1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use crate::euclidean_distance::EuclideanDistance;
use crate::{LineString, Point};
use num_traits::{Float, FromPrimitive};

/// Determine the similarity between two `LineStrings` using the [Frechet distance].
///
/// Based on [Computing Discrete Frechet Distance] by T. Eiter and H. Mannila.
///
/// [Frechet distance]: https://en.wikipedia.org/wiki/Fr%C3%A9chet_distance
/// [Computing Discrete Frechet Distance]: http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
pub trait FrechetDistance<T, Rhs = Self> {
    /// Determine the similarity between two `LineStrings` using the [Frechet distance].
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::algorithm::frechet_distance::FrechetDistance;
    /// use geo::line_string;
    ///
    /// let line_string_a = line_string![
    ///     (x: 1., y: 1.),
    ///     (x: 2., y: 1.),
    ///     (x: 2., y: 2.),
    ///     (x: 3., y: 3.)
    /// ];
    ///
    /// let line_string_b = line_string![
    ///     (x: 2., y: 2.),
    ///     (x: 0., y: 1.),
    ///     (x: 2., y: 4.),
    ///     (x: 3., y: 4.)
    /// ];
    ///
    /// let distance = line_string_a.frechet_distance(&line_string_b);
    ///
    /// assert_eq!(2., distance);
    /// ```
    ///
    /// [Frechet distance]: https://en.wikipedia.org/wiki/Fr%C3%A9chet_distance
    fn frechet_distance(&self, rhs: &Rhs) -> T;
}

impl<T> FrechetDistance<T, LineString<T>> for LineString<T>
where
    T: Float + FromPrimitive,
{
    fn frechet_distance(&self, ls: &LineString<T>) -> T {
        if self.num_coords() != 0 && ls.num_coords() != 0 {
            let mut data = Data {
                cache: vec![vec![T::nan(); ls.num_coords()]; self.num_coords()],
                ls_a: self,
                ls_b: ls,
            };
            data.compute(self.num_coords() - 1, ls.num_coords() - 1)
        } else {
            T::zero()
        }
    }
}

struct Data<'a, T>
where
    T: Float + FromPrimitive,
{
    cache: Vec<Vec<T>>,
    ls_a: &'a LineString<T>,
    ls_b: &'a LineString<T>,
}

impl<'a, T> Data<'a, T>
where
    T: Float + FromPrimitive,
{
    fn compute(&mut self, i: usize, j: usize) -> T {
        if self.cache[i][j].is_nan() {
            let eucl = Point::from(self.ls_a[i]).euclidean_distance(&Point::from(self.ls_b[j]));
            self.cache[i][j] = match (i, j) {
                (0, 0) => eucl,
                (_, 0) => self.compute(i - 1, 0).max(eucl),
                (0, _) => self.compute(0, j - 1).max(eucl),
                (_, _) => ((self.compute(i - 1, j).min(self.compute(i - 1, j - 1)))
                    .min(self.compute(i, j - 1)))
                .max(eucl),
            };
        }
        self.cache[i][j]
    }
}

#[cfg(test)]
mod test {
    use crate::algorithm::frechet_distance::FrechetDistance;
    use crate::euclidean_distance::EuclideanDistance;
    use crate::LineString;

    #[test]
    fn test_single_point_in_linestring() {
        let ls_a = LineString::from(vec![(1., 1.)]);
        let ls_b = LineString::from(vec![(0., 2.)]);
        assert_relative_eq!(
            (ls_a.clone().into_points())[0].euclidean_distance(&(&ls_b.clone().into_points())[0]),
            ls_a.frechet_distance(&ls_b)
        );
    }

    #[test]
    fn test_identical_linestrings() {
        let ls_a = LineString::from(vec![(1., 1.), (2., 1.), (2., 2.)]);
        let ls_b = LineString::from(vec![(1., 1.), (2., 1.), (2., 2.)]);
        assert_relative_eq!(0., ls_a.frechet_distance(&ls_b));
    }

    #[test]
    fn different_dimensions_linestrings() {
        let ls_a = LineString::from(vec![(1., 1.)]);
        let ls_b = LineString::from(vec![(2., 2.), (0., 1.)]);
        assert_relative_eq!(2f64.sqrt(), ls_a.frechet_distance(&ls_b));
    }

    #[test]
    fn test_frechet_1() {
        let ls_a = LineString::from(vec![(1., 1.), (2., 1.)]);
        let ls_b = LineString::from(vec![(2., 2.), (2., 3.)]);
        assert_relative_eq!(2., ls_a.frechet_distance(&ls_b));
    }

    #[test]
    fn test_frechet_2() {
        let ls_a = LineString::from(vec![(1., 1.), (2., 1.), (2., 2.)]);
        let ls_b = LineString::from(vec![(2., 2.), (0., 1.), (2., 4.)]);
        assert_relative_eq!(2., ls_a.frechet_distance(&ls_b));
    }
}