[][src]Struct geo::LineString

pub struct LineString<T>(pub Vec<Coordinate<T>>)
where
    T: CoordinateType
;

An ordered collection of two or more Coordinates, representing a path between locations.

Examples

Create a LineString by calling it directly:

use geo_types::{Coordinate, LineString};

let line_string = LineString(vec![
    Coordinate { x: 0., y: 0. },
    Coordinate { x: 10., y: 0. },
]);

Converting a Vec of Coordinate-like things:

use geo_types::LineString;

let line_string: LineString<f32> = vec![(0., 0.), (10., 0.)].into();
use geo_types::LineString;

let line_string: LineString<f64> = vec![[0., 0.], [10., 0.]].into();

Or collecting from a Coordinate iterator

use geo_types::{Coordinate, LineString};

let mut coords_iter =
    vec![Coordinate { x: 0., y: 0. }, Coordinate { x: 10., y: 0. }].into_iter();

let line_string: LineString<f32> = coords_iter.collect();

You can iterate over the coordinates in the LineString:

use geo_types::{Coordinate, LineString};

let line_string = LineString(vec![
    Coordinate { x: 0., y: 0. },
    Coordinate { x: 10., y: 0. },
]);

for coord in line_string {
    println!("Coordinate x = {}, y = {}", coord.x, coord.y);
}

You can also iterate over the coordinates in the LineString as Points:

use geo_types::{Coordinate, LineString};

let line_string = LineString(vec![
    Coordinate { x: 0., y: 0. },
    Coordinate { x: 10., y: 0. },
]);

for point in line_string.points_iter() {
    println!("Point x = {}, y = {}", point.x(), point.y());
}

Implementations

impl<T> LineString<T> where
    T: CoordinateType
[src]

pub fn points_iter(&self) -> PointsIter<'_, T>[src]

Return an iterator yielding the coordinates of a LineString as Points

pub fn into_points(self) -> Vec<Point<T>>[src]

Return the coordinates of a LineString as a Vec of Points

pub fn lines(&'a self) -> impl ExactSizeIterator + Iterator<Item = Line<T>> + 'a[src]

Return an iterator yielding one Line for each line segment in the LineString.

Examples

use geo_types::{Coordinate, Line, LineString};

let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
let line_string: LineString<f32> = coords.into_iter().collect();

let mut lines = line_string.lines();
assert_eq!(
    Some(Line::new(
        Coordinate { x: 0., y: 0. },
        Coordinate { x: 5., y: 0. }
    )),
    lines.next()
);
assert_eq!(
    Some(Line::new(
        Coordinate { x: 5., y: 0. },
        Coordinate { x: 7., y: 9. }
    )),
    lines.next()
);
assert!(lines.next().is_none());

pub fn triangles(
    &'a self
) -> impl ExactSizeIterator + Iterator<Item = Triangle<T>> + 'a
[src]

An iterator which yields the coordinates of a LineString as Triangles

pub fn num_coords(&self) -> usize[src]

Return the number of coordinates in the LineString.

Examples

use geo_types::LineString;

let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
let line_string: LineString<f32> = coords.into_iter().collect();
assert_eq!(3, line_string.num_coords());

Trait Implementations

impl<T> Area<T> for LineString<T> where
    T: CoordinateType
[src]

impl<T> BoundingRect<T> for LineString<T> where
    T: CoordinateType
[src]

type Output = Option<Rect<T>>

fn bounding_rect(&self) -> Self::Output[src]

