsX[0], edge) + la::dot(nTangentsX[1], edge) < 0;
    const quat qTmp = Slerp(q0, q1, x, longWay);
    const quat q = la::qmul(la::rotation_quat(la::qxdir(qTmp), tangent), qTmp);

    const vec3 delta = la::lerp(RotateFromTo(vec3(tangentsY[0]), q0, q),
                                RotateFromTo(vec3(tangentsY[1]), q1, q), x);
    const double deltaW = la::lerp(tangentsY[0].w, tangentsY[1].w, x);

    return {Homogeneous(end), vec4(delta, deltaW)};
  }

  static vec3 Bezier2D(const mat3x4& corners, const mat4& tangentsX,
                       const mat4& tangentsY, double x, double y,
                       const vec3& centroid) {
    mat4x2 bez0 =
        Bezier2Bezier({corners[0], corners[1]}, {tangentsX[0], tangentsX[1]},
                      {tangentsY[0], tangentsY[1]}, x, centroid);
    mat4x2 bez1 =
        Bezier2Bezier({corners[2], corners[3]}, {tangentsX[2], tangentsX[3]},
                      {tangentsY[2], tangentsY[3]}, 1 - x, centroid);

    const mat4x2 bez =
        CubicBezier2Linear(bez0[0], Bezier(vec3(bez0[0]), bez0[1]),
                           Bezier(vec3(bez1[0]), bez1[1]), bez1[0], y);
    return BezierPoint(bez, y);
  }

  void operator()(const int vert) {
    vec3& pos = vertPos[vert];
    const int tri = vertBary[vert].tri;
    const vec4 uvw = vertBary[vert].uvw;

    const ivec4 halfedges = impl->GetHalfedges(tri);
    const mat3x4 corners = {
        impl->vertPos_[impl->halfedge_[halfedges[0]].startVert],
        impl->vertPos_[impl->halfedge_[halfedges[1]].startVert],
        impl->vertPos_[impl->halfedge_[halfedges[2]].startVert],
        halfedges[3] < 0
            ? vec3(0.0)
            : impl->vertPos_[impl->halfedge_[halfedges[3]].startVert]};

    for (const int i : {0, 1, 2, 3}) {
      if (uvw[i] == 1) {
        pos = corners[i];
        return;
      }
    }

    vec4 posH(0.0);

    if (halfedges[3] < 0) {  // tri
      const mat4x3 tangentR = {impl->halfedgeTangent_[halfedges[0]],
                               impl->halfedgeTangent_[halfedges[1]],
                               impl->halfedgeTangent_[halfedges[2]]};
      const mat4x3 tangentL = {
          impl->halfedgeTangent_[impl->halfedge_[halfedges[2]].pairedHalfedge],
          impl->halfedgeTangent_[impl->halfedge_[halfedges[0]].pairedHalfedge],
          impl->halfedgeTangent_[impl->halfedge_[halfedges[1]].pairedHalfedge]};
      const vec3 centroid = mat3(corners) * vec3(1.0 / 3);

      for (const int i : {0, 1, 2}) {
        const int j = Next3(i);
        const int k = Prev3(i);
        const double x = uvw[k] / (1 - uvw[i]);

        const mat4x2 bez =
            Bezier2Bezier({corners[j], corners[k]}, {tangentR[j], tangentL[k]},
                          {tangentL[j], tangentR[k]}, x, centroid);

        const mat4x2 bez1 = CubicBezier2Linear(
            bez[0], Bezier(vec3(bez[0]), bez[1]),
            Bezier(corners[i], la::lerp(tangentR[i], tangentL[i], x)),
            Homogeneous(corners[i]), uvw[i]);
        const vec3 p = BezierPoint(bez1, uvw[i]);
        posH += Homogeneous(vec4(p, uvw[j] * uvw[k]));
      }
    } else {  // quad
      const mat4 tangentsX = {
          impl->halfedgeTangent_[halfedges[0]],
          impl->halfedgeTangent_[impl->halfedge_[halfedges[0]].pairedHalfedge],
          impl->halfedgeTangent_[halfedges[2]],
          impl->halfedgeTangent_[impl->halfedge_[halfedges[2]].pairedHalfedge]};
      const mat4 tangentsY = {
          impl->halfedgeTangent_[impl->halfedge_[halfedges[3]].pairedHalfedge],
          impl->halfedgeTangent_[halfedges[1]],
          impl->halfedgeTangent_[impl->halfedge_[halfedges[1]].pairedHalfedge],
          impl->halfedgeTangent_[halfedges[3]]};
      const vec3 centroid = corners * vec4(0.25);
      const double x = uvw[1] + uvw[2];
      const double y = uvw[2] + uvw[3];
      const vec3 pX = Bezier2D(corners, tangentsX, tangentsY, x, y, centroid);
      const vec3 pY =
          Bezier2D({corners[1], corners[2], corners[3], corners[0]},
                   {tangentsY[1], tangentsY[2], tangentsY[3], tangentsY[0]},
                   {tangentsX[1], tangentsX[2], tangentsX[3], tangentsX[0]}, y,
                   1 - x, centroid);
      posH += Homogeneous(vec4(pX, x * (1 - x)));
      posH += Homogeneous(vec4(pY, y * (1 - y)));
    }
    pos = HNormalize(posH);
  }
};
}  // namespace

