box2d_sys 0.2.1

Bindings for Box2D v3.0
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// SPDX-FileCopyrightText: 2023 Erin Catto
// SPDX-License-Identifier: MIT

#if defined( _MSC_VER ) && !defined( _CRT_SECURE_NO_WARNINGS )
#define _CRT_SECURE_NO_WARNINGS
#endif

#include "body.h"
#include "core.h"
#include "joint.h"
#include "solver.h"
#include "solver_set.h"
#include "world.h"

// needed for dll export
#include "box2d/box2d.h"

#include <stdio.h>

void b2RevoluteJoint_EnableSpring( b2JointId jointId, bool enableSpring )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	if ( enableSpring != joint->revoluteJoint.enableSpring )
	{
		joint->revoluteJoint.enableSpring = enableSpring;
		joint->revoluteJoint.springImpulse = 0.0f;
	}
}

bool b2RevoluteJoint_IsSpringEnabled( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.enableSpring;
}

void b2RevoluteJoint_SetSpringHertz( b2JointId jointId, float hertz )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	joint->revoluteJoint.hertz = hertz;
}

float b2RevoluteJoint_GetSpringHertz( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.hertz;
}

void b2RevoluteJoint_SetSpringDampingRatio( b2JointId jointId, float dampingRatio )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	joint->revoluteJoint.dampingRatio = dampingRatio;
}

float b2RevoluteJoint_GetSpringDampingRatio( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.dampingRatio;
}

float b2RevoluteJoint_GetAngle( b2JointId jointId )
{
	b2World* world = b2GetWorld( jointId.world0 );
	b2JointSim* jointSim = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	b2Transform transformA = b2GetBodyTransform( world, jointSim->bodyIdA );
	b2Transform transformB = b2GetBodyTransform( world, jointSim->bodyIdB );

	float angle = b2RelativeAngle( transformB.q, transformA.q ) - jointSim->revoluteJoint.referenceAngle;
	angle = b2UnwindAngle( angle );
	return angle;
}

void b2RevoluteJoint_EnableLimit( b2JointId jointId, bool enableLimit )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	if ( enableLimit != joint->revoluteJoint.enableLimit )
	{
		joint->revoluteJoint.enableLimit = enableLimit;
		joint->revoluteJoint.lowerImpulse = 0.0f;
		joint->revoluteJoint.upperImpulse = 0.0f;
	}
}

bool b2RevoluteJoint_IsLimitEnabled( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.enableLimit;
}

float b2RevoluteJoint_GetLowerLimit( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.lowerAngle;
}

float b2RevoluteJoint_GetUpperLimit( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.upperAngle;
}

void b2RevoluteJoint_SetLimits( b2JointId jointId, float lower, float upper )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	if ( lower != joint->revoluteJoint.lowerAngle || upper != joint->revoluteJoint.upperAngle )
	{
		joint->revoluteJoint.lowerAngle = b2MinFloat( lower, upper );
		joint->revoluteJoint.upperAngle = b2MaxFloat( lower, upper );
		joint->revoluteJoint.lowerImpulse = 0.0f;
		joint->revoluteJoint.upperImpulse = 0.0f;
	}
}

void b2RevoluteJoint_EnableMotor( b2JointId jointId, bool enableMotor )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	if ( enableMotor != joint->revoluteJoint.enableMotor )
	{
		joint->revoluteJoint.enableMotor = enableMotor;
		joint->revoluteJoint.motorImpulse = 0.0f;
	}
}

bool b2RevoluteJoint_IsMotorEnabled( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.enableMotor;
}

void b2RevoluteJoint_SetMotorSpeed( b2JointId jointId, float motorSpeed )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	joint->revoluteJoint.motorSpeed = motorSpeed;
}

float b2RevoluteJoint_GetMotorSpeed( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.motorSpeed;
}

float b2RevoluteJoint_GetMotorTorque( b2JointId jointId )
{
	b2World* world = b2GetWorld( jointId.world0 );
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return world->inv_h * joint->revoluteJoint.motorImpulse;
}

void b2RevoluteJoint_SetMaxMotorTorque( b2JointId jointId, float torque )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	joint->revoluteJoint.maxMotorTorque = torque;
}

