1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
// Copyright 2021 The Manifold Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "./csg_tree.h"
#include "./impl.h"
#include "./parallel.h"
#include "manifold/polygon.h"
namespace manifold {
/**
* Constructs a smooth version of the input mesh by creating tangents; this
* method will throw if you have supplied tangents with your mesh already. The
* actual triangle resolution is unchanged; use the Refine() method to
* interpolate to a higher-resolution curve.
*
* By default, every edge is calculated for maximum smoothness (very much
* approximately), attempting to minimize the maximum mean Curvature magnitude.
* No higher-order derivatives are considered, as the interpolation is
* independent per triangle, only sharing constraints on their boundaries.
*
* @param meshGL input MeshGL.
* @param sharpenedEdges If desired, you can supply a vector of sharpened
* halfedges, which should in general be a small subset of all halfedges. Order
* of entries doesn't matter, as each one specifies the desired smoothness
* (between zero and one, with one the default for all unspecified halfedges)
* and the halfedge index (3 * triangle index + [0,1,2] where 0 is the edge
* between triVert 0 and 1, etc).
*
* At a smoothness value of zero, a sharp crease is made. The smoothness is
* interpolated along each edge, so the specified value should be thought of as
* an average. Where exactly two sharpened edges meet at a vertex, their
* tangents are rotated to be colinear so that the sharpened edge can be
* continuous. Vertices with only one sharpened edge are completely smooth,
* allowing sharpened edges to smoothly vanish at termination. A single vertex
* can be sharpened by sharping all edges that are incident on it, allowing
* cones to be formed.
*/
Manifold Manifold::Smooth(const MeshGL& meshGL,
const std::vector<Smoothness>& sharpenedEdges) {
DEBUG_ASSERT(meshGL.halfedgeTangent.empty(), std::runtime_error,
"when supplying tangents, the normal constructor should be used "
"rather than Smooth().");
std::shared_ptr<Impl> impl = std::make_shared<Impl>(meshGL);
impl->CreateTangents(impl->UpdateSharpenedEdges(sharpenedEdges));
return Manifold(impl);
}
/**
* Constructs a smooth version of the input mesh by creating tangents; this
* method will throw if you have supplied tangents with your mesh already. The
* actual triangle resolution is unchanged; use the Refine() method to
* interpolate to a higher-resolution curve.
*
* By default, every edge is calculated for maximum smoothness (very much
* approximately), attempting to minimize the maximum mean Curvature magnitude.
* No higher-order derivatives are considered, as the interpolation is
* independent per triangle, only sharing constraints on their boundaries.
*
* @param meshGL64 input MeshGL64.
* @param sharpenedEdges If desired, you can supply a vector of sharpened
* halfedges, which should in general be a small subset of all halfedges. Order
* of entries doesn't matter, as each one specifies the desired smoothness
* (between zero and one, with one the default for all unspecified halfedges)
* and the halfedge index (3 * triangle index + [0,1,2] where 0 is the edge
* between triVert 0 and 1, etc).
*
* At a smoothness value of zero, a sharp crease is made. The smoothness is
* interpolated along each edge, so the specified value should be thought of as
* an average. Where exactly two sharpened edges meet at a vertex, their
* tangents are rotated to be colinear so that the sharpened edge can be
* continuous. Vertices with only one sharpened edge are completely smooth,
* allowing sharpened edges to smoothly vanish at termination. A single vertex
* can be sharpened by sharping all edges that are incident on it, allowing
* cones to be formed.
*/
Manifold Manifold::Smooth(const MeshGL64& meshGL64,
const std::vector<Smoothness>& sharpenedEdges) {
DEBUG_ASSERT(meshGL64.halfedgeTangent.empty(), std::runtime_error,
"when supplying tangents, the normal constructor should be used "
"rather than Smooth().");
std::shared_ptr<Impl> impl = std::make_shared<Impl>(meshGL64);
impl->CreateTangents(impl->UpdateSharpenedEdges(sharpenedEdges));
return Manifold(impl);
}
/**
* Constructs a tetrahedron centered at the origin with one vertex at (1,1,1)
* and the rest at similarly symmetric points.
*/
Manifold Manifold::Tetrahedron() {
return Manifold(std::make_shared<Impl>(Impl::Shape::Tetrahedron));
}
/**
* Constructs a unit cube (edge lengths all one), by default in the first
* octant, touching the origin. If any dimensions in size are negative, or if
* all are zero, an empty Manifold will be returned.
*
* @param size The X, Y, and Z dimensions of the box.
* @param center Set to true to shift the center to the origin.
*/
Manifold Manifold::Cube(vec3 size, bool center) {
if (size.x < 0.0 || size.y < 0.0 || size.z < 0.0 || la::length(size) == 0.) {
return Invalid();
}
mat3x4 m({{size.x, 0.0, 0.0}, {0.0, size.y, 0.0}, {0.0, 0.0, size.z}},
center ? (-size / 2.0) : vec3(0.0));
return Manifold(std::make_shared<Impl>(Manifold::Impl::Shape::Cube, m));
}
/**
* A convenience constructor for the common case of extruding a circle. Can also
* form cones if both radii are specified.
*
* @param height Z-extent
* @param radiusLow Radius of bottom circle. Must be positive.
* @param radiusHigh Radius of top circle. Can equal zero. Default is equal to
* radiusLow.
* @param circularSegments How many line segments to use around the circle.
* Default is calculated by the static Defaults.
* @param center Set to true to shift the center to the origin. Default is
* origin at the bottom.
*/
Manifold Manifold::Cylinder(double height, double radiusLow, double radiusHigh,
int circularSegments, bool center) {
if (height <= 0.0 || radiusLow <= 0.0) {
return Invalid();
}
const double scale = radiusHigh >= 0.0 ? radiusHigh / radiusLow : 1.0;
const double radius = fmax(radiusLow, radiusHigh);
const int n = circularSegments > 2 ? circularSegments
: Quality::GetCircularSegments(radius);
SimplePolygon circle(n);
const double dPhi = 360.0 / n;
for (int i = 0; i < n; ++i) {
circle[i] = {radiusLow * cosd(dPhi * i), radiusLow * sind(dPhi * i)};
}
Manifold cylinder = Manifold::Extrude({circle}, height, 0, 0.0, vec2(scale));
if (center)
cylinder = cylinder.Translate(vec3(0.0, 0.0, -height / 2.0)).AsOriginal();
return cylinder;
}
/**
* Constructs a geodesic sphere of a given radius.
*
* @param radius Radius of the sphere. Must be positive.
* @param circularSegments Number of segments along its
* diameter. This number will always be rounded up to the nearest factor of
* four, as this sphere is constructed by refining an octahedron. This means
* there are a circle of vertices on all three of the axis planes. Default is
* calculated by the static Defaults.
*/
Manifold Manifold::Sphere(double radius, int circularSegments) {
if (radius <= 0.0) {
return Invalid();
}
int n = circularSegments > 0 ? (circularSegments + 3) / 4
: Quality::GetCircularSegments(radius) / 4;
auto pImpl_ = std::make_shared<Impl>(Impl::Shape::Octahedron);
pImpl_->Subdivide(
[n](vec3 edge, vec4 tangentStart, vec4 tangentEnd) { return n - 1; });
for_each_n(autoPolicy(pImpl_->NumVert(), 1e5), pImpl_->vertPos_.begin(),
pImpl_->NumVert(), [radius](vec3& v) {
v = la::cos(kHalfPi * (1.0 - v));
v = radius * la::normalize(v);
if (std::isnan(v.x)) v = vec3(0.0);
});
pImpl_->Finish();
// Ignore preceding octahedron.
pImpl_->InitializeOriginal();
return Manifold(pImpl_);
}
/**
* Constructs a manifold from a set of polygons by extruding them along the
* Z-axis.
* Note that high twistDegrees with small nDivisions may cause
* self-intersection. This is not checked here and it is up to the user to
* choose the correct parameters.
*
* @param crossSection A set of non-overlapping polygons to extrude.
* @param height Z-extent of extrusion.
* @param nDivisions Number of extra copies of the crossSection to insert into
* the shape vertically; especially useful in combination with twistDegrees to
* avoid interpolation artifacts. Default is none.
* @param twistDegrees Amount to twist the top crossSection relative to the
* bottom, interpolated linearly for the divisions in between.
* @param scaleTop Amount to scale the top (independently in X and Y). If the
* scale is {0, 0}, a pure cone is formed with only a single vertex at the top.
* Note that scale is applied after twist.
* Default {1, 1}.
*/
Manifold Manifold::Extrude(const Polygons& crossSection, double height,
int nDivisions, double twistDegrees, vec2 scaleTop) {
ZoneScoped;
if (crossSection.size() == 0 || height <= 0.0) {
return Invalid();
}
scaleTop.x = std::max(scaleTop.x, 0.0);
scaleTop.y = std::max(scaleTop.y, 0.0);
auto pImpl_ = std::make_shared<Impl>();
++nDivisions;
auto& vertPos = pImpl_->vertPos_;
Vec<ivec3> triVertsDH;
auto& triVerts = triVertsDH;
int nCrossSection = 0;
bool isCone = scaleTop.x == 0.0 && scaleTop.y == 0.0;
size_t idx = 0;
PolygonsIdx polygonsIndexed;
for (auto& poly : crossSection) {
nCrossSection += poly.size();
SimplePolygonIdx simpleIndexed;
for (const vec2& polyVert : poly) {
vertPos.push_back({polyVert.x, polyVert.y, 0.0});
simpleIndexed.push_back({polyVert, static_cast<int>(idx++)});
}
polygonsIndexed.push_back(simpleIndexed);
}
for (int i = 1; i < nDivisions + 1; ++i) {
double alpha = i / double(nDivisions);
double phi = alpha * twistDegrees;
vec2 scale = la::lerp(vec2(1.0), scaleTop, alpha);
mat2 rotation({cosd(phi), sind(phi)}, {-sind(phi), cosd(phi)});
mat2 transform = mat2({scale.x, 0.0}, {0.0, scale.y}) * rotation;
size_t j = 0;
size_t idx = 0;
for (const auto& poly : crossSection) {
for (size_t vert = 0; vert < poly.size(); ++vert) {
size_t offset = idx + nCrossSection * i;
size_t thisVert = vert + offset;
size_t lastVert = (vert == 0 ? poly.size() : vert) - 1 + offset;
if (i == nDivisions && isCone) {
triVerts.push_back(ivec3(nCrossSection * i + j,
lastVert - nCrossSection,
thisVert - nCrossSection));
} else {
vec2 pos = transform * poly[vert];
vertPos.push_back({pos.x, pos.y, height * alpha});
triVerts.push_back(
ivec3(thisVert, lastVert, thisVert - nCrossSection));
triVerts.push_back(ivec3(lastVert, lastVert - nCrossSection,
thisVert - nCrossSection));
}
}
++j;
idx += poly.size();
}
}
if (isCone)
for (size_t j = 0; j < crossSection.size();
++j) // Duplicate vertex for Genus
vertPos.push_back({0.0, 0.0, height});
std::vector<ivec3> top = TriangulateIdx(polygonsIndexed);
for (const ivec3& tri : top) {
triVerts.push_back({tri[0], tri[2], tri[1]});
if (!isCone) triVerts.push_back(tri + nCrossSection * nDivisions);
}
pImpl_->CreateHalfedges(triVertsDH);
pImpl_->Finish();
pImpl_->InitializeOriginal();
pImpl_->CreateFaces();
return Manifold(pImpl_);
}
/**
* Constructs a manifold from a set of polygons by revolving this cross-section
* around its Y-axis and then setting this as the Z-axis of the resulting
* manifold. If the polygons cross the Y-axis, only the part on the positive X
* side is used. Geometrically valid input will result in geometrically valid
* output.
*
* @param crossSection A set of non-overlapping polygons to revolve.
* @param circularSegments Number of segments along its diameter. Default is
* calculated by the static Defaults.
* @param revolveDegrees Number of degrees to revolve. Default is 360 degrees.
*/
Manifold Manifold::Revolve(const Polygons& crossSection, int circularSegments,
double revolveDegrees) {
ZoneScoped;
Polygons polygons;
double radius = 0;
for (const SimplePolygon& poly : crossSection) {
size_t i = 0;
while (i < poly.size() && poly[i].x < 0) {
++i;
}
if (i == poly.size()) {
continue;
}
polygons.push_back({});
const size_t start = i;
do {
if (poly[i].x >= 0) {
polygons.back().push_back(poly[i]);
radius = std::max(radius, poly[i].x);
}
const size_t next = i + 1 == poly.size() ? 0 : i + 1;
if ((poly[next].x < 0) != (poly[i].x < 0)) {
const double y = poly[next].y + poly[next].x *
(poly[i].y - poly[next].y) /
(poly[i].x - poly[next].x);
polygons.back().push_back({0, y});
}
i = next;
} while (i != start);
}
if (polygons.empty()) {
return Invalid();
}
if (revolveDegrees > 360.0) {
revolveDegrees = 360.0;
}
const bool isFullRevolution = revolveDegrees == 360.0;
const int nDivisions =
circularSegments > 2
? circularSegments
: Quality::GetCircularSegments(radius) * revolveDegrees / 360;
auto pImpl_ = std::make_shared<Impl>();
auto& vertPos = pImpl_->vertPos_;
Vec<ivec3> triVertsDH;
auto& triVerts = triVertsDH;
std::vector<int> startPoses;
std::vector<int> endPoses;
const double dPhi = revolveDegrees / nDivisions;
// first and last slice are distinguished if not a full revolution.
const int nSlices = isFullRevolution ? nDivisions : nDivisions + 1;
for (const auto& poly : polygons) {
std::size_t nPosVerts = 0;
std::size_t nRevolveAxisVerts = 0;
for (auto& pt : poly) {
if (pt.x > 0) {
nPosVerts++;
} else {
nRevolveAxisVerts++;
}
}
for (size_t polyVert = 0; polyVert < poly.size(); ++polyVert) {
const size_t startPosIndex = vertPos.size();
if (!isFullRevolution) startPoses.push_back(startPosIndex);
const vec2 currPolyVertex = poly[polyVert];
const vec2 prevPolyVertex =
poly[polyVert == 0 ? poly.size() - 1 : polyVert - 1];
const int prevStartPosIndex =
startPosIndex +
(polyVert == 0 ? nRevolveAxisVerts + (nSlices * nPosVerts) : 0) +
(prevPolyVertex.x == 0.0 ? -1 : -nSlices);
for (int slice = 0; slice < nSlices; ++slice) {
const double phi = slice * dPhi;
if (slice == 0 || currPolyVertex.x > 0) {
vertPos.push_back({currPolyVertex.x * cosd(phi),
currPolyVertex.x * sind(phi), currPolyVertex.y});
}
if (isFullRevolution || slice > 0) {
const int lastSlice = (slice == 0 ? nDivisions : slice) - 1;
if (currPolyVertex.x > 0.0) {
triVerts.push_back(ivec3(
startPosIndex + slice, startPosIndex + lastSlice,
// "Reuse" vertex of first slice if it lies on the revolve axis
(prevPolyVertex.x == 0.0 ? prevStartPosIndex
: prevStartPosIndex + lastSlice)));
}
if (prevPolyVertex.x > 0.0) {
triVerts.push_back(
ivec3(prevStartPosIndex + lastSlice, prevStartPosIndex + slice,
(currPolyVertex.x == 0.0 ? startPosIndex
: startPosIndex + slice)));
}
}
}
if (!isFullRevolution) endPoses.push_back(vertPos.size() - 1);
}
}
// Add front and back triangles if not a full revolution.
if (!isFullRevolution) {
std::vector<ivec3> frontTriangles = Triangulate(polygons, pImpl_->epsilon_);
for (auto& t : frontTriangles) {
triVerts.push_back({startPoses[t.x], startPoses[t.y], startPoses[t.z]});
}
for (auto& t : frontTriangles) {
triVerts.push_back({endPoses[t.z], endPoses[t.y], endPoses[t.x]});
}
}
pImpl_->CreateHalfedges(triVertsDH);
pImpl_->Finish();
pImpl_->InitializeOriginal();
pImpl_->CreateFaces();
return Manifold(pImpl_);
}
/**
* Constructs a new manifold from a vector of other manifolds. This is a purely
* topological operation, so care should be taken to avoid creating
* overlapping results. It is the inverse operation of Decompose().
*
* @param manifolds A vector of Manifolds to lazy-union together.
*/
Manifold Manifold::Compose(const std::vector<Manifold>& manifolds) {
std::vector<std::shared_ptr<CsgLeafNode>> children;
for (const auto& manifold : manifolds) {
children.push_back(manifold.pNode_->ToLeafNode());
}
return Manifold(CsgLeafNode::Compose(children));
}
/**
* This operation returns a vector of Manifolds that are topologically
* disconnected. If everything is connected, the vector is length one,
* containing a copy of the original. It is the inverse operation of Compose().
*/
std::vector<Manifold> Manifold::Decompose() const {
ZoneScoped;
UnionFind<> uf(NumVert());
// Graph graph;
auto pImpl_ = GetCsgLeafNode().GetImpl();
for (const Halfedge& halfedge : pImpl_->halfedge_) {
if (halfedge.IsForward()) uf.unionXY(halfedge.startVert, halfedge.endVert);
}
std::vector<int> componentIndices;
const int numComponents = uf.connectedComponents(componentIndices);
if (numComponents == 1) {
std::vector<Manifold> meshes(1);
meshes[0] = *this;
return meshes;
}
Vec<int> vertLabel(componentIndices);
const int numVert = NumVert();
std::vector<Manifold> meshes;
for (int i = 0; i < numComponents; ++i) {
auto impl = std::make_shared<Impl>();
// inherit original object's precision
impl->epsilon_ = pImpl_->epsilon_;
impl->tolerance_ = pImpl_->tolerance_;
Vec<int> vertNew2Old(numVert);
const int nVert =
copy_if(countAt(0), countAt(numVert), vertNew2Old.begin(),
[i, &vertLabel](int v) { return vertLabel[v] == i; }) -
vertNew2Old.begin();
impl->vertPos_.resize(nVert);
vertNew2Old.resize(nVert);
gather(vertNew2Old.begin(), vertNew2Old.end(), pImpl_->vertPos_.begin(),
impl->vertPos_.begin());
Vec<int> faceNew2Old(NumTri());
const auto& halfedge = pImpl_->halfedge_;
const int nFace =
copy_if(countAt(0_uz), countAt(NumTri()), faceNew2Old.begin(),
[i, &vertLabel, &halfedge](int face) {
return vertLabel[halfedge[3 * face].startVert] == i;
}) -
faceNew2Old.begin();
if (nFace == 0) continue;
faceNew2Old.resize(nFace);
impl->GatherFaces(*pImpl_, faceNew2Old);
impl->ReindexVerts(vertNew2Old, pImpl_->NumVert());
impl->Finish();
meshes.push_back(Manifold(impl));
}
return meshes;
}
} // namespace manifold