namespace manifold {

/**
 * Get the property normal associated with the startVert of this halfedge, where
 * normalIdx shows the beginning of where normals are stored in the properties.
 */
vec3 Manifold::Impl::GetNormal(int halfedge, int normalIdx) const {
  const int tri = halfedge / 3;
  const int j = halfedge % 3;
  const int prop = meshRelation_.triProperties[tri][j];
  vec3 normal;
  for (const int i : {0, 1, 2}) {
    normal[i] =
        meshRelation_.properties[prop * meshRelation_.numProp + normalIdx + i];
  }
  return normal;
}

/**
 * Returns a circular tangent for the requested halfedge, orthogonal to the
 * given normal vector, and avoiding folding.
 */
vec4 Manifold::Impl::TangentFromNormal(const vec3& normal, int halfedge) const {
  const Halfedge edge = halfedge_[halfedge];
  const vec3 edgeVec = vertPos_[edge.endVert] - vertPos_[edge.startVert];
  const vec3 edgeNormal =
      faceNormal_[halfedge / 3] + faceNormal_[edge.pairedHalfedge / 3];
  vec3 dir = la::cross(la::cross(edgeNormal, edgeVec), normal);
  return CircularTangent(dir, edgeVec);
}

/**
 * Returns true if this halfedge should be marked as the interior of a quad, as
 * defined by its two triangles referring to the same face, and those triangles
 * having no further face neighbors beyond.
 */
bool Manifold::Impl::IsInsideQuad(int halfedge) const {
  if (halfedgeTangent_.size() > 0) {
    return halfedgeTangent_[halfedge].w < 0;
  }
  const int tri = halfedge / 3;
  const TriRef ref = meshRelation_.triRef[tri];
  const int pair = halfedge_[halfedge].pairedHalfedge;
  const int pairTri = pair / 3;
  const TriRef pairRef = meshRelation_.triRef[pairTri];
  if (!ref.SameFace(pairRef)) return false;

  auto SameFace = [this](int halfedge, const TriRef& ref) {
    return ref.SameFace(
        meshRelation_.triRef[halfedge_[halfedge].pairedHalfedge / 3]);
  };

  int neighbor = NextHalfedge(halfedge);
  if (SameFace(neighbor, ref)) return false;
  neighbor = NextHalfedge(neighbor);
  if (SameFace(neighbor, ref)) return false;
  neighbor = NextHalfedge(pair);
  if (SameFace(neighbor, pairRef)) return false;
  neighbor = NextHalfedge(neighbor);
  if (SameFace(neighbor, pairRef)) return false;
  return true;
}

/**
 * Returns true if this halfedge is an interior of a quad, as defined by its
 * halfedge tangent having negative weight.
 */
bool Manifold::Impl::IsMarkedInsideQuad(int halfedge) const {
  return halfedgeTangent_.size() > 0 && halfedgeTangent_[halfedge].w < 0;
}

// sharpenedEdges are referenced to the input Mesh, but the triangles have
// been sorted in creating the Manifold, so the indices are converted using
// meshRelation_.
std::vector<Smoothness> Manifold::Impl::UpdateSharpenedEdges(
    const std::vector<Smoothness>& sharpenedEdges) const {
  std::unordered_map<int, int> oldHalfedge2New;
  for (size_t tri = 0; tri < NumTri(); ++tri) {
    int oldTri = meshRelation_.triRef[tri].tri;
    for (int i : {0, 1, 2}) oldHalfedge2New[3 * oldTri + i] = 3 * tri + i;
  }
  std::vector<Smoothness> newSharp = sharpenedEdges;
  for (Smoothness& edge : newSharp) {
    edge.halfedge = oldHalfedge2New[edge.halfedge];
  }
  return newSharp;
}

