box2d_sys 0.2.1

Bindings for Box2D v3.0
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
// SPDX-FileCopyrightText: 2023 Erin Catto
// SPDX-License-Identifier: MIT

#include "core.h"

#include "box2d/collision.h"
#include "box2d/math_functions.h"

#include <float.h>
#include <stddef.h>

#define B2_MAKE_ID( A, B ) ( (uint8_t)( A ) << 8 | (uint8_t)( B ) )

static b2Polygon b2MakeCapsule( b2Vec2 p1, b2Vec2 p2, float radius )
{
	b2Polygon shape = { 0 };
	shape.vertices[0] = p1;
	shape.vertices[1] = p2;
	shape.centroid = b2Lerp( p1, p2, 0.5f );

	b2Vec2 d = b2Sub( p2, p1 );
	B2_ASSERT( b2LengthSquared( d ) > FLT_EPSILON );
	b2Vec2 axis = b2Normalize( d );
	b2Vec2 normal = b2RightPerp( axis );

	shape.normals[0] = normal;
	shape.normals[1] = b2Neg( normal );
	shape.count = 2;
	shape.radius = radius;

	return shape;
}

// point = qA * localAnchorA + pA
// localAnchorB = qBc * (point - pB)
// anchorB = point - pB = qA * localAnchorA + pA - pB
//         = anchorA + (pA - pB)
b2Manifold b2CollideCircles( const b2Circle* circleA, b2Transform xfA, const b2Circle* circleB, b2Transform xfB )
{
	b2Manifold manifold = { 0 };

	b2Transform xf = b2InvMulTransforms( xfA, xfB );

	b2Vec2 pointA = circleA->center;
	b2Vec2 pointB = b2TransformPoint( xf, circleB->center );

	float distance;
	b2Vec2 normal = b2GetLengthAndNormalize( &distance, b2Sub( pointB, pointA ) );

	float radiusA = circleA->radius;
	float radiusB = circleB->radius;

	float separation = distance - radiusA - radiusB;
	if ( separation > b2_speculativeDistance )
	{
		return manifold;
	}

	b2Vec2 cA = b2MulAdd( pointA, radiusA, normal );
	b2Vec2 cB = b2MulAdd( pointB, -radiusB, normal );
	b2Vec2 contactPointA = b2Lerp( cA, cB, 0.5f );

	manifold.normal = b2RotateVector( xfA.q, normal );
	b2ManifoldPoint* mp = manifold.points + 0;
	mp->anchorA = b2RotateVector( xfA.q, contactPointA );
	mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
	mp->point = b2Add( xfA.p, mp->anchorA );
	mp->separation = separation;
	mp->id = 0;
	manifold.pointCount = 1;
	return manifold;
}

/// Compute the collision manifold between a capsule and circle
b2Manifold b2CollideCapsuleAndCircle( const b2Capsule* capsuleA, b2Transform xfA, const b2Circle* circleB, b2Transform xfB )
{
	b2Manifold manifold = { 0 };

	b2Transform xf = b2InvMulTransforms( xfA, xfB );

	// Compute circle position in the frame of the capsule.
	b2Vec2 pB = b2TransformPoint( xf, circleB->center );

	// Compute closest point
	b2Vec2 p1 = capsuleA->center1;
	b2Vec2 p2 = capsuleA->center2;

	b2Vec2 e = b2Sub( p2, p1 );

	// dot(p - pA, e) = 0
	// dot(p - (p1 + s1 * e), e) = 0
	// s1 = dot(p - p1, e)
	b2Vec2 pA;
	float s1 = b2Dot( b2Sub( pB, p1 ), e );
	float s2 = b2Dot( b2Sub( p2, pB ), e );
	if ( s1 < 0.0f )
	{
		// p1 region
		pA = p1;
	}
	else if ( s2 < 0.0f )
	{
		// p2 region
		pA = p2;
	}
	else
	{
		// circle colliding with segment interior
		float s = s1 / b2Dot( e, e );
		pA = b2MulAdd( p1, s, e );
	}

	float distance;
	b2Vec2 normal = b2GetLengthAndNormalize( &distance, b2Sub( pB, pA ) );

	float radiusA = capsuleA->radius;
	float radiusB = circleB->radius;
	float separation = distance - radiusA - radiusB;
	if ( separation > b2_speculativeDistance )
	{
		return manifold;
	}

	b2Vec2 cA = b2MulAdd( pA, radiusA, normal );
	b2Vec2 cB = b2MulAdd( pB, -radiusB, normal );
	b2Vec2 contactPointA = b2Lerp( cA, cB, 0.5f );

	manifold.normal = b2RotateVector( xfA.q, normal );
	b2ManifoldPoint* mp = manifold.points + 0;
	mp->anchorA = b2RotateVector( xfA.q, contactPointA );
	mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
	mp->point = b2Add( xfA.p, mp->anchorA );
	mp->separation = separation;
	mp->id = 0;
	manifold.pointCount = 1;
	return manifold;
}

b2Manifold b2CollidePolygonAndCircle( const b2Polygon* polygonA, b2Transform xfA, const b2Circle* circleB, b2Transform xfB )
{
	b2Manifold manifold = { 0 };
	const float speculativeDistance = b2_speculativeDistance;

	b2Transform xf = b2InvMulTransforms( xfA, xfB );

