manifold-rs 0.6.2

Rust wrapper for manifold
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
// Copyright 2021 The Manifold Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "./impl.h"
#include "./parallel.h"

namespace {
using namespace manifold;

ivec3 TriOf(int edge) {
  ivec3 triEdge;
  triEdge[0] = edge;
  triEdge[1] = NextHalfedge(triEdge[0]);
  triEdge[2] = NextHalfedge(triEdge[1]);
  return triEdge;
}

bool Is01Longest(vec2 v0, vec2 v1, vec2 v2) {
  const vec2 e[3] = {v1 - v0, v2 - v1, v0 - v2};
  double l[3];
  for (int i : {0, 1, 2}) l[i] = la::dot(e[i], e[i]);
  return l[0] > l[1] && l[0] > l[2];
}

struct DuplicateEdge {
  const Halfedge* sortedHalfedge;

  bool operator()(int edge) {
    const Halfedge& halfedge = sortedHalfedge[edge];
    const Halfedge& nextHalfedge = sortedHalfedge[edge + 1];
    return halfedge.startVert == nextHalfedge.startVert &&
           halfedge.endVert == nextHalfedge.endVert;
  }
};

struct ShortEdge {
  VecView<const Halfedge> halfedge;
  VecView<const vec3> vertPos;
  const double tolerance;

  bool operator()(int edge) const {
    if (halfedge[edge].pairedHalfedge < 0) return false;
    // Flag short edges
    const vec3 delta =
        vertPos[halfedge[edge].endVert] - vertPos[halfedge[edge].startVert];
    return la::dot(delta, delta) < tolerance * tolerance;
  }
};

struct FlagEdge {
  VecView<const Halfedge> halfedge;
  VecView<const TriRef> triRef;

  bool operator()(int edge) const {
    if (halfedge[edge].pairedHalfedge < 0) return false;
    // Flag redundant edges - those where the startVert is surrounded by only
    // two original triangles.
    const TriRef ref0 = triRef[edge / 3];
    int current = NextHalfedge(halfedge[edge].pairedHalfedge);
    const TriRef ref1 = triRef[current / 3];
    while (current != edge) {
      current = NextHalfedge(halfedge[current].pairedHalfedge);
      int tri = current / 3;
      const TriRef ref = triRef[tri];
      if (!ref.SameFace(ref0) && !ref.SameFace(ref1)) return false;
    }
    return true;
  }
};

struct SwappableEdge {
  VecView<const Halfedge> halfedge;
  VecView<const vec3> vertPos;
  VecView<const vec3> triNormal;
  const double tolerance;

  bool operator()(int edge) const {
    if (halfedge[edge].pairedHalfedge < 0) return false;

    int tri = edge / 3;
    ivec3 triEdge = TriOf(edge);
    mat2x3 projection = GetAxisAlignedProjection(triNormal[tri]);
    vec2 v[3];
    for (int i : {0, 1, 2})
      v[i] = projection * vertPos[halfedge[triEdge[i]].startVert];
    if (CCW(v[0], v[1], v[2], tolerance) > 0 || !Is01Longest(v[0], v[1], v[2]))
      return false;

    // Switch to neighbor's projection.
    edge = halfedge[edge].pairedHalfedge;
    tri = edge / 3;
    triEdge = TriOf(edge);
    projection = GetAxisAlignedProjection(triNormal[tri]);
    for (int i : {0, 1, 2})
      v[i] = projection * vertPos[halfedge[triEdge[i]].startVert];
    return CCW(v[0], v[1], v[2], tolerance) > 0 ||
           Is01Longest(v[0], v[1], v[2]);
  }
};

struct SortEntry {
  int start;
  int end;
  size_t index;
  inline bool operator<(const SortEntry& other) const {
    return start == other.start ? end < other.end : start < other.start;
  }
};
}  // namespace

namespace manifold {

/**
 * Duplicates just enough verts to covert an even-manifold to a proper
 * 2-manifold, splitting non-manifold verts and edges with too many triangles.
 */
void Manifold::Impl::CleanupTopology() {
  if (!halfedge_.size()) return;