// Find faces containing at least 3 triangles - these will not have
// interpolated normals - all their vert normals must match their face normal.
Vec<bool> Manifold::Impl::FlatFaces() const {
  const int numTri = NumTri();
  Vec<bool> triIsFlatFace(numTri, false);
  for_each_n(autoPolicy(numTri, 1e5), countAt(0), numTri,
             [this, &triIsFlatFace](const int tri) {
               const TriRef& ref = meshRelation_.triRef[tri];
               int faceNeighbors = 0;
               ivec3 faceTris = {-1, -1, -1};
               for (const int j : {0, 1, 2}) {
                 const int neighborTri =
                     halfedge_[3 * tri + j].pairedHalfedge / 3;
                 const TriRef& jRef = meshRelation_.triRef[neighborTri];
                 if (jRef.SameFace(ref)) {
                   ++faceNeighbors;
                   faceTris[j] = neighborTri;
                 }
               }
               if (faceNeighbors > 1) {
                 triIsFlatFace[tri] = true;
                 for (const int j : {0, 1, 2}) {
                   if (faceTris[j] >= 0) {
                     triIsFlatFace[faceTris[j]] = true;
                   }
                 }
               }
             });
  return triIsFlatFace;
}

// Returns a vector of length numVert that has a tri that is part of a
// neighboring flat face if there is only one flat face. If there are none it
// gets -1, and if there are more than one it gets -2.
Vec<int> Manifold::Impl::VertFlatFace(const Vec<bool>& flatFaces) const {
  Vec<int> vertFlatFace(NumVert(), -1);
  Vec<TriRef> vertRef(NumVert(), {-1, -1, -1});
  for (size_t tri = 0; tri < NumTri(); ++tri) {
    if (flatFaces[tri]) {
      for (const int j : {0, 1, 2}) {
        const int vert = halfedge_[3 * tri + j].startVert;
        if (vertRef[vert].SameFace(meshRelation_.triRef[tri])) continue;
        vertRef[vert] = meshRelation_.triRef[tri];
        vertFlatFace[vert] = vertFlatFace[vert] == -1 ? tri : -2;
      }
    }
  }
  return vertFlatFace;
}

Vec<int> Manifold::Impl::VertHalfedge() const {
  Vec<int> vertHalfedge(NumVert());
  Vec<uint8_t> counters(NumVert(), 0);
  for_each_n(autoPolicy(halfedge_.size(), 1e5), countAt(0), halfedge_.size(),
             [&vertHalfedge, &counters, this](const int idx) {
               auto old = std::atomic_exchange(
                   reinterpret_cast<std::atomic<uint8_t>*>(
                       &counters[halfedge_[idx].startVert]),
                   static_cast<uint8_t>(1));
               if (old == 1) return;
               // arbitrary, last one wins.
               vertHalfedge[halfedge_[idx].startVert] = idx;
             });
  return vertHalfedge;
}

std::vector<Smoothness> Manifold::Impl::SharpenEdges(
    double minSharpAngle, double minSmoothness) const {
  std::vector<Smoothness> sharpenedEdges;
  const double minRadians = radians(minSharpAngle);
  for (size_t e = 0; e < halfedge_.size(); ++e) {
    if (!halfedge_[e].IsForward()) continue;
    const size_t pair = halfedge_[e].pairedHalfedge;
    const double dihedral =
        std::acos(la::dot(faceNormal_[e / 3], faceNormal_[pair / 3]));
    if (dihedral > minRadians) {
      sharpenedEdges.push_back({e, minSmoothness});
      sharpenedEdges.push_back({pair, minSmoothness});
    }
  }
  return sharpenedEdges;
}

/**
 * Sharpen tangents that intersect an edge to sharpen that edge. The weight is
 * unchanged, as this has a squared effect on radius of curvature, except
 * in the case of zero radius, which is marked with weight = 0.
 */
void Manifold::Impl::SharpenTangent(int halfedge, double smoothness) {
  halfedgeTangent_[halfedge] =
      vec4(smoothness * vec3(halfedgeTangent_[halfedge]),
           smoothness == 0 ? 0 : halfedgeTangent_[halfedge].w);
}

/**
 * Instead of calculating the internal shared normals like CalculateNormals
 * does, this method fills in vertex properties, unshared across edges that
 * are bent more than minSharpAngle.
 */
void Manifold::Impl::SetNormals(int normalIdx, double minSharpAngle) {
  if (IsEmpty()) return;
  if (normalIdx < 0) return;

  const int oldNumProp = NumProp();
  const int numTri = NumTri();