	// Compute circle position in the frame of the polygon.
	b2Vec2 c = b2TransformPoint( xf, circleB->center );
	float radiusA = polygonA->radius;
	float radiusB = circleB->radius;
	float radius = radiusA + radiusB;

	// Find the min separating edge.
	int32_t normalIndex = 0;
	float separation = -FLT_MAX;
	int32_t vertexCount = polygonA->count;
	const b2Vec2* vertices = polygonA->vertices;
	const b2Vec2* normals = polygonA->normals;

	for ( int32_t i = 0; i < vertexCount; ++i )
	{
		float s = b2Dot( normals[i], b2Sub( c, vertices[i] ) );
		if ( s > separation )
		{
			separation = s;
			normalIndex = i;
		}
	}

	if ( separation > radius + speculativeDistance )
	{
		return manifold;
	}

	// Vertices of the reference edge.
	int32_t vertIndex1 = normalIndex;
	int32_t vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
	b2Vec2 v1 = vertices[vertIndex1];
	b2Vec2 v2 = vertices[vertIndex2];

	// Compute barycentric coordinates
	float u1 = b2Dot( b2Sub( c, v1 ), b2Sub( v2, v1 ) );
	float u2 = b2Dot( b2Sub( c, v2 ), b2Sub( v1, v2 ) );

	if ( u1 < 0.0f && separation > FLT_EPSILON )
	{
		// Circle center is closest to v1 and safely outside the polygon
		b2Vec2 normal = b2Normalize( b2Sub( c, v1 ) );
		separation = b2Dot( b2Sub( c, v1 ), normal );
		if ( separation > radius + speculativeDistance )
		{
			return manifold;
		}

		b2Vec2 cA = b2MulAdd( v1, radiusA, normal );
		b2Vec2 cB = b2MulSub( c, radiusB, normal );
		b2Vec2 contactPointA = b2Lerp( cA, cB, 0.5f );

		manifold.normal = b2RotateVector( xfA.q, normal );
		b2ManifoldPoint* mp = manifold.points + 0;
		mp->anchorA = b2RotateVector( xfA.q, contactPointA );
		mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
		mp->point = b2Add( xfA.p, mp->anchorA );
		mp->separation = b2Dot( b2Sub( cB, cA ), normal );
		mp->id = 0;
		manifold.pointCount = 1;
	}
	else if ( u2 < 0.0f && separation > FLT_EPSILON )
	{
		// Circle center is closest to v2 and safely outside the polygon
		b2Vec2 normal = b2Normalize( b2Sub( c, v2 ) );
		separation = b2Dot( b2Sub( c, v2 ), normal );
		if ( separation > radius + speculativeDistance )
		{
			return manifold;
		}

		b2Vec2 cA = b2MulAdd( v2, radiusA, normal );
		b2Vec2 cB = b2MulSub( c, radiusB, normal );
		b2Vec2 contactPointA = b2Lerp( cA, cB, 0.5f );

		manifold.normal = b2RotateVector( xfA.q, normal );
		b2ManifoldPoint* mp = manifold.points + 0;
		mp->anchorA = b2RotateVector( xfA.q, contactPointA );
		mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
		mp->point = b2Add( xfA.p, mp->anchorA );
		mp->separation = b2Dot( b2Sub( cB, cA ), normal );
		mp->id = 0;
		manifold.pointCount = 1;
	}
	else
	{
		// Circle center is between v1 and v2. Center may be inside polygon
		b2Vec2 normal = normals[normalIndex];
		manifold.normal = b2RotateVector( xfA.q, normal );

		// cA is the projection of the circle center onto to the reference edge
		b2Vec2 cA = b2MulAdd( c, radiusA - b2Dot( b2Sub( c, v1 ), normal ), normal );

		// cB is the deepest point on the circle with respect to the reference edge
		b2Vec2 cB = b2MulSub( c, radiusB, normal );

		b2Vec2 contactPointA = b2Lerp( cA, cB, 0.5f );

		// The contact point is the midpoint in world space
		b2ManifoldPoint* mp = manifold.points + 0;
		mp->anchorA = b2RotateVector( xfA.q, contactPointA );
		mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
		mp->point = b2Add( xfA.p, mp->anchorA );
		mp->separation = separation - radius;
		mp->id = 0;
		manifold.pointCount = 1;
	}

	return manifold;
}

// Follows Ericson 5.1.9 Closest Points of Two Line Segments
// Adds some logic to support clipping to get two contact points
b2Manifold b2CollideCapsules( const b2Capsule* capsuleA, b2Transform xfA, const b2Capsule* capsuleB, b2Transform xfB )
{
	b2Vec2 origin = capsuleA->center1;