  // In the case of a very bad triangulation, it is possible to create pinched
  // verts. They must be removed before edge collapse.
  SplitPinchedVerts();

  while (1) {
    ZoneScopedN("DedupeEdge");

    const size_t nbEdges = halfedge_.size();
    size_t numFlagged = 0;

    Vec<SortEntry> entries;
    entries.reserve(nbEdges / 2);
    for (size_t i = 0; i < nbEdges; ++i) {
      if (halfedge_[i].IsForward()) {
        entries.push_back({halfedge_[i].startVert, halfedge_[i].endVert, i});
      }
    }

    stable_sort(entries.begin(), entries.end());
    for (size_t i = 0; i < entries.size() - 1; ++i) {
      const int h0 = entries[i].index;
      const int h1 = entries[i + 1].index;
      if (halfedge_[h0].startVert == halfedge_[h1].startVert &&
          halfedge_[h0].endVert == halfedge_[h1].endVert) {
        DedupeEdge(entries[i].index);
        numFlagged++;
      }
    }

    if (numFlagged == 0) break;

#ifdef MANIFOLD_DEBUG
    if (ManifoldParams().verbose) {
      std::cout << "found " << numFlagged << " duplicate edges to split"
                << std::endl;
    }
#endif
  }
}

/**
 * Collapses degenerate triangles by removing edges shorter than tolerance_ and
 * any edge that is preceeded by an edge that joins the same two face relations.
 * It also performs edge swaps on the long edges of degenerate triangles, though
 * there are some configurations of degenerates that cannot be removed this way.
 *
 * Before collapsing edges, the mesh is checked for duplicate edges (more than
 * one pair of triangles sharing the same edge), which are removed by
 * duplicating one vert and adding two triangles. These degenerate triangles are
 * likely to be collapsed again in the subsequent simplification.
 *
 * Note when an edge collapse would result in something non-manifold, the
 * vertices are duplicated in such a way as to remove handles or separate
 * meshes, thus decreasing the Genus(). It only increases when meshes that have
 * collapsed to just a pair of triangles are removed entirely.
 *
 * Rather than actually removing the edges, this step merely marks them for
 * removal, by setting vertPos to NaN and halfedge to {-1, -1, -1, -1}.
 */
void Manifold::Impl::SimplifyTopology() {
  if (!halfedge_.size()) return;

  CleanupTopology();

  if (!ManifoldParams().cleanupTriangles) {
    return;
  }

  const size_t nbEdges = halfedge_.size();
  auto policy = autoPolicy(nbEdges, 1e5);
  size_t numFlagged = 0;
  Vec<uint8_t> bFlags(nbEdges);

  std::vector<int> scratchBuffer;
  scratchBuffer.reserve(10);
  {
    ZoneScopedN("CollapseShortEdge");
    numFlagged = 0;
    ShortEdge se{halfedge_, vertPos_, epsilon_};
    for_each_n(policy, countAt(0_uz), nbEdges,
               [&](size_t i) { bFlags[i] = se(i); });
    for (size_t i = 0; i < nbEdges; ++i) {
      if (bFlags[i]) {
        CollapseEdge(i, scratchBuffer);
        scratchBuffer.resize(0);
        numFlagged++;
      }
    }
  }

#ifdef MANIFOLD_DEBUG
  if (ManifoldParams().verbose && numFlagged > 0) {
    std::cout << "found " << numFlagged << " short edges to collapse"
              << std::endl;
  }
#endif

  {
    ZoneScopedN("CollapseFlaggedEdge");
    numFlagged = 0;
    FlagEdge se{halfedge_, meshRelation_.triRef};
    for_each_n(policy, countAt(0_uz), nbEdges,
               [&](size_t i) { bFlags[i] = se(i); });
    for (size_t i = 0; i < nbEdges; ++i) {
      if (bFlags[i]) {
        CollapseEdge(i, scratchBuffer);
        scratchBuffer.resize(0);
        numFlagged++;
      }
    }
  }