Return the BoundingRect for a LineString

impl<T> Centroid<T> for LineString<T> where
    T: Float
[src]

type Output = Option<Point<T>>

impl<T> Clone for LineString<T> where
    T: Clone + CoordinateType
[src]

impl<F: Float> ClosestPoint<F, Point<F>> for LineString<F>[src]

impl<T> Contains<Coordinate<T>> for LineString<T> where
    T: Float
[src]

impl<T> Contains<Line<T>> for LineString<T> where
    T: Float
[src]

impl<T> Contains<LineString<T>> for Line<T> where
    T: Float
[src]

impl<T> Contains<LineString<T>> for Polygon<T> where
    T: Float
[src]

impl<T> Contains<Point<T>> for LineString<T> where
    T: Float
[src]

impl<T> ConvexHull<T> for LineString<T> where
    T: Float
[src]

impl<T> Debug for LineString<T> where
    T: Debug + CoordinateType
[src]

impl<T> Eq for LineString<T> where
    T: Eq + CoordinateType
[src]

impl<T> EuclideanDistance<T, Line<T>> for LineString<T> where
    T: Float + FloatConst + Signed + RTreeNum
[src]

LineString to Line

impl<T> EuclideanDistance<T, LineString<T>> for Point<T> where
    T: Float
[src]

fn euclidean_distance(&self, linestring: &LineString<T>) -> T[src]

Minimum distance from a Point to a LineString

impl<T> EuclideanDistance<T, LineString<T>> for LineString<T> where
    T: Float + Signed + RTreeNum
[src]

LineString-LineString distance

impl<T> EuclideanDistance<T, LineString<T>> for Line<T> where
    T: Float + FloatConst + Signed + RTreeNum
[src]

Line to LineString

impl<T> EuclideanDistance<T, LineString<T>> for Polygon<T> where
    T: Float + FloatConst + Signed + RTreeNum
[src]

Polygon to LineString distance

impl<T> EuclideanDistance<T, Point<T>> for LineString<T> where
    T: Float
[src]

fn euclidean_distance(&self, point: &Point<T>) -> T[src]

Minimum distance from a LineString to a Point

impl<T> EuclideanDistance<T, Polygon<T>> for LineString<T> where
    T: Float + FloatConst + Signed + RTreeNum
[src]

LineString to Polygon

impl<T> EuclideanLength<T, LineString<T>> for LineString<T> where
    T: Float + Sum
[src]

impl<T> FrechetDistance<T, LineString<T>> for LineString<T> where
    T: Float + FromPrimitive
[src]

impl<T> From<LineString<T>> for Geometry<T> where
    T: CoordinateType
[src]

impl<T, IC> From<Vec<IC>> for LineString<T> where
    IC: Into<Coordinate<T>>,
    T: CoordinateType
[src]

Turn a Vec of Point-like objects into a LineString.

impl<T, IC> FromIterator<IC> for LineString<T> where
    IC: Into<Coordinate<T>>,
    T: CoordinateType
[src]

Turn an iterator of Point-like objects into a LineString.

impl GeodesicLength<f64, LineString<f64>> for LineString<f64>[src]

impl<T> Hash for LineString<T> where
    T: Hash + CoordinateType
[src]

impl<T> HaversineLength<T, LineString<T>> for LineString<T> where
    T: Float + FromPrimitive
[src]

impl<T> Index<usize> for LineString<T> where
    T: CoordinateType
[src]

type Output = Coordinate<T>

The returned type after indexing.

impl<T> IndexMut<usize> for LineString<T> where
    T: CoordinateType
[src]

impl<T> Intersects<Line<T>> for LineString<T> where
    T: Float
[src]

impl<T> Intersects<LineString<T>> for Line<T> where
    T: Float
[src]

impl<T> Intersects<LineString<T>> for LineString<T> where
    T: Float
[src]

impl<T> Intersects<LineString<T>> for Polygon<T> where
    T: Float
[src]

impl<T> Intersects<Polygon<T>> for LineString<T> where
    T: Float
[src]

impl<T> IntoIterator for LineString<T> where
    T: CoordinateType
[src]

Iterate over all the Coordinates in this LineString.

type Item = Coordinate<T>

The type of the elements being iterated over.

type IntoIter = IntoIter<Coordinate<T>>

Which kind of iterator are we turning this into?

impl<'a, T> IntoIterator for &'a mut LineString<T> where
    T: CoordinateType
[src]

Mutably iterate over all the Coordinates in this LineString.

type Item = &'a mut Coordinate<T>

The type of the elements being iterated over.

type IntoIter = IterMut<'a, Coordinate<T>>

Which kind of iterator are we turning this into?

impl<T: CoordinateType, NT: CoordinateType> MapCoords<T, NT> for LineString<T>[src]

type Output = LineString<NT>

impl<T: CoordinateType> MapCoordsInplace<T> for LineString<T>[src]

impl<T> PartialEq<LineString<T>> for LineString<T> where
    T: PartialEq<T> + CoordinateType
[src]

impl<T> PointDistance for LineString<T> where
    T: Float + RTreeNum
[src]

impl<T> RTreeObject for LineString<T> where
    T: Float + RTreeNum
[src]

type Envelope = AABB<Point<T>>

The object's envelope type. Usually, AABB will be the right choice. This type also defines the objects dimensionality. Read more

impl<T> Rotate<T> for LineString<T> where
    T: Float
[src]

fn rotate(&self, angle: T) -> Self[src]

Rotate the LineString about its centroid by the given number of degrees

impl<T> Simplify<T, T> for LineString<T> where
    T: Float
[src]

impl<T> SimplifyIdx<T, T> for LineString<T> where
    T: Float
[src]

impl<T> SimplifyVW<T, T> for LineString<T> where
    T: Float
[src]

impl<T> SimplifyVWPreserve<T, T> for LineString<T> where
    T: Float + RTreeNum
[src]

impl<T> SimplifyVwIdx<T, T> for LineString<T> where
    T: Float
[src]

impl<T> TryFrom<Geometry<T>> for LineString<T> where
    T: Float
[src]

type Error = FailedToConvertError

The type returned in the event of a conversion error.

impl<T: CoordinateType, NT: CoordinateType> TryMapCoords<T, NT> for LineString<T>[src]

type Output = LineString<NT>

impl<T> VincentyLength<T, LineString<T>> for LineString<T> where
    T: Float + FromPrimitive
[src]

impl<T> Winding<T> for LineString<T> where
    T: CoordinateType
[src]

fn winding_order(&self) -> Option<WindingOrder>[src]

Returns the winding order of this line None if the winding order is undefined.

fn points_cw(&self) -> Points<'_, T>

Notable traits for Points<'a, T>

impl<'a, T> Iterator for Points<'a, T> where
    T: CoordinateType
type Item = Point<T>;
[src]

Iterate over the points in a clockwise order

The Linestring isn't changed, and the points are returned either in order, or in reverse order, so that the resultant order makes it appear clockwise

fn points_ccw(&self) -> Points<'_, T>

Notable traits for Points<'a, T>

impl<'a, T> Iterator for Points<'a, T> where
    T: CoordinateType
type Item = Point<T>;
[src]

Iterate over the points in a counter-clockwise order

The Linestring isn't changed, and the points are returned either in order, or in reverse order, so that the resultant order makes it appear counter-clockwise

fn make_cw_winding(&mut self)[src]

Change this line's points so they are in clockwise winding order

fn make_ccw_winding(&mut self)[src]

Change this line's points so they are in counterclockwise winding order

Auto Trait Implementations

impl<T> RefUnwindSafe for LineString<T> where
    T: RefUnwindSafe

impl<T> Send for LineString<T> where
    T: Send

impl<T> Sync for LineString<T> where
    T: Sync

impl<T> Unpin for LineString<T> where
    T: Unpin

impl<T> UnwindSafe for LineString<T> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<I> IntoIterator for I where
    I: Iterator
[src]

type Item = <I as Iterator>::Item

The type of the elements being iterated over.

type IntoIter = I

Which kind of iterator are we turning this into?

impl<P> PointDistance for P where
    P: Point
[src]

impl<P> RTreeObject for P where
    P: Point
[src]

type Envelope = AABB<P>

The object's envelope type. Usually, AABB will be the right choice. This type also defines the objects dimensionality. Read more

impl<T, G> RotatePoint<T> for G where
    G: MapCoords<T, T, Output = G>,
    T: Float
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, G> Translate<T> for G where
    G: MapCoords<T, T, Output = G> + MapCoordsInplace<T>,
    T: CoordinateType
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.