  Vec<bool> triIsFlatFace = FlatFaces();
  Vec<int> vertFlatFace = VertFlatFace(triIsFlatFace);
  Vec<int> vertNumSharp(NumVert(), 0);
  for (size_t e = 0; e < halfedge_.size(); ++e) {
    if (!halfedge_[e].IsForward()) continue;
    const int pair = halfedge_[e].pairedHalfedge;
    const int tri1 = e / 3;
    const int tri2 = pair / 3;
    const double dihedral =
        degrees(std::acos(la::dot(faceNormal_[tri1], faceNormal_[tri2])));
    if (dihedral > minSharpAngle) {
      ++vertNumSharp[halfedge_[e].startVert];
      ++vertNumSharp[halfedge_[e].endVert];
    } else {
      const bool faceSplit =
          triIsFlatFace[tri1] != triIsFlatFace[tri2] ||
          (triIsFlatFace[tri1] && triIsFlatFace[tri2] &&
           !meshRelation_.triRef[tri1].SameFace(meshRelation_.triRef[tri2]));
      if (vertFlatFace[halfedge_[e].startVert] == -2 && faceSplit) {
        ++vertNumSharp[halfedge_[e].startVert];
      }
      if (vertFlatFace[halfedge_[e].endVert] == -2 && faceSplit) {
        ++vertNumSharp[halfedge_[e].endVert];
      }
    }
  }

  const int numProp = std::max(oldNumProp, normalIdx + 3);
  Vec<double> oldProperties(numProp * NumPropVert(), 0);
  meshRelation_.properties.swap(oldProperties);
  meshRelation_.numProp = numProp;
  if (meshRelation_.triProperties.size() == 0) {
    meshRelation_.triProperties.resize(numTri);
    for_each_n(autoPolicy(numTri, 1e5), countAt(0), numTri, [this](int tri) {
      for (const int j : {0, 1, 2})
        meshRelation_.triProperties[tri][j] = halfedge_[3 * tri + j].startVert;
    });
  }
  Vec<ivec3> oldTriProp(numTri, {-1, -1, -1});
  meshRelation_.triProperties.swap(oldTriProp);

  for (int tri = 0; tri < numTri; ++tri) {
    for (const int i : {0, 1, 2}) {
      if (meshRelation_.triProperties[tri][i] >= 0) continue;
      int startEdge = 3 * tri + i;
      const int vert = halfedge_[startEdge].startVert;

      if (vertNumSharp[vert] < 2) {  // vertex has single normal
        const vec3 normal = vertFlatFace[vert] >= 0
                                ? faceNormal_[vertFlatFace[vert]]
                                : vertNormal_[vert];
        int lastProp = -1;
        ForVert(startEdge, [&](int current) {
          const int thisTri = current / 3;
          const int j = current - 3 * thisTri;
          const int prop = oldTriProp[thisTri][j];
          meshRelation_.triProperties[thisTri][j] = prop;
          if (prop == lastProp) return;
          lastProp = prop;
          // update property vertex
          auto start = oldProperties.begin() + prop * oldNumProp;
          std::copy(start, start + oldNumProp,
                    meshRelation_.properties.begin() + prop * numProp);
          for (const int i : {0, 1, 2})
            meshRelation_.properties[prop * numProp + normalIdx + i] =
                normal[i];
        });
      } else {  // vertex has multiple normals
        const vec3 centerPos = vertPos_[vert];
        // Length degree
        std::vector<int> group;
        // Length number of normals
        std::vector<vec3> normals;
        int current = startEdge;
        int prevFace = current / 3;

        do {  // find a sharp edge to start on
          int next = NextHalfedge(halfedge_[current].pairedHalfedge);
          const int face = next / 3;

          const double dihedral = degrees(
              std::acos(la::dot(faceNormal_[face], faceNormal_[prevFace])));
          if (dihedral > minSharpAngle ||
              triIsFlatFace[face] != triIsFlatFace[prevFace] ||
              (triIsFlatFace[face] && triIsFlatFace[prevFace] &&
               !meshRelation_.triRef[face].SameFace(
                   meshRelation_.triRef[prevFace]))) {
            break;
          }
          current = next;
          prevFace = face;
        } while (current != startEdge);

        const int endEdge = current;

        struct FaceEdge {
          int face;
          vec3 edgeVec;
        };