float b2RevoluteJoint_GetMaxMotorTorque( b2JointId jointId )
{
	b2JointSim* joint = b2GetJointSimCheckType( jointId, b2_revoluteJoint );
	return joint->revoluteJoint.maxMotorTorque;
}

b2Vec2 b2GetRevoluteJointForce( b2World* world, b2JointSim* base )
{
	b2Vec2 force = b2MulSV( world->inv_h, base->revoluteJoint.linearImpulse );
	return force;
}

float b2GetRevoluteJointTorque( b2World* world, b2JointSim* base )
{
	const b2RevoluteJoint* revolute = &base->revoluteJoint;
	float torque = world->inv_h * ( revolute->motorImpulse + revolute->lowerImpulse - revolute->upperImpulse );
	return torque;
}

// Point-to-point constraint
// C = p2 - p1
// Cdot = v2 - v1
//      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)

// Motor constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2

// Body State
// The solver operates on the body state. The body state array does not hold static bodies. Static bodies are shared
// across worker threads. It would be okay to read their states, but writing to them would cause cache thrashing across
// workers, even if the values don't change.
// This causes some trouble when computing anchors. I rotate the anchors using the body rotation every sub-step. For static
// bodies the anchor doesn't rotate. Body A or B could be static and this can lead to lots of branching. This branching
// should be minimized.
//
// Solution 1:
// Use delta rotations. This means anchors need to be prepared in world space. The delta rotation for static bodies will be
// identity. Base separation and angles need to be computed. Manifolds will be behind a frame, but that is probably best if bodies
// move fast.
//
// Solution 2:
// Use full rotation. The anchors for static bodies will be in world space while the anchors for dynamic bodies will be in local
// space. Potentially confusing and bug prone.

void b2PrepareRevoluteJoint( b2JointSim* base, b2StepContext* context )
{
	B2_ASSERT( base->type == b2_revoluteJoint );

	// chase body id to the solver set where the body lives
	int idA = base->bodyIdA;
	int idB = base->bodyIdB;

	b2World* world = context->world;

	b2Body* bodyA = b2BodyArray_Get(&world->bodies, idA);
	b2Body* bodyB = b2BodyArray_Get(&world->bodies, idB);

	B2_ASSERT( bodyA->setIndex == b2_awakeSet || bodyB->setIndex == b2_awakeSet );
	b2SolverSet* setA = b2SolverSetArray_Get( &world->solverSets, bodyA->setIndex );
	b2SolverSet* setB = b2SolverSetArray_Get( &world->solverSets, bodyB->setIndex );

	int localIndexA = bodyA->localIndex;
	int localIndexB = bodyB->localIndex;

	b2BodySim* bodySimA = b2BodySimArray_Get( &setA->bodySims, localIndexA );
	b2BodySim* bodySimB = b2BodySimArray_Get( &setB->bodySims, localIndexB );

	float mA = bodySimA->invMass;
	float iA = bodySimA->invInertia;
	float mB = bodySimB->invMass;
	float iB = bodySimB->invInertia;

	base->invMassA = mA;
	base->invMassB = mB;
	base->invIA = iA;
	base->invIB = iB;

	b2RevoluteJoint* joint = &base->revoluteJoint;

	joint->indexA = bodyA->setIndex == b2_awakeSet ? localIndexA : B2_NULL_INDEX;
	joint->indexB = bodyB->setIndex == b2_awakeSet ? localIndexB : B2_NULL_INDEX;

	// initial anchors in world space
	joint->anchorA = b2RotateVector( bodySimA->transform.q, b2Sub( base->localOriginAnchorA, bodySimA->localCenter ) );
	joint->anchorB = b2RotateVector( bodySimB->transform.q, b2Sub( base->localOriginAnchorB, bodySimB->localCenter ) );
	joint->deltaCenter = b2Sub( bodySimB->center, bodySimA->center );
	joint->deltaAngle = b2RelativeAngle( bodySimB->transform.q, bodySimA->transform.q ) - joint->referenceAngle;
	joint->deltaAngle = b2UnwindAngle( joint->deltaAngle );

	float k = iA + iB;
	joint->axialMass = k > 0.0f ? 1.0f / k : 0.0f;

	joint->springSoftness = b2MakeSoft( joint->hertz, joint->dampingRatio, context->h );

	if ( context->enableWarmStarting == false )
	{
		joint->linearImpulse = b2Vec2_zero;
		joint->springImpulse = 0.0f;
		joint->motorImpulse = 0.0f;
		joint->lowerImpulse = 0.0f;
		joint->upperImpulse = 0.0f;
	}
}

void b2WarmStartRevoluteJoint( b2JointSim* base, b2StepContext* context )
{
	B2_ASSERT( base->type == b2_revoluteJoint );

	float mA = base->invMassA;
	float mB = base->invMassB;
	float iA = base->invIA;
	float iB = base->invIB;