	// Shift polyA to origin
	// pw = q * pb + p
	// pw = q * (pbs + origin) + p
	// pw = q * pbs + (p + q * origin)
	b2Transform sfA = { b2Add( xfA.p, b2RotateVector( xfA.q, origin ) ), xfA.q };
	b2Transform xf = b2InvMulTransforms( sfA, xfB );

	b2Vec2 p1 = b2Vec2_zero;
	b2Vec2 q1 = b2Sub( capsuleA->center2, origin );

	b2Vec2 p2 = b2TransformPoint( xf, capsuleB->center1 );
	b2Vec2 q2 = b2TransformPoint( xf, capsuleB->center2 );

	b2Vec2 d1 = b2Sub( q1, p1 );
	b2Vec2 d2 = b2Sub( q2, p2 );

	float dd1 = b2Dot( d1, d1 );
	float dd2 = b2Dot( d2, d2 );

	const float epsSqr = FLT_EPSILON * FLT_EPSILON;
	B2_ASSERT( dd1 > epsSqr && dd2 > epsSqr );

	b2Vec2 r = b2Sub( p1, p2 );
	float rd1 = b2Dot( r, d1 );
	float rd2 = b2Dot( r, d2 );

	float d12 = b2Dot( d1, d2 );

	float denom = dd1 * dd2 - d12 * d12;

	// Fraction on segment 1
	float f1 = 0.0f;
	if ( denom != 0.0f )
	{
		// not parallel
		f1 = b2ClampFloat( ( d12 * rd2 - rd1 * dd2 ) / denom, 0.0f, 1.0f );
	}

	// Compute point on segment 2 closest to p1 + f1 * d1
	float f2 = ( d12 * f1 + rd2 ) / dd2;

	// Clamping of segment 2 requires a do over on segment 1
	if ( f2 < 0.0f )
	{
		f2 = 0.0f;
		f1 = b2ClampFloat( -rd1 / dd1, 0.0f, 1.0f );
	}
	else if ( f2 > 1.0f )
	{
		f2 = 1.0f;
		f1 = b2ClampFloat( ( d12 - rd1 ) / dd1, 0.0f, 1.0f );
	}

	b2Vec2 closest1 = b2MulAdd( p1, f1, d1 );
	b2Vec2 closest2 = b2MulAdd( p2, f2, d2 );
	float distanceSquared = b2DistanceSquared( closest1, closest2 );

	b2Manifold manifold = { 0 };
	float radiusA = capsuleA->radius;
	float radiusB = capsuleB->radius;
	float radius = radiusA + radiusB;
	float maxDistance = radius + b2_speculativeDistance;

	if ( distanceSquared > maxDistance * maxDistance )
	{
		return manifold;
	}

	float distance = sqrt( distanceSquared );

	float length1, length2;
	b2Vec2 u1 = b2GetLengthAndNormalize( &length1, d1 );
	b2Vec2 u2 = b2GetLengthAndNormalize( &length2, d2 );

	// Does segment B project outside segment A?
	float fp2 = b2Dot( b2Sub( p2, p1 ), u1 );
	float fq2 = b2Dot( b2Sub( q2, p1 ), u1 );
	bool outsideA = ( fp2 <= 0.0f && fq2 <= 0.0f ) || ( fp2 >= length1 && fq2 >= length1 );

	// Does segment A project outside segment B?
	float fp1 = b2Dot( b2Sub( p1, p2 ), u2 );
	float fq1 = b2Dot( b2Sub( q1, p2 ), u2 );
	bool outsideB = ( fp1 <= 0.0f && fq1 <= 0.0f ) || ( fp1 >= length2 && fq1 >= length2 );

	if ( outsideA == false && outsideB == false)
	{
		// attempt to clip
		// this may yield contact points with excessive separation
		// in that case the algorithm falls back to single point collision

		// find reference edge using SAT
		b2Vec2 normalA;
		float separationA;

		{
			normalA = b2LeftPerp( u1 );
			float ss1 = b2Dot( b2Sub( p2, p1 ), normalA );
			float ss2 = b2Dot( b2Sub( q2, p1 ), normalA );
			float s1p = ss1 < ss2 ? ss1 : ss2;
			float s1n = -ss1 < -ss2 ? -ss1 : -ss2;

			if ( s1p > s1n )
			{
				separationA = s1p;
			}
			else
			{
				separationA = s1n;
				normalA = b2Neg( normalA );
			}
		}

		b2Vec2 normalB;
		float separationB;
		{
			normalB = b2LeftPerp( u2 );
			float ss1 = b2Dot( b2Sub( p1, p2 ), normalB );
			float ss2 = b2Dot( b2Sub( q1, p2 ), normalB );
			float s1p = ss1 < ss2 ? ss1 : ss2;
			float s1n = -ss1 < -ss2 ? -ss1 : -ss2;

			if ( s1p > s1n )
			{
				separationB = s1p;
			}
			else
			{
				separationB = s1n;
				normalB = b2Neg( normalB );
			}
		}

		if ( separationA >= separationB )
		{
			manifold.normal = normalA;

			b2Vec2 cp = p2;
			b2Vec2 cq = q2;

			// clip to p1
			if ( fp2 < 0.0f && fq2 > 0.0f )
			{
				cp = b2Lerp( p2, q2, ( 0.0f - fp2 ) / ( fq2 - fp2 ) );
			}
			else if ( fq2 < 0.0f && fp2 > 0.0f )
			{
				cq = b2Lerp( q2, p2, ( 0.0f - fq2 ) / ( fp2 - fq2 ) );
			}