        // calculate pseudo-normals between each sharp edge
        ForVert<FaceEdge>(
            endEdge,
            [this, centerPos, &vertNumSharp, &vertFlatFace](int current) {
              if (IsInsideQuad(current)) {
                return FaceEdge({current / 3, vec3(NAN)});
              }
              const int vert = halfedge_[current].endVert;
              vec3 pos = vertPos_[vert];
              const vec3 edgeVec = centerPos - pos;
              if (vertNumSharp[vert] < 2) {
                // opposite vert has fixed normal
                const vec3 normal = vertFlatFace[vert] >= 0
                                        ? faceNormal_[vertFlatFace[vert]]
                                        : vertNormal_[vert];
                // Flair out the normal we're calculating to give the edge a
                // more constant curvature to meet the opposite normal. Achieve
                // this by pointing the tangent toward the opposite bezier
                // control point instead of the vert itself.
                pos += vec3(TangentFromNormal(
                    normal, halfedge_[current].pairedHalfedge));
              }
              return FaceEdge({current / 3, SafeNormalize(pos - centerPos)});
            },
            [this, &triIsFlatFace, &normals, &group, minSharpAngle](
                int current, const FaceEdge& here, FaceEdge& next) {
              const double dihedral = degrees(std::acos(
                  la::dot(faceNormal_[here.face], faceNormal_[next.face])));
              if (dihedral > minSharpAngle ||
                  triIsFlatFace[here.face] != triIsFlatFace[next.face] ||
                  (triIsFlatFace[here.face] && triIsFlatFace[next.face] &&
                   !meshRelation_.triRef[here.face].SameFace(
                       meshRelation_.triRef[next.face]))) {
                normals.push_back(vec3(0.0));
              }
              group.push_back(normals.size() - 1);
              if (std::isfinite(next.edgeVec.x)) {
                normals.back() +=
                    SafeNormalize(la::cross(next.edgeVec, here.edgeVec)) *
                    AngleBetween(here.edgeVec, next.edgeVec);
              } else {
                next.edgeVec = here.edgeVec;
              }
            });

        for (auto& normal : normals) {
          normal = SafeNormalize(normal);
        }

        int lastGroup = 0;
        int lastProp = -1;
        int newProp = -1;
        int idx = 0;
        ForVert(endEdge, [&](int current1) {
          const int thisTri = current1 / 3;
          const int j = current1 - 3 * thisTri;
          const int prop = oldTriProp[thisTri][j];
          auto start = oldProperties.begin() + prop * oldNumProp;

          if (group[idx] != lastGroup && group[idx] != 0 && prop == lastProp) {
            // split property vertex, duplicating but with an updated normal
            lastGroup = group[idx];
            newProp = NumPropVert();
            meshRelation_.properties.resize(meshRelation_.properties.size() +
                                            numProp);
            std::copy(start, start + oldNumProp,
                      meshRelation_.properties.begin() + newProp * numProp);
            for (const int i : {0, 1, 2}) {
              meshRelation_.properties[newProp * numProp + normalIdx + i] =
                  normals[group[idx]][i];
            }
          } else if (prop != lastProp) {
            // update property vertex
            lastProp = prop;
            newProp = prop;
            std::copy(start, start + oldNumProp,
                      meshRelation_.properties.begin() + prop * numProp);
            for (const int i : {0, 1, 2})
              meshRelation_.properties[prop * numProp + normalIdx + i] =
                  normals[group[idx]][i];
          }

          // point to updated property vertex
          meshRelation_.triProperties[thisTri][j] = newProp;
          ++idx;
        });
      }
    }
  }
}

/**
 * Tangents get flattened to create sharp edges by setting their weight to zero.
 * This is the natural limit of reducing the weight to increase the sharpness
 * smoothly. This limit gives a decent shape, but it causes the parameterization
 * to be stretched and compresses it near the edges, which is good for resolving
 * tight curvature, but bad for property interpolation. This function fixes the
 * parameter stretch at the limit for sharp edges, since there is no curvature
 * to resolve. Note this also changes the overall shape - making it more evenly
 * curved.
 */
void Manifold::Impl::LinearizeFlatTangents() {
  const int n = halfedgeTangent_.size();
  for_each_n(autoPolicy(n, 1e4), countAt(0), n, [this](const int halfedge) {
    vec4& tangent = halfedgeTangent_[halfedge];
    vec4& otherTangent = halfedgeTangent_[halfedge_[halfedge].pairedHalfedge];

    const bool flat[2] = {tangent.w == 0, otherTangent.w == 0};
    if (!halfedge_[halfedge].IsForward() || (!flat[0] && !flat[1])) {
      return;
    }

    const vec3 edgeVec = vertPos_[halfedge_[halfedge].endVert] -
                         vertPos_[halfedge_[halfedge].startVert];

    if (flat[0] && flat[1]) {
      tangent = vec4(edgeVec / 3.0, 1);
      otherTangent = vec4(-edgeVec / 3.0, 1);
    } else if (flat[0]) {
      tangent = vec4((edgeVec + vec3(otherTangent)) / 2.0, 1);
    } else {
      otherTangent = vec4((-edgeVec + vec3(tangent)) / 2.0, 1);
    }
  });
}