	// dummy state for static bodies
	b2BodyState dummyState = b2_identityBodyState;

	b2RevoluteJoint* joint = &base->revoluteJoint;
	b2BodyState* stateA = joint->indexA == B2_NULL_INDEX ? &dummyState : context->states + joint->indexA;
	b2BodyState* stateB = joint->indexB == B2_NULL_INDEX ? &dummyState : context->states + joint->indexB;

	b2Vec2 rA = b2RotateVector( stateA->deltaRotation, joint->anchorA );
	b2Vec2 rB = b2RotateVector( stateB->deltaRotation, joint->anchorB );

	float axialImpulse = joint->springImpulse + joint->motorImpulse + joint->lowerImpulse - joint->upperImpulse;

	stateA->linearVelocity = b2MulSub( stateA->linearVelocity, mA, joint->linearImpulse );
	stateA->angularVelocity -= iA * ( b2Cross( rA, joint->linearImpulse ) + axialImpulse );

	stateB->linearVelocity = b2MulAdd( stateB->linearVelocity, mB, joint->linearImpulse );
	stateB->angularVelocity += iB * ( b2Cross( rB, joint->linearImpulse ) + axialImpulse );
}

void b2SolveRevoluteJoint( b2JointSim* base, b2StepContext* context, bool useBias )
{
	B2_ASSERT( base->type == b2_revoluteJoint );

	float mA = base->invMassA;
	float mB = base->invMassB;
	float iA = base->invIA;
	float iB = base->invIB;

	// dummy state for static bodies
	b2BodyState dummyState = b2_identityBodyState;

	b2RevoluteJoint* joint = &base->revoluteJoint;

	b2BodyState* stateA = joint->indexA == B2_NULL_INDEX ? &dummyState : context->states + joint->indexA;
	b2BodyState* stateB = joint->indexB == B2_NULL_INDEX ? &dummyState : context->states + joint->indexB;

	b2Vec2 vA = stateA->linearVelocity;
	float wA = stateA->angularVelocity;
	b2Vec2 vB = stateB->linearVelocity;
	float wB = stateB->angularVelocity;

	bool fixedRotation = ( iA + iB == 0.0f );
	// const float maxBias = context->maxBiasVelocity;

	// Solve spring.
	if ( joint->enableSpring && fixedRotation == false )
	{
		float C = b2RelativeAngle( stateB->deltaRotation, stateA->deltaRotation ) + joint->deltaAngle;
		float bias = joint->springSoftness.biasRate * C;
		float massScale = joint->springSoftness.massScale;
		float impulseScale = joint->springSoftness.impulseScale;

		float Cdot = wB - wA;
		float impulse = -massScale * joint->axialMass * ( Cdot + bias ) - impulseScale * joint->springImpulse;
		joint->springImpulse += impulse;

		wA -= iA * impulse;
		wB += iB * impulse;
	}

	// Solve motor constraint.
	if ( joint->enableMotor && fixedRotation == false )
	{
		float Cdot = wB - wA - joint->motorSpeed;
		float impulse = -joint->axialMass * Cdot;
		float oldImpulse = joint->motorImpulse;
		float maxImpulse = context->h * joint->maxMotorTorque;
		joint->motorImpulse = b2ClampFloat( joint->motorImpulse + impulse, -maxImpulse, maxImpulse );
		impulse = joint->motorImpulse - oldImpulse;

		wA -= iA * impulse;
		wB += iB * impulse;
	}

	if ( joint->enableLimit && fixedRotation == false )
	{
		float jointAngle = b2RelativeAngle( stateB->deltaRotation, stateA->deltaRotation ) + joint->deltaAngle;
		jointAngle = b2UnwindAngle( jointAngle );