			// clip to q1
			if ( fp2 > length1 && fq2 < length1 )
			{
				cp = b2Lerp( p2, q2, ( fp2 - length1 ) / ( fp2 - fq2 ) );
			}
			else if ( fq2 > length1 && fp2 < length1 )
			{
				cq = b2Lerp( q2, p2, ( fq2 - length1 ) / ( fq2 - fp2 ) );
			}

			float sp = b2Dot( b2Sub( cp, p1 ), normalA );
			float sq = b2Dot( b2Sub( cq, p1 ), normalA );

			if ( sp <= distance + b2_linearSlop || sq <= distance + b2_linearSlop )
			{
				b2ManifoldPoint* mp;
				mp = manifold.points + 0;
				mp->anchorA = b2MulAdd( cp, 0.5f * ( radiusA - radiusB - sp ), normalA );
				mp->separation = sp - radius;
				mp->id = B2_MAKE_ID( 0, 0 );

				mp = manifold.points + 1;
				mp->anchorA = b2MulAdd( cq, 0.5f * ( radiusA - radiusB - sq ), normalA );
				mp->separation = sq - radius;
				mp->id = B2_MAKE_ID( 0, 1 );
				manifold.pointCount = 2;
			}
		}
		else
		{
			// normal always points from A to B
			manifold.normal = b2Neg( normalB );

			b2Vec2 cp = p1;
			b2Vec2 cq = q1;

			// clip to p2
			if ( fp1 < 0.0f && fq1 > 0.0f )
			{
				cp = b2Lerp( p1, q1, ( 0.0f - fp1 ) / ( fq1 - fp1 ) );
			}
			else if ( fq1 < 0.0f && fp1 > 0.0f )
			{
				cq = b2Lerp( q1, p1, ( 0.0f - fq1 ) / ( fp1 - fq1 ) );
			}

			// clip to q2
			if ( fp1 > length2 && fq1 < length2 )
			{
				cp = b2Lerp( p1, q1, ( fp1 - length2 ) / ( fp1 - fq1 ) );
			}
			else if ( fq1 > length2 && fp1 < length2 )
			{
				cq = b2Lerp( q1, p1, ( fq1 - length2 ) / ( fq1 - fp1 ) );
			}

			float sp = b2Dot( b2Sub( cp, p2 ), normalB );
			float sq = b2Dot( b2Sub( cq, p2 ), normalB );

			if ( sp <= distance + b2_linearSlop || sq <= distance + b2_linearSlop )
			{
				b2ManifoldPoint* mp;
				mp = manifold.points + 0;
				mp->anchorA = b2MulAdd( cp, 0.5f * ( radiusB - radiusA - sp ), normalB );
				mp->separation = sp - radius;
				mp->id = B2_MAKE_ID( 0, 0 );
				mp = manifold.points + 1;
				mp->anchorA = b2MulAdd( cq, 0.5f * ( radiusB - radiusA - sq ), normalB );
				mp->separation = sq - radius;
				mp->id = B2_MAKE_ID( 1, 0 );
				manifold.pointCount = 2;
			}
		}
	}

	if (manifold.pointCount == 0)
	{
		// single point collision
		b2Vec2 normal = b2Sub( closest2, closest1 );
		if ( b2Dot( normal, normal ) > epsSqr )
		{
			normal = b2Normalize( normal );
		}
		else
		{
			normal = b2LeftPerp( u1 );
		}

		b2Vec2 c1 = b2MulAdd( closest1, radiusA, normal );
		b2Vec2 c2 = b2MulAdd( closest2, -radiusB, normal );

		int i1 = f1 == 0.0f ? 0 : 1;
		int i2 = f2 == 0.0f ? 0 : 1;

		manifold.normal = normal;
		manifold.points[0].anchorA = b2Lerp( c1, c2, 0.5f );
		manifold.points[0].separation = sqrtf( distanceSquared ) - radius;
		manifold.points[0].id = B2_MAKE_ID( i1, i2 );
		manifold.pointCount = 1;
	}

	// Convert manifold to world space
	if ( manifold.pointCount > 0 )
	{
		manifold.normal = b2RotateVector( xfA.q, manifold.normal );
		for ( int i = 0; i < manifold.pointCount; ++i )
		{
			b2ManifoldPoint* mp = manifold.points + i;

			// anchor points relative to shape origin in world space
			mp->anchorA = b2RotateVector( xfA.q, b2Add( mp->anchorA, origin ) );
			mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
			mp->point = b2Add( xfA.p, mp->anchorA );
		}
	}

	return manifold;
}

b2Manifold b2CollideSegmentAndCapsule( const b2Segment* segmentA, b2Transform xfA, const b2Capsule* capsuleB, b2Transform xfB )
{
	b2Capsule capsuleA = { segmentA->point1, segmentA->point2, 0.0f };
	return b2CollideCapsules( &capsuleA, xfA, capsuleB, xfB );
}

b2Manifold b2CollidePolygonAndCapsule( const b2Polygon* polygonA, b2Transform xfA, const b2Capsule* capsuleB, b2Transform xfB )
{
	b2Polygon polyB = b2MakeCapsule( capsuleB->center1, capsuleB->center2, capsuleB->radius );
	return b2CollidePolygons( polygonA, xfA, &polyB, xfB );
}