/**
 * Redistribute the tangents around each vertex so that the angles between them
 * have the same ratios as the angles of the triangles between the corresponding
 * edges. This avoids folding the output shape and gives smoother results. There
 * must be at least one fixed halfedge on a vertex for that vertex to be
 * operated on. If there is only one, then that halfedge is not treated as
 * fixed, but the whole circle is turned to an average orientation.
 */
void Manifold::Impl::DistributeTangents(const Vec<bool>& fixedHalfedges) {
  const int numHalfedge = fixedHalfedges.size();
  for_each_n(
      autoPolicy(numHalfedge, 1e4), countAt(0), numHalfedge,
      [this, &fixedHalfedges](int halfedge) {
        if (!fixedHalfedges[halfedge]) return;

        if (IsMarkedInsideQuad(halfedge)) {
          halfedge = NextHalfedge(halfedge_[halfedge].pairedHalfedge);
        }

        vec3 normal(0.0);
        Vec<double> currentAngle;
        Vec<double> desiredAngle;

        const vec3 approxNormal = vertNormal_[halfedge_[halfedge].startVert];
        const vec3 center = vertPos_[halfedge_[halfedge].startVert];
        vec3 lastEdgeVec =
            SafeNormalize(vertPos_[halfedge_[halfedge].endVert] - center);
        const vec3 firstTangent =
            SafeNormalize(vec3(halfedgeTangent_[halfedge]));
        vec3 lastTangent = firstTangent;
        int current = halfedge;
        do {
          current = NextHalfedge(halfedge_[current].pairedHalfedge);
          if (IsMarkedInsideQuad(current)) continue;
          const vec3 thisEdgeVec =
              SafeNormalize(vertPos_[halfedge_[current].endVert] - center);
          const vec3 thisTangent =
              SafeNormalize(vec3(halfedgeTangent_[current]));
          normal += la::cross(thisTangent, lastTangent);
          // cumulative sum
          desiredAngle.push_back(
              AngleBetween(thisEdgeVec, lastEdgeVec) +
              (desiredAngle.size() > 0 ? desiredAngle.back() : 0));
          if (current == halfedge) {
            currentAngle.push_back(kTwoPi);
          } else {
            currentAngle.push_back(AngleBetween(thisTangent, firstTangent));
            if (la::dot(approxNormal, la::cross(thisTangent, firstTangent)) <
                0) {
              currentAngle.back() = kTwoPi - currentAngle.back();
            }
          }
          lastEdgeVec = thisEdgeVec;
          lastTangent = thisTangent;
        } while (!fixedHalfedges[current]);

        if (currentAngle.size() == 1 || la::dot(normal, normal) == 0) return;

        const double scale = currentAngle.back() / desiredAngle.back();
        double offset = 0;
        if (current == halfedge) {  // only one - find average offset
          for (size_t i = 0; i < currentAngle.size(); ++i) {
            offset += Wrap(currentAngle[i] - scale * desiredAngle[i]);
          }
          offset /= currentAngle.size();
        }

        current = halfedge;
        size_t i = 0;
        do {
          current = NextHalfedge(halfedge_[current].pairedHalfedge);
          if (IsMarkedInsideQuad(current)) continue;
          desiredAngle[i] *= scale;
          const double lastAngle = i > 0 ? desiredAngle[i - 1] : 0;
          // shrink obtuse angles
          if (desiredAngle[i] - lastAngle > kPi) {
            desiredAngle[i] = lastAngle + kPi;
          } else if (i + 1 < desiredAngle.size() &&
                     scale * desiredAngle[i + 1] - desiredAngle[i] > kPi) {
            desiredAngle[i] = scale * desiredAngle[i + 1] - kPi;
          }
          const double angle = currentAngle[i] - desiredAngle[i] - offset;
          vec3 tangent(halfedgeTangent_[current]);
          const quat q = la::rotation_quat(la::normalize(normal), angle);
          halfedgeTangent_[current] =
              vec4(la::qrot(q, tangent), halfedgeTangent_[current].w);
          ++i;
        } while (!fixedHalfedges[current]);
      });
}

/**
 * Calculates halfedgeTangent_, allowing the manifold to be refined and
 * smoothed. The tangents form weighted cubic Beziers along each edge. This
 * function creates circular arcs where possible (minimizing maximum curvature),
 * constrained to the indicated property normals. Across edges that form
 * discontinuities in the normals, the tangent vectors are zero-length, allowing
 * the shape to form a sharp corner with minimal oscillation.
 */
void Manifold::Impl::CreateTangents(int normalIdx) {
  ZoneScoped;
  const int numVert = NumVert();
  const int numHalfedge = halfedge_.size();
  halfedgeTangent_.resize(0);
  Vec<vec4> tangent(numHalfedge);
  Vec<bool> fixedHalfedge(numHalfedge, false);

  Vec<int> vertHalfedge = VertHalfedge();
  for_each_n(
      autoPolicy(numVert, 1e4), vertHalfedge.begin(), numVert,
      [this, &tangent, &fixedHalfedge, normalIdx](int e) {
        struct FlatNormal {
          bool isFlatFace;
          vec3 normal;
        };

        ivec2 faceEdges(-1, -1);