#ifdef MANIFOLD_DEBUG
  if (ManifoldParams().verbose && numFlagged > 0) {
    std::cout << "found " << numFlagged << " colinear edges to collapse"
              << std::endl;
  }
#endif

  {
    ZoneScopedN("RecursiveEdgeSwap");
    numFlagged = 0;
    SwappableEdge se{halfedge_, vertPos_, faceNormal_, tolerance_};
    for_each_n(policy, countAt(0_uz), nbEdges,
               [&](size_t i) { bFlags[i] = se(i); });
    std::vector<int> edgeSwapStack;
    std::vector<int> visited(halfedge_.size(), -1);
    int tag = 0;
    for (size_t i = 0; i < nbEdges; ++i) {
      if (bFlags[i]) {
        numFlagged++;
        tag++;
        RecursiveEdgeSwap(i, tag, visited, edgeSwapStack, scratchBuffer);
        while (!edgeSwapStack.empty()) {
          int last = edgeSwapStack.back();
          edgeSwapStack.pop_back();
          RecursiveEdgeSwap(last, tag, visited, edgeSwapStack, scratchBuffer);
        }
      }
    }
  }

#ifdef MANIFOLD_DEBUG
  if (ManifoldParams().verbose && numFlagged > 0) {
    std::cout << "found " << numFlagged << " edges to swap" << std::endl;
  }
#endif
}

// Deduplicate the given 4-manifold edge by duplicating endVert, thus making the
// edges distinct. Also duplicates startVert if it becomes pinched.
void Manifold::Impl::DedupeEdge(const int edge) {
  // Orbit endVert
  const int startVert = halfedge_[edge].startVert;
  const int endVert = halfedge_[edge].endVert;
  int current = halfedge_[NextHalfedge(edge)].pairedHalfedge;
  while (current != edge) {
    const int vert = halfedge_[current].startVert;
    if (vert == startVert) {
      // Single topological unit needs 2 faces added to be split
      const int newVert = vertPos_.size();
      vertPos_.push_back(vertPos_[endVert]);
      if (vertNormal_.size() > 0) vertNormal_.push_back(vertNormal_[endVert]);
      current = halfedge_[NextHalfedge(current)].pairedHalfedge;
      const int opposite = halfedge_[NextHalfedge(edge)].pairedHalfedge;

      UpdateVert(newVert, current, opposite);

      int newHalfedge = halfedge_.size();
      int newFace = newHalfedge / 3;
      int oldFace = current / 3;
      int outsideVert = halfedge_[current].startVert;
      halfedge_.push_back({endVert, newVert, -1});
      halfedge_.push_back({newVert, outsideVert, -1});
      halfedge_.push_back({outsideVert, endVert, -1});
      PairUp(newHalfedge + 2, halfedge_[current].pairedHalfedge);
      PairUp(newHalfedge + 1, current);
      if (meshRelation_.triRef.size() > 0)
        meshRelation_.triRef.push_back(meshRelation_.triRef[oldFace]);
      if (meshRelation_.triProperties.size() > 0)
        meshRelation_.triProperties.push_back(
            meshRelation_.triProperties[oldFace]);
      if (faceNormal_.size() > 0) faceNormal_.push_back(faceNormal_[oldFace]);

      newHalfedge += 3;
      ++newFace;
      oldFace = opposite / 3;
      outsideVert = halfedge_[opposite].startVert;
      halfedge_.push_back({newVert, endVert, -1});
      halfedge_.push_back({endVert, outsideVert, -1});
      halfedge_.push_back({outsideVert, newVert, -1});
      PairUp(newHalfedge + 2, halfedge_[opposite].pairedHalfedge);
      PairUp(newHalfedge + 1, opposite);
      PairUp(newHalfedge, newHalfedge - 3);
      if (meshRelation_.triRef.size() > 0)
        meshRelation_.triRef.push_back(meshRelation_.triRef[oldFace]);
      if (meshRelation_.triProperties.size() > 0)
        meshRelation_.triProperties.push_back(
            meshRelation_.triProperties[oldFace]);
      if (faceNormal_.size() > 0) faceNormal_.push_back(faceNormal_[oldFace]);