// Polygon clipper used to compute contact points when there are potentially two contact points.
static b2Manifold b2ClipPolygons( const b2Polygon* polyA, const b2Polygon* polyB, int32_t edgeA, int32_t edgeB, bool flip )
{
	b2Manifold manifold = { 0 };

	// reference polygon
	const b2Polygon* poly1;
	int32_t i11, i12;

	// incident polygon
	const b2Polygon* poly2;
	int32_t i21, i22;

	if ( flip )
	{
		poly1 = polyB;
		poly2 = polyA;
		i11 = edgeB;
		i12 = edgeB + 1 < polyB->count ? edgeB + 1 : 0;
		i21 = edgeA;
		i22 = edgeA + 1 < polyA->count ? edgeA + 1 : 0;
	}
	else
	{
		poly1 = polyA;
		poly2 = polyB;
		i11 = edgeA;
		i12 = edgeA + 1 < polyA->count ? edgeA + 1 : 0;
		i21 = edgeB;
		i22 = edgeB + 1 < polyB->count ? edgeB + 1 : 0;
	}

	b2Vec2 normal = poly1->normals[i11];

	// Reference edge vertices
	b2Vec2 v11 = poly1->vertices[i11];
	b2Vec2 v12 = poly1->vertices[i12];

	// Incident edge vertices
	b2Vec2 v21 = poly2->vertices[i21];
	b2Vec2 v22 = poly2->vertices[i22];

	b2Vec2 tangent = b2CrossSV( 1.0f, normal );

	float lower1 = 0.0f;
	float upper1 = b2Dot( b2Sub( v12, v11 ), tangent );

	// Incident edge points opposite of tangent due to CCW winding
	float upper2 = b2Dot( b2Sub( v21, v11 ), tangent );
	float lower2 = b2Dot( b2Sub( v22, v11 ), tangent );

	// This check can fail slightly due to mismatch with GJK code.
	// Perhaps fall back to a single point here? Otherwise we get two coincident points.
	// if (upper2 < lower1 || upper1 < lower2)
	//{
	//	// numeric failure
	//	B2_ASSERT(false);
	//	return manifold;
	//}

	b2Vec2 vLower;
	if ( lower2 < lower1 && upper2 - lower2 > FLT_EPSILON )
	{
		vLower = b2Lerp( v22, v21, ( lower1 - lower2 ) / ( upper2 - lower2 ) );
	}
	else
	{
		vLower = v22;
	}

	b2Vec2 vUpper;
	if ( upper2 > upper1 && upper2 - lower2 > FLT_EPSILON )
	{
		vUpper = b2Lerp( v22, v21, ( upper1 - lower2 ) / ( upper2 - lower2 ) );
	}
	else
	{
		vUpper = v21;
	}

	// todo vLower can be very close to vUpper, reduce to one point?

	float separationLower = b2Dot( b2Sub( vLower, v11 ), normal );
	float separationUpper = b2Dot( b2Sub( vUpper, v11 ), normal );

	float r1 = poly1->radius;
	float r2 = poly2->radius;

	// Put contact points at midpoint, accounting for radii
	vLower = b2MulAdd( vLower, 0.5f * ( r1 - r2 - separationLower ), normal );
	vUpper = b2MulAdd( vUpper, 0.5f * ( r1 - r2 - separationUpper ), normal );

	float radius = r1 + r2;

	if ( flip == false )
	{
		manifold.normal = normal;
		b2ManifoldPoint* cp = manifold.points + 0;

		{
			cp->anchorA = vLower;
			cp->separation = separationLower - radius;
			cp->id = B2_MAKE_ID( i11, i22 );
			manifold.pointCount += 1;
			cp += 1;
		}

		{
			cp->anchorA = vUpper;
			cp->separation = separationUpper - radius;
			cp->id = B2_MAKE_ID( i12, i21 );
			manifold.pointCount += 1;
		}
	}
	else
	{
		manifold.normal = b2Neg( normal );
		b2ManifoldPoint* cp = manifold.points + 0;

		{
			cp->anchorA = vUpper;
			cp->separation = separationUpper - radius;
			cp->id = B2_MAKE_ID( i21, i12 );
			manifold.pointCount += 1;
			cp += 1;
		}

		{
			cp->anchorA = vLower;
			cp->separation = separationLower - radius;
			cp->id = B2_MAKE_ID( i22, i11 );
			manifold.pointCount += 1;
		}
	}

	return manifold;
}

// Find the max separation between poly1 and poly2 using edge normals from poly1.
static float b2FindMaxSeparation( int32_t* edgeIndex, const b2Polygon* poly1, const b2Polygon* poly2 )
{
	int32_t count1 = poly1->count;
	int32_t count2 = poly2->count;
	const b2Vec2* n1s = poly1->normals;
	const b2Vec2* v1s = poly1->vertices;
	const b2Vec2* v2s = poly2->vertices;

	int32_t bestIndex = 0;
	float maxSeparation = -FLT_MAX;
	for ( int32_t i = 0; i < count1; ++i )
	{
		// Get poly1 normal in frame2.
		b2Vec2 n = n1s[i];
		b2Vec2 v1 = v1s[i];