        ForVert<FlatNormal>(
            e,
            [normalIdx, this](int halfedge) {
              const vec3 normal = GetNormal(halfedge, normalIdx);
              const vec3 diff = faceNormal_[halfedge / 3] - normal;
              return FlatNormal(
                  {la::dot(diff, diff) < kPrecision * kPrecision, normal});
            },
            [&faceEdges, &tangent, &fixedHalfedge, this](
                int halfedge, const FlatNormal& here, const FlatNormal& next) {
              if (IsInsideQuad(halfedge)) {
                tangent[halfedge] = {0, 0, 0, -1};
                return;
              }
              // mark special edges
              const vec3 diff = next.normal - here.normal;
              const bool differentNormals =
                  la::dot(diff, diff) > kPrecision * kPrecision;
              if (differentNormals || here.isFlatFace != next.isFlatFace) {
                fixedHalfedge[halfedge] = true;
                if (faceEdges[0] == -1) {
                  faceEdges[0] = halfedge;
                } else if (faceEdges[1] == -1) {
                  faceEdges[1] = halfedge;
                } else {
                  faceEdges[0] = -2;
                }
              }
              // calculate tangents
              if (differentNormals) {
                const vec3 edgeVec = vertPos_[halfedge_[halfedge].endVert] -
                                     vertPos_[halfedge_[halfedge].startVert];
                const vec3 dir = la::cross(here.normal, next.normal);
                tangent[halfedge] = CircularTangent(
                    (la::dot(dir, edgeVec) < 0 ? -1.0 : 1.0) * dir, edgeVec);
              } else {
                tangent[halfedge] = TangentFromNormal(here.normal, halfedge);
              }
            });

        if (faceEdges[0] >= 0 && faceEdges[1] >= 0) {
          const vec3 edge0 = vertPos_[halfedge_[faceEdges[0]].endVert] -
                             vertPos_[halfedge_[faceEdges[0]].startVert];
          const vec3 edge1 = vertPos_[halfedge_[faceEdges[1]].endVert] -
                             vertPos_[halfedge_[faceEdges[1]].startVert];
          const vec3 newTangent = la::normalize(edge0) - la::normalize(edge1);
          tangent[faceEdges[0]] = CircularTangent(newTangent, edge0);
          tangent[faceEdges[1]] = CircularTangent(-newTangent, edge1);
        } else if (faceEdges[0] == -1 && faceEdges[0] == -1) {
          fixedHalfedge[e] = true;
        }
      });

  halfedgeTangent_.swap(tangent);
  DistributeTangents(fixedHalfedge);
}

/**
 * Calculates halfedgeTangent_, allowing the manifold to be refined and
 * smoothed. The tangents form weighted cubic Beziers along each edge. This
 * function creates circular arcs where possible (minimizing maximum curvature),
 * constrained to the vertex normals. Where sharpenedEdges are specified, the
 * tangents are shortened that intersect the sharpened edge, concentrating the
 * curvature there, while the tangents of the sharp edges themselves are aligned
 * for continuity.
 */
void Manifold::Impl::CreateTangents(std::vector<Smoothness> sharpenedEdges) {
  ZoneScoped;
  const int numHalfedge = halfedge_.size();
  halfedgeTangent_.resize(0);
  Vec<vec4> tangent(numHalfedge);
  Vec<bool> fixedHalfedge(numHalfedge, false);

  Vec<int> vertHalfedge = VertHalfedge();
  Vec<bool> triIsFlatFace = FlatFaces();
  Vec<int> vertFlatFace = VertFlatFace(triIsFlatFace);
  Vec<vec3> vertNormal = vertNormal_;
  for (size_t v = 0; v < NumVert(); ++v) {
    if (vertFlatFace[v] >= 0) {
      vertNormal[v] = faceNormal_[vertFlatFace[v]];
    }
  }

  for_each_n(autoPolicy(numHalfedge, 1e4), countAt(0), numHalfedge,
             [&tangent, &vertNormal, this](const int edgeIdx) {
               tangent[edgeIdx] =
                   IsInsideQuad(edgeIdx)
                       ? vec4(0, 0, 0, -1)
                       : TangentFromNormal(
                             vertNormal[halfedge_[edgeIdx].startVert], edgeIdx);
             });

  halfedgeTangent_.swap(tangent);