      break;
    }

    current = halfedge_[NextHalfedge(current)].pairedHalfedge;
  }

  if (current == edge) {
    // Separate topological unit needs no new faces to be split
    const int newVert = vertPos_.size();
    vertPos_.push_back(vertPos_[endVert]);
    if (vertNormal_.size() > 0) vertNormal_.push_back(vertNormal_[endVert]);

    ForVert(NextHalfedge(current), [this, newVert](int e) {
      halfedge_[e].startVert = newVert;
      halfedge_[halfedge_[e].pairedHalfedge].endVert = newVert;
    });
  }

  // Orbit startVert
  const int pair = halfedge_[edge].pairedHalfedge;
  current = halfedge_[NextHalfedge(pair)].pairedHalfedge;
  while (current != pair) {
    const int vert = halfedge_[current].startVert;
    if (vert == endVert) {
      break;  // Connected: not a pinched vert
    }
    current = halfedge_[NextHalfedge(current)].pairedHalfedge;
  }

  if (current == pair) {
    // Split the pinched vert the previous split created.
    const int newVert = vertPos_.size();
    vertPos_.push_back(vertPos_[endVert]);
    if (vertNormal_.size() > 0) vertNormal_.push_back(vertNormal_[endVert]);

    ForVert(NextHalfedge(current), [this, newVert](int e) {
      halfedge_[e].startVert = newVert;
      halfedge_[halfedge_[e].pairedHalfedge].endVert = newVert;
    });
  }
}

void Manifold::Impl::PairUp(int edge0, int edge1) {
  halfedge_[edge0].pairedHalfedge = edge1;
  halfedge_[edge1].pairedHalfedge = edge0;
}

// Traverses CW around startEdge.endVert from startEdge to endEdge
// (edgeEdge.endVert must == startEdge.endVert), updating each edge to point
// to vert instead.
void Manifold::Impl::UpdateVert(int vert, int startEdge, int endEdge) {
  int current = startEdge;
  while (current != endEdge) {
    halfedge_[current].endVert = vert;
    current = NextHalfedge(current);
    halfedge_[current].startVert = vert;
    current = halfedge_[current].pairedHalfedge;
    DEBUG_ASSERT(current != startEdge, logicErr, "infinite loop in decimator!");
  }
}

// In the event that the edge collapse would create a non-manifold edge,
// instead we duplicate the two verts and attach the manifolds the other way
// across this edge.
void Manifold::Impl::FormLoop(int current, int end) {
  int startVert = vertPos_.size();
  vertPos_.push_back(vertPos_[halfedge_[current].startVert]);
  int endVert = vertPos_.size();
  vertPos_.push_back(vertPos_[halfedge_[current].endVert]);

  int oldMatch = halfedge_[current].pairedHalfedge;
  int newMatch = halfedge_[end].pairedHalfedge;

  UpdateVert(startVert, oldMatch, newMatch);
  UpdateVert(endVert, end, current);

  halfedge_[current].pairedHalfedge = newMatch;
  halfedge_[newMatch].pairedHalfedge = current;
  halfedge_[end].pairedHalfedge = oldMatch;
  halfedge_[oldMatch].pairedHalfedge = end;