		// Find the deepest point for normal i.
		float si = FLT_MAX;
		for ( int32_t j = 0; j < count2; ++j )
		{
			float sij = b2Dot( n, b2Sub( v2s[j], v1 ) );
			if ( sij < si )
			{
				si = sij;
			}
		}

		if ( si > maxSeparation )
		{
			maxSeparation = si;
			bestIndex = i;
		}
	}

	*edgeIndex = bestIndex;
	return maxSeparation;
}

// Due to speculation, every polygon is rounded
// Algorithm:
//
// compute edge separation using the separating axis test (SAT)
// if (separation > speculation_distance)
//   return
// find reference and incident edge
// if separation >= 0.1f * b2_linearSlop
//   compute closest points between reference and incident edge
//   if vertices are closest
//      single vertex-vertex contact
//   else
//      clip edges
//   end
// else
//   clip edges
// end

b2Manifold b2CollidePolygons( const b2Polygon* polygonA, b2Transform xfA, const b2Polygon* polygonB, b2Transform xfB )
{
	b2Vec2 origin = polygonA->vertices[0];

	// Shift polyA to origin
	// pw = q * pb + p
	// pw = q * (pbs + origin) + p
	// pw = q * pbs + (p + q * origin)
	b2Transform sfA = { b2Add( xfA.p, b2RotateVector( xfA.q, origin ) ), xfA.q };
	b2Transform xf = b2InvMulTransforms( sfA, xfB );

	b2Polygon localPolyA;
	localPolyA.count = polygonA->count;
	localPolyA.radius = polygonA->radius;
	localPolyA.vertices[0] = b2Vec2_zero;
	localPolyA.normals[0] = polygonA->normals[0];
	for ( int i = 1; i < localPolyA.count; ++i )
	{
		localPolyA.vertices[i] = b2Sub( polygonA->vertices[i], origin );
		localPolyA.normals[i] = polygonA->normals[i];
	}

	// Put polyB in polyA's frame to reduce round-off error
	b2Polygon localPolyB;
	localPolyB.count = polygonB->count;
	localPolyB.radius = polygonB->radius;
	for ( int i = 0; i < localPolyB.count; ++i )
	{
		localPolyB.vertices[i] = b2TransformPoint( xf, polygonB->vertices[i] );
		localPolyB.normals[i] = b2RotateVector( xf.q, polygonB->normals[i] );
	}

	int edgeA = 0;
	float separationA = b2FindMaxSeparation( &edgeA, &localPolyA, &localPolyB );

	int edgeB = 0;
	float separationB = b2FindMaxSeparation( &edgeB, &localPolyB, &localPolyA );

	float radius = localPolyA.radius + localPolyB.radius;

	if ( separationA > b2_speculativeDistance + radius || separationB > b2_speculativeDistance + radius )
	{
		return ( b2Manifold ){ 0 };
	}

	// Find incident edge
	bool flip;
	if ( separationA >= separationB )
	{
		flip = false;

		b2Vec2 searchDirection = localPolyA.normals[edgeA];

		// Find the incident edge on polyB
		int count = localPolyB.count;
		const b2Vec2* normals = localPolyB.normals;
		edgeB = 0;
		float minDot = FLT_MAX;
		for ( int i = 0; i < count; ++i )
		{
			float dot = b2Dot( searchDirection, normals[i] );
			if ( dot < minDot )
			{
				minDot = dot;
				edgeB = i;
			}
		}
	}
	else
	{
		flip = true;

		b2Vec2 searchDirection = localPolyB.normals[edgeB];

		// Find the incident edge on polyA
		int count = localPolyA.count;
		const b2Vec2* normals = localPolyA.normals;
		edgeA = 0;
		float minDot = FLT_MAX;
		for ( int i = 0; i < count; ++i )
		{
			float dot = b2Dot( searchDirection, normals[i] );
			if ( dot < minDot )
			{
				minDot = dot;
				edgeA = i;
			}
		}
	}

	b2Manifold manifold = { 0 };

	// Using slop here to ensure vertex-vertex normal vectors can be safely normalized
	// todo this means edge clipping needs to handle slightly non-overlapping edges.
	if ( separationA > 0.1f * b2_linearSlop || separationB > 0.1f * b2_linearSlop )
	{
		// Polygons are disjoint. Find closest points between reference edge and incident edge
		// Reference edge on polygon A
		int i11 = edgeA;
		int i12 = edgeA + 1 < localPolyA.count ? edgeA + 1 : 0;
		int i21 = edgeB;
		int i22 = edgeB + 1 < localPolyB.count ? edgeB + 1 : 0;

		b2Vec2 v11 = localPolyA.vertices[i11];
		b2Vec2 v12 = localPolyA.vertices[i12];
		b2Vec2 v21 = localPolyB.vertices[i21];
		b2Vec2 v22 = localPolyB.vertices[i22];

		b2SegmentDistanceResult result = b2SegmentDistance( v11, v12, v21, v22 );