  // Add sharpened edges around faces, just on the face side.
  for (size_t tri = 0; tri < NumTri(); ++tri) {
    if (!triIsFlatFace[tri]) continue;
    for (const int j : {0, 1, 2}) {
      const int tri2 = halfedge_[3 * tri + j].pairedHalfedge / 3;
      if (!triIsFlatFace[tri2] ||
          !meshRelation_.triRef[tri].SameFace(meshRelation_.triRef[tri2])) {
        sharpenedEdges.push_back({3 * tri + j, 0});
      }
    }
  }

  using Pair = std::pair<Smoothness, Smoothness>;
  // Fill in missing pairs with default smoothness = 1.
  std::map<int, Pair> edges;
  for (Smoothness edge : sharpenedEdges) {
    if (edge.smoothness >= 1) continue;
    const bool forward = halfedge_[edge.halfedge].IsForward();
    const int pair = halfedge_[edge.halfedge].pairedHalfedge;
    const int idx = forward ? edge.halfedge : pair;
    if (edges.find(idx) == edges.end()) {
      edges[idx] = {edge, {static_cast<size_t>(pair), 1}};
      if (!forward) std::swap(edges[idx].first, edges[idx].second);
    } else {
      Smoothness& e = forward ? edges[idx].first : edges[idx].second;
      e.smoothness = std::min(edge.smoothness, e.smoothness);
    }
  }

  std::map<int, std::vector<Pair>> vertTangents;
  for (const auto& value : edges) {
    const Pair edge = value.second;
    vertTangents[halfedge_[edge.first.halfedge].startVert].push_back(edge);
    vertTangents[halfedge_[edge.second.halfedge].startVert].push_back(
        {edge.second, edge.first});
  }

  const int numVert = NumVert();
  for_each_n(
      autoPolicy(numVert, 1e4), countAt(0), numVert,
      [this, &vertTangents, &fixedHalfedge, &vertHalfedge,
       &triIsFlatFace](int v) {
        auto it = vertTangents.find(v);
        if (it == vertTangents.end()) {
          fixedHalfedge[vertHalfedge[v]] = true;
          return;
        }
        const std::vector<Pair>& vert = it->second;
        // Sharp edges that end are smooth at their terminal vert.
        if (vert.size() == 1) return;
        if (vert.size() == 2) {  // Make continuous edge
          const int first = vert[0].first.halfedge;
          const int second = vert[1].first.halfedge;
          fixedHalfedge[first] = true;
          fixedHalfedge[second] = true;
          const vec3 newTangent = la::normalize(vec3(halfedgeTangent_[first]) -
                                                vec3(halfedgeTangent_[second]));

          const vec3 pos = vertPos_[halfedge_[first].startVert];
          halfedgeTangent_[first] = CircularTangent(
              newTangent, vertPos_[halfedge_[first].endVert] - pos);
          halfedgeTangent_[second] = CircularTangent(
              -newTangent, vertPos_[halfedge_[second].endVert] - pos);

          double smoothness =
              (vert[0].second.smoothness + vert[1].first.smoothness) / 2;
          ForVert(first, [this, &smoothness, &vert, first,
                          second](int current) {
            if (current == second) {
              smoothness =
                  (vert[1].second.smoothness + vert[0].first.smoothness) / 2;
            } else if (current != first && !IsMarkedInsideQuad(current)) {
              SharpenTangent(current, smoothness);
            }
          });
        } else {  // Sharpen vertex uniformly
          double smoothness = 0;
          double denom = 0;
          for (const Pair& pair : vert) {
            smoothness += pair.first.smoothness;
            smoothness += pair.second.smoothness;
            denom += pair.first.smoothness == 0 ? 0 : 1;
            denom += pair.second.smoothness == 0 ? 0 : 1;
          }
          smoothness /= denom;

          ForVert(vert[0].first.halfedge,
                  [this, &triIsFlatFace, smoothness](int current) {
                    if (!IsMarkedInsideQuad(current)) {
                      const int pair = halfedge_[current].pairedHalfedge;
                      SharpenTangent(current, triIsFlatFace[current / 3] ||
                                                      triIsFlatFace[pair / 3]
                                                  ? 0
                                                  : smoothness);
                    }
                  });
        }
      });

  LinearizeFlatTangents();
  DistributeTangents(fixedHalfedge);
}

void Manifold::Impl::Refine(std::function<int(vec3, vec4, vec4)> edgeDivisions,
                            bool keepInterior) {
  if (IsEmpty()) return;
  Manifold::Impl old = *this;
  Vec<Barycentric> vertBary = Subdivide(edgeDivisions, keepInterior);
  if (vertBary.size() == 0) return;

  if (old.halfedgeTangent_.size() == old.halfedge_.size()) {
    for_each_n(autoPolicy(NumTri(), 1e4), countAt(0), NumVert(),
               InterpTri({vertPos_, vertBary, &old}));
  }

  halfedgeTangent_.resize(0);
  Finish();
  CreateFaces();
  meshRelation_.originalID = -1;
}

}  // namespace manifold