  RemoveIfFolded(end);
}

void Manifold::Impl::CollapseTri(const ivec3& triEdge) {
  if (halfedge_[triEdge[1]].pairedHalfedge == -1) return;
  int pair1 = halfedge_[triEdge[1]].pairedHalfedge;
  int pair2 = halfedge_[triEdge[2]].pairedHalfedge;
  halfedge_[pair1].pairedHalfedge = pair2;
  halfedge_[pair2].pairedHalfedge = pair1;
  for (int i : {0, 1, 2}) {
    halfedge_[triEdge[i]] = {-1, -1, -1};
  }
}

void Manifold::Impl::RemoveIfFolded(int edge) {
  const ivec3 tri0edge = TriOf(edge);
  const ivec3 tri1edge = TriOf(halfedge_[edge].pairedHalfedge);
  if (halfedge_[tri0edge[1]].pairedHalfedge == -1) return;
  if (halfedge_[tri0edge[1]].endVert == halfedge_[tri1edge[1]].endVert) {
    if (halfedge_[tri0edge[1]].pairedHalfedge == tri1edge[2]) {
      if (halfedge_[tri0edge[2]].pairedHalfedge == tri1edge[1]) {
        for (int i : {0, 1, 2})
          vertPos_[halfedge_[tri0edge[i]].startVert] = vec3(NAN);
      } else {
        vertPos_[halfedge_[tri0edge[1]].startVert] = vec3(NAN);
      }
    } else {
      if (halfedge_[tri0edge[2]].pairedHalfedge == tri1edge[1]) {
        vertPos_[halfedge_[tri1edge[1]].startVert] = vec3(NAN);
      }
    }
    PairUp(halfedge_[tri0edge[1]].pairedHalfedge,
           halfedge_[tri1edge[2]].pairedHalfedge);
    PairUp(halfedge_[tri0edge[2]].pairedHalfedge,
           halfedge_[tri1edge[1]].pairedHalfedge);
    for (int i : {0, 1, 2}) {
      halfedge_[tri0edge[i]] = {-1, -1, -1};
      halfedge_[tri1edge[i]] = {-1, -1, -1};
    }
  }
}

// Collapses the given edge by removing startVert. May split the mesh
// topologically if the collapse would have resulted in a 4-manifold edge. Do
// not collapse an edge if startVert is pinched - the vert will be marked NaN,
// but other edges may still be pointing to it.
void Manifold::Impl::CollapseEdge(const int edge, std::vector<int>& edges) {
  Vec<TriRef>& triRef = meshRelation_.triRef;
  Vec<ivec3>& triProp = meshRelation_.triProperties;

  const Halfedge toRemove = halfedge_[edge];
  if (toRemove.pairedHalfedge < 0) return;

  const int endVert = toRemove.endVert;
  const ivec3 tri0edge = TriOf(edge);
  const ivec3 tri1edge = TriOf(toRemove.pairedHalfedge);

  const vec3 pNew = vertPos_[endVert];
  const vec3 pOld = vertPos_[toRemove.startVert];
  const vec3 delta = pNew - pOld;
  const bool shortEdge = la::dot(delta, delta) < tolerance_ * tolerance_;

  // Orbit endVert
  int current = halfedge_[tri0edge[1]].pairedHalfedge;
  while (current != tri1edge[2]) {
    current = NextHalfedge(current);
    edges.push_back(current);
    current = halfedge_[current].pairedHalfedge;
  }

  // Orbit startVert
  int start = halfedge_[tri1edge[1]].pairedHalfedge;
  if (!shortEdge) {
    current = start;
    TriRef refCheck = triRef[toRemove.pairedHalfedge / 3];
    vec3 pLast = vertPos_[halfedge_[tri1edge[1]].endVert];
    while (current != tri0edge[2]) {
      current = NextHalfedge(current);
      vec3 pNext = vertPos_[halfedge_[current].endVert];
      const int tri = current / 3;
      const TriRef ref = triRef[tri];
      const mat2x3 projection = GetAxisAlignedProjection(faceNormal_[tri]);
      // Don't collapse if the edge is not redundant (this may have changed due
      // to the collapse of neighbors).
      if (!ref.SameFace(refCheck)) {
        refCheck = triRef[edge / 3];
        if (!ref.SameFace(refCheck)) {
          return;
        } else {
          // Don't collapse if the edges separating the faces are not colinear
          // (can happen when the two faces are coplanar).
          if (CCW(projection * pOld, projection * pLast, projection * pNew,
                  epsilon_) != 0)
            return;
        }
      }