		// Lower limit
		{
			float C = jointAngle - joint->lowerAngle;
			float bias = 0.0f;
			float massScale = 1.0f;
			float impulseScale = 0.0f;
			if ( C > 0.0f )
			{
				// speculation
				bias = C * context->inv_h;
			}
			else if ( useBias )
			{
				bias = context->jointSoftness.biasRate * C;
				massScale = context->jointSoftness.massScale;
				impulseScale = context->jointSoftness.impulseScale;
			}

			float Cdot = wB - wA;
			float impulse = -massScale * joint->axialMass * ( Cdot + bias ) - impulseScale * joint->lowerImpulse;
			float oldImpulse = joint->lowerImpulse;
			joint->lowerImpulse = b2MaxFloat( joint->lowerImpulse + impulse, 0.0f );
			impulse = joint->lowerImpulse - oldImpulse;

			wA -= iA * impulse;
			wB += iB * impulse;
		}

		// Upper limit
		// Note: signs are flipped to keep C positive when the constraint is satisfied.
		// This also keeps the impulse positive when the limit is active.
		{
			float C = joint->upperAngle - jointAngle;
			float bias = 0.0f;
			float massScale = 1.0f;
			float impulseScale = 0.0f;
			if ( C > 0.0f )
			{
				// speculation
				bias = C * context->inv_h;
			}
			else if ( useBias )
			{
				bias = context->jointSoftness.biasRate * C;
				massScale = context->jointSoftness.massScale;
				impulseScale = context->jointSoftness.impulseScale;
			}

			// sign flipped on Cdot
			float Cdot = wA - wB;
			float impulse = -massScale * joint->axialMass * ( Cdot + bias ) - impulseScale * joint->lowerImpulse;
			float oldImpulse = joint->upperImpulse;
			joint->upperImpulse = b2MaxFloat( joint->upperImpulse + impulse, 0.0f );
			impulse = joint->upperImpulse - oldImpulse;

			// sign flipped on applied impulse
			wA += iA * impulse;
			wB -= iB * impulse;
		}
	}

	// Solve point-to-point constraint
	{
		// J = [-I -r1_skew I r2_skew]
		// r_skew = [-ry; rx]
		// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x]
		//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB]

		// current anchors
		b2Vec2 rA = b2RotateVector( stateA->deltaRotation, joint->anchorA );
		b2Vec2 rB = b2RotateVector( stateB->deltaRotation, joint->anchorB );

		b2Vec2 Cdot = b2Sub( b2Add( vB, b2CrossSV( wB, rB ) ), b2Add( vA, b2CrossSV( wA, rA ) ) );

		b2Vec2 bias = b2Vec2_zero;
		float massScale = 1.0f;
		float impulseScale = 0.0f;
		if ( useBias )
		{
			b2Vec2 dcA = stateA->deltaPosition;
			b2Vec2 dcB = stateB->deltaPosition;

			b2Vec2 separation = b2Add( b2Add( b2Sub( dcB, dcA ), b2Sub( rB, rA ) ), joint->deltaCenter );
			bias = b2MulSV( context->jointSoftness.biasRate, separation );
			massScale = context->jointSoftness.massScale;
			impulseScale = context->jointSoftness.impulseScale;
		}

		b2Mat22 K;
		K.cx.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
		K.cy.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
		K.cx.y = K.cy.x;
		K.cy.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
		b2Vec2 b = b2Solve22( K, b2Add( Cdot, bias ) );

		b2Vec2 impulse;
		impulse.x = -massScale * b.x - impulseScale * joint->linearImpulse.x;
		impulse.y = -massScale * b.y - impulseScale * joint->linearImpulse.y;
		joint->linearImpulse.x += impulse.x;
		joint->linearImpulse.y += impulse.y;

		vA = b2MulSub( vA, mA, impulse );
		wA -= iA * b2Cross( rA, impulse );
		vB = b2MulAdd( vB, mB, impulse );
		wB += iB * b2Cross( rB, impulse );
	}

	stateA->linearVelocity = vA;
	stateA->angularVelocity = wA;
	stateB->linearVelocity = vB;
	stateB->angularVelocity = wB;
}