		if ( result.fraction1 == 0.0f && result.fraction2 == 0.0f )
		{
			// v11 - v21
			b2Vec2 normal = b2Sub( v21, v11 );
			B2_ASSERT( result.distanceSquared > 0.0f );
			float distance = sqrtf( result.distanceSquared );
			if ( distance > b2_speculativeDistance + radius )
			{
				return manifold;
			}
			float invDistance = 1.0f / distance;
			normal.x *= invDistance;
			normal.y *= invDistance;

			b2Vec2 c1 = b2MulAdd( v11, localPolyA.radius, normal );
			b2Vec2 c2 = b2MulAdd( v21, -localPolyB.radius, normal );

			manifold.normal = normal;
			manifold.points[0].anchorA = b2Lerp( c1, c2, 0.5f );
			manifold.points[0].separation = distance - radius;
			manifold.points[0].id = B2_MAKE_ID( i11, i21 );
			manifold.pointCount = 1;
		}
		else if ( result.fraction1 == 0.0f && result.fraction2 == 1.0f )
		{
			// v11 - v22
			b2Vec2 normal = b2Sub( v22, v11 );
			B2_ASSERT( result.distanceSquared > 0.0f );
			float distance = sqrtf( result.distanceSquared );
			if ( distance > b2_speculativeDistance + radius )
			{
				return manifold;
			}
			float invDistance = 1.0f / distance;
			normal.x *= invDistance;
			normal.y *= invDistance;

			b2Vec2 c1 = b2MulAdd( v11, localPolyA.radius, normal );
			b2Vec2 c2 = b2MulAdd( v22, -localPolyB.radius, normal );

			manifold.normal = normal;
			manifold.points[0].anchorA = b2Lerp( c1, c2, 0.5f );
			manifold.points[0].separation = distance - radius;
			manifold.points[0].id = B2_MAKE_ID( i11, i22 );
			manifold.pointCount = 1;
		}
		else if ( result.fraction1 == 1.0f && result.fraction2 == 0.0f )
		{
			// v12 - v21
			b2Vec2 normal = b2Sub( v21, v12 );
			B2_ASSERT( result.distanceSquared > 0.0f );
			float distance = sqrtf( result.distanceSquared );
			if ( distance > b2_speculativeDistance + radius )
			{
				return manifold;
			}
			float invDistance = 1.0f / distance;
			normal.x *= invDistance;
			normal.y *= invDistance;

			b2Vec2 c1 = b2MulAdd( v12, localPolyA.radius, normal );
			b2Vec2 c2 = b2MulAdd( v21, -localPolyB.radius, normal );

			manifold.normal = normal;
			manifold.points[0].anchorA = b2Lerp( c1, c2, 0.5f );
			manifold.points[0].separation = distance - radius;
			manifold.points[0].id = B2_MAKE_ID( i12, i21 );
			manifold.pointCount = 1;
		}
		else if ( result.fraction1 == 1.0f && result.fraction2 == 1.0f )
		{
			// v12 - v22
			b2Vec2 normal = b2Sub( v22, v12 );
			B2_ASSERT( result.distanceSquared > 0.0f );
			float distance = sqrtf( result.distanceSquared );
			if ( distance > b2_speculativeDistance + radius )
			{
				return manifold;
			}
			float invDistance = 1.0f / distance;
			normal.x *= invDistance;
			normal.y *= invDistance;

			b2Vec2 c1 = b2MulAdd( v12, localPolyA.radius, normal );
			b2Vec2 c2 = b2MulAdd( v22, -localPolyB.radius, normal );

			manifold.normal = normal;
			manifold.points[0].anchorA = b2Lerp( c1, c2, 0.5f );
			manifold.points[0].separation = distance - radius;
			manifold.points[0].id = B2_MAKE_ID( i12, i22 );
			manifold.pointCount = 1;
		}
		else
		{
			// Edge region
			manifold = b2ClipPolygons( &localPolyA, &localPolyB, edgeA, edgeB, flip );
		}
	}
	else
	{
		// Polygons overlap
		manifold = b2ClipPolygons( &localPolyA, &localPolyB, edgeA, edgeB, flip );
	}

	// Convert manifold to world space
	if ( manifold.pointCount > 0 )
	{
		manifold.normal = b2RotateVector( xfA.q, manifold.normal );
		for ( int i = 0; i < manifold.pointCount; ++i )
		{
			b2ManifoldPoint* mp = manifold.points + i;

			// anchor points relative to shape origin in world space
			mp->anchorA = b2RotateVector( xfA.q, b2Add( mp->anchorA, origin ) );
			mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
			mp->point = b2Add( xfA.p, mp->anchorA );
		}
	}

	return manifold;
}

b2Manifold b2CollideSegmentAndCircle( const b2Segment* segmentA, b2Transform xfA, const b2Circle* circleB, b2Transform xfB )
{
	b2Capsule capsuleA = { segmentA->point1, segmentA->point2, 0.0f };
	return b2CollideCapsuleAndCircle( &capsuleA, xfA, circleB, xfB );
}

b2Manifold b2CollideSegmentAndPolygon( const b2Segment* segmentA, b2Transform xfA, const b2Polygon* polygonB, b2Transform xfB )
{
	b2Polygon polygonA = b2MakeCapsule( segmentA->point1, segmentA->point2, 0.0f );
	return b2CollidePolygons( &polygonA, xfA, polygonB, xfB );
}

b2Manifold b2CollideChainSegmentAndCircle( const b2ChainSegment* segmentA, b2Transform xfA, const b2Circle* circleB,
										   b2Transform xfB )
{
	b2Manifold manifold = { 0 };

	b2Transform xf = b2InvMulTransforms( xfA, xfB );

	// Compute circle in frame of segment
	b2Vec2 pB = b2TransformPoint( xf, circleB->center );

	b2Vec2 p1 = segmentA->segment.point1;
	b2Vec2 p2 = segmentA->segment.point2;
	b2Vec2 e = b2Sub( p2, p1 );

	// Normal points to the right
	float offset = b2Dot( b2RightPerp( e ), b2Sub( pB, p1 ) );
	if ( offset < 0.0f )
	{
		// collision is one-sided
		return manifold;
	}

	// Barycentric coordinates
	float u = b2Dot( e, b2Sub( p2, pB ) );
	float v = b2Dot( e, b2Sub( pB, p1 ) );

	b2Vec2 pA;

	if ( v <= 0.0f )
	{
		// Behind point1?
		// Is pB in the Voronoi region of the previous edge?
		b2Vec2 prevEdge = b2Sub( p1, segmentA->ghost1 );
		float uPrev = b2Dot( prevEdge, b2Sub( pB, p1 ) );
		if ( uPrev <= 0.0f )
		{
			return manifold;
		}

		pA = p1;
	}
	else if ( u <= 0.0f )
	{
		// Ahead of point2?
		b2Vec2 nextEdge = b2Sub( segmentA->ghost2, p2 );
		float vNext = b2Dot( nextEdge, b2Sub( pB, p2 ) );

		// Is pB in the Voronoi region of the next edge?
		if ( vNext > 0.0f )
		{
			return manifold;
		}

		pA = p2;
	}
	else
	{
		float ee = b2Dot( e, e );
		pA = ( b2Vec2 ){ u * p1.x + v * p2.x, u * p1.y + v * p2.y };
		pA = ee > 0.0f ? b2MulSV( 1.0f / ee, pA ) : p1;
	}

	float distance;
	b2Vec2 normal = b2GetLengthAndNormalize( &distance, b2Sub( pB, pA ) );

	float radius = circleB->radius;
	float separation = distance - radius;
	if ( separation > b2_speculativeDistance )
	{
		return manifold;
	}

	b2Vec2 cA = pA;
	b2Vec2 cB = b2MulAdd( pB, -radius, normal );
	b2Vec2 contactPointA = b2Lerp( cA, cB, 0.5f );

	manifold.normal = b2RotateVector( xfA.q, normal );

	b2ManifoldPoint* mp = manifold.points + 0;
	mp->anchorA = b2RotateVector( xfA.q, contactPointA );
	mp->anchorB = b2Add( mp->anchorA, b2Sub( xfA.p, xfB.p ) );
	mp->point = b2Add( xfA.p, mp->anchorA );
	mp->separation = separation;
	mp->id = 0;
	manifold.pointCount = 1;
	return manifold;
}

b2Manifold b2CollideChainSegmentAndCapsule( const b2ChainSegment* segmentA, b2Transform xfA, const b2Capsule* capsuleB,
											b2Transform xfB, b2DistanceCache* cache )
{
	b2Polygon polyB = b2MakeCapsule( capsuleB->center1, capsuleB->center2, capsuleB->radius );
	return b2CollideChainSegmentAndPolygon( segmentA, xfA, &polyB, xfB, cache );
}

static b2Manifold b2ClipSegments( b2Vec2 a1, b2Vec2 a2, b2Vec2 b1, b2Vec2 b2, b2Vec2 normal, float ra, float rb, uint16_t id1,
								  uint16_t id2 )
{
	b2Manifold manifold = { 0 };

	b2Vec2 tangent = b2LeftPerp( normal );

	// Barycentric coordinates of each point relative to a1 along tangent
	float lower1 = 0.0f;
	float upper1 = b2Dot( b2Sub( a2, a1 ), tangent );

	// Incident edge points opposite of tangent due to CCW winding
	float upper2 = b2Dot( b2Sub( b1, a1 ), tangent );
	float lower2 = b2Dot( b2Sub( b2, a1 ), tangent );

	// Do segments overlap?
	if ( upper2 < lower1 || upper1 < lower2 )
	{
		return manifold;
	}

	b2Vec2 vLower;
	if ( lower2 < lower1 && upper2 - lower2 > FLT_EPSILON )
	{
		vLower = b2Lerp( b2, b1, ( lower1 - lower2 ) / ( upper2 - lower2 ) );
	}
	else
	{
		vLower = b2;
	}

	b2Vec2 vUpper;
	if ( upper2 > upper1 && upper2 - lower2 > FLT_EPSILON )
	{
		vUpper = b2Lerp( b2, b1, ( upper1 - lower2 ) / ( upper2 - lower2 