      // Don't collapse edge if it would cause a triangle to invert.
      if (CCW(projection * pNext, projection * pLast, projection * pNew,
              epsilon_) < 0)
        return;

      pLast = pNext;
      current = halfedge_[current].pairedHalfedge;
    }
  }

  // Remove toRemove.startVert and replace with endVert.
  vertPos_[toRemove.startVert] = vec3(NAN);
  CollapseTri(tri1edge);

  // Orbit startVert
  const int tri0 = edge / 3;
  const int tri1 = toRemove.pairedHalfedge / 3;
  const int triVert0 = (edge + 1) % 3;
  const int triVert1 = toRemove.pairedHalfedge % 3;
  current = start;
  while (current != tri0edge[2]) {
    current = NextHalfedge(current);

    if (triProp.size() > 0) {
      // Update the shifted triangles to the vertBary of endVert
      const int tri = current / 3;
      const int vIdx = current - 3 * tri;
      if (triRef[tri].SameFace(triRef[tri0])) {
        triProp[tri][vIdx] = triProp[tri0][triVert0];
      } else if (triRef[tri].SameFace(triRef[tri1])) {
        triProp[tri][vIdx] = triProp[tri1][triVert1];
      }
    }

    const int vert = halfedge_[current].endVert;
    const int next = halfedge_[current].pairedHalfedge;
    for (size_t i = 0; i < edges.size(); ++i) {
      if (vert == halfedge_[edges[i]].endVert) {
        FormLoop(edges[i], current);
        start = next;
        edges.resize(i);
        break;
      }
    }
    current = next;
  }

  UpdateVert(endVert, start, tri0edge[2]);
  CollapseTri(tri0edge);
  RemoveIfFolded(start);
}

void Manifold::Impl::RecursiveEdgeSwap(const int edge, int& tag,
                                       std::vector<int>& visited,
                                       std::vector<int>& edgeSwapStack,
                                       std::vector<int>& edges) {
  Vec<TriRef>& triRef = meshRelation_.triRef;

  if (edge < 0) return;
  const int pair = halfedge_[edge].pairedHalfedge;
  if (pair < 0) return;

  // avoid infinite recursion
  if (visited[edge] == tag && visited[pair] == tag) return;

  const ivec3 tri0edge = TriOf(edge);
  const ivec3 tri1edge = TriOf(pair);
  const ivec3 perm0 = TriOf(edge % 3);
  const ivec3 perm1 = TriOf(pair % 3);

  mat2x3 projection = GetAxisAlignedProjection(faceNormal_[edge / 3]);
  vec2 v[4];
  for (int i : {0, 1, 2})
    v[i] = projection * vertPos_[halfedge_[tri0edge[i]].startVert];
  // Only operate on the long edge of a degenerate triangle.
  if (CCW(v[0], v[1], v[2], tolerance_) > 0 || !Is01Longest(v[0], v[1], v[2]))
    return;

  // Switch to neighbor's projection.
  projection = GetAxisAlignedProjection(faceNormal_[pair / 3]);
  for (int i : {0, 1, 2})
    v[i] = projection * vertPos_[halfedge_[tri0edge[i]].startVert];
  v[3] = projection * vertPos_[halfedge_[tri1edge[2]].startVert];

  auto SwapEdge = [&]() {
    // The 0-verts are swapped to the opposite 2-verts.
    const int v0 = halfedge_[tri0edge[2]].startVert;
    const int v1 = halfedge_[tri1edge[2]].startVert;
    halfedge_[tri0edge[0]].startVert = v1;
    halfedge_[tri0edge[2]].endVert = v1;
    halfedge_[tri1edge[0]].startVert = v0;
    halfedge_[tri1edge[2]].endVert = v0;
    PairUp(tri0edge[0], halfedge_[tri1edge[2]].pairedHalfedge);
    PairUp(tri1edge[0], halfedge_[tri0edge[2]].pairedHalfedge);
    PairUp(tri0edge[2], tri1edge[2]);
    // Both triangles are now subsets of the neighboring triangle.
    const int tri0 = tri0edge[0] / 3;
    const int tri1 = tri1edge[0] / 3;
    faceNormal_[tri0] = faceNormal_[tri1];
    triRef[tri0] = triRef[tri1];
    const double l01 = la::length(v[1] - v[0]);
    const double l02 = la::length(v[2] - v[0]);
    const double a = std::max(0.0, std::min(1.0, l02 / l01));
    // Update properties if applicable
    if (meshRelation_.properties.size() > 0) {
      Vec<ivec3>& triProp = meshRelation_.triProperties;
      Vec<double>& prop = meshRelation_.properties;
      triProp[tri0] = triProp[tri1];
      triProp[tri0][perm0[1]] = triProp[tri1][perm1[0]];
      triProp[tri0][perm0[0]] = triProp[tri1][perm1[2]];
      const int numProp = NumProp();
      const int newProp = prop.size() / numProp;
      const int propIdx0 = triProp[tri1][perm1[0]];
      const int propIdx1 = triProp[tri1][perm1[1]];
      for (int p = 0; p < numProp; ++p) {
        prop.push_back(a * prop[numProp * propIdx0 + p] +
                       (1 - a) * prop[numProp * propIdx1 + p]);
      }
      triProp[tri1][perm1[0]] = newProp;
      triProp[tri0][perm0[2]] = newProp;
    }

    // if the new edge already exists, duplicate the verts and split the mesh.
    int current = halfedge_[tri1edge[0]].pairedHalfedge;
    const int endVert = halfedge_[tri1edge[1]].endVert;
    while (current != tri0edge[1]) {
      current = NextHalfedge(current);
      if (halfedge_[current].endVert == endVert) {
        FormLoop(tri0edge[2], current);
        RemoveIfFolded(tri0edge[2]);
        return;
      }
      current = halfedge_[current].pairedHalfedge;
    }
  };

  // Only operate if the other triangles are not degenerate.
  if (CCW(v[1], v[0], v[3], tolerance_) <= 0) {
    if (!Is01Longest(v[1], v[0], v[3])) return;
    // Two facing, long-edge degenerates can swap.
    SwapEdge();
    const vec2 e23 = v[3] - v[2];
    if (la::dot(e23, e23) < tolerance_ * tolerance_) {
      tag++;
      CollapseEdge(tri0edge[2], edges);
      edges.resize(0);
    } else {
      visited[edge] = tag;
      visited[pair] = tag;
      edgeSwapStack.insert(edgeSwapStack.end(), {tri1edge[1], tri1edge[0],
                                                 tri0edge[1], tri0edge[0]});
    }
    return;
  } else if (CCW(v[0], v[3], v[2], tolerance_) <= 0 ||
             CCW(v[1], v[2], v[3], tolerance_) <= 0) {
    return;
  }
  // Normal path
  SwapEdge();
  visited[edge] = tag;
  visited[pair] = tag;
  edgeSwapStack.insert(edgeSwapStack.end(),
                       {halfedge_[tri1edge[0]].pairedHalfedge,
                        halfedge_[tri0edge[1]].pairedHalfedge});
}

void Manifold::Impl::SplitPinchedVerts() {
  ZoneScoped;
  std::vector<bool> vertProcessed(NumVert(), false);
  std::vector<bool> halfedgeProcessed(halfedge_.size(), false);
  for (size_t i = 0; i < halfedge_.size(); ++i) {
    if (halfedgeProcessed[i]) continue;
    int vert = halfedge_[i].startVert;
    if (vertProcessed[vert]) {
      vertPos_.push_back(vertPos_[vert]);
      vert = NumVert() - 1;
    } else {
      vertProcessed[vert] = true;
    }
    ForVert(i, [this, &halfedgeProcessed, vert](int current) {
      halfedgeProcessed[current] = true;
      halfedge_[current].startVert = vert;
      halfedge_[halfedge_[current].pairedHalfedge].endVert = vert;
    });
  }
}
}  // namespace manifold