#if 0
void b2RevoluteJoint::Dump()
{
	int32 indexA = joint->bodyA->joint->islandIndex;
	int32 indexB = joint->bodyB->joint->islandIndex;

	b2Dump("  b2RevoluteJointDef jd;\n");
	b2Dump("  jd.bodyA = bodies[%d];\n", indexA);
	b2Dump("  jd.bodyB = bodies[%d];\n", indexB);
	b2Dump("  jd.collideConnected = bool(%d);\n", joint->collideConnected);
	b2Dump("  jd.localAnchorA.Set(%.9g, %.9g);\n", joint->localAnchorA.x, joint->localAnchorA.y);
	b2Dump("  jd.localAnchorB.Set(%.9g, %.9g);\n", joint->localAnchorB.x, joint->localAnchorB.y);
	b2Dump("  jd.referenceAngle = %.9g;\n", joint->referenceAngle);
	b2Dump("  jd.enableLimit = bool(%d);\n", joint->enableLimit);
	b2Dump("  jd.lowerAngle = %.9g;\n", joint->lowerAngle);
	b2Dump("  jd.upperAngle = %.9g;\n", joint->upperAngle);
	b2Dump("  jd.enableMotor = bool(%d);\n", joint->enableMotor);
	b2Dump("  jd.motorSpeed = %.9g;\n", joint->motorSpeed);
	b2Dump("  jd.maxMotorTorque = %.9g;\n", joint->maxMotorTorque);
	b2Dump("  joints[%d] = joint->world->CreateJoint(&jd);\n", joint->index);
}
#endif

void b2DrawRevoluteJoint( b2DebugDraw* draw, b2JointSim* base, b2Transform transformA, b2Transform transformB, float drawSize )
{
	B2_ASSERT( base->type == b2_revoluteJoint );

	b2RevoluteJoint* joint = &base->revoluteJoint;

	b2Vec2 pA = b2TransformPoint( transformA, base->localOriginAnchorA );
	b2Vec2 pB = b2TransformPoint( transformB, base->localOriginAnchorB );

	b2HexColor c1 = b2_colorGray7;
	b2HexColor c2 = b2_colorGreen;
	b2HexColor c3 = b2_colorRed;

	const float L = drawSize;
	// draw->DrawPoint(pA, 3.0f, b2_colorGray40, draw->context);
	// draw->DrawPoint(pB, 3.0f, b2_colorLightBlue, draw->context);
	draw->DrawCircle( pB, L, c1, draw->context );

	float angle = b2RelativeAngle( transformB.q, transformA.q );

	b2Rot rot = b2MakeRot( angle );
	b2Vec2 r = { L * rot.c, L * rot.s };
	b2Vec2 pC = b2Add( pB, r );
	draw->DrawSegment( pB, pC, c1, draw->context );

	if ( draw->drawJointExtras )
	{
		float jointAngle = b2UnwindAngle( angle - joint->referenceAngle );
		char buffer[32];
		snprintf( buffer, 32, " %.1f deg", 180.0f * jointAngle / b2_pi );
		draw->DrawString( pC, buffer, draw->context );
	}

	float lowerAngle = joint->lowerAngle + joint->referenceAngle;
	float upperAngle = joint->upperAngle + joint->referenceAngle;

	if ( joint->enableLimit )
	{
		b2Rot rotLo = b2MakeRot( lowerAngle );
		b2Vec2 rlo = { L * rotLo.c, L * rotLo.s };

		b2Rot rotHi = b2MakeRot( upperAngle );
		b2Vec2 rhi = { L * rotHi.c, L * rotHi.s };

		draw->DrawSegment( pB, b2Add( pB, rlo ), c2, draw->context );
		draw->DrawSegment( pB, b2Add( pB, rhi ), c3, draw->context );

		b2Rot rotRef = b2MakeRot( joint->referenceAngle );
		b2Vec2 ref = ( b2Vec2 ){ L * rotRef.c, L * rotRef.s };
		draw->DrawSegment( pB, b2Add( pB, ref ), b2_colorBlue, draw->context );
	}

	b2HexColor color = b2_colorGold;
	draw->DrawSegment( transformA.p, pA, color, draw->context );
	draw->DrawSegment( pA, pB, color, draw->context );
	draw->DrawSegment( transformB.p, pB, color, draw->context );

	// char buffer[32];
	// sprintf(buffer, "%.1f", b2Length(joint->impulse));
	// draw->DrawString(pA, buffer, draw->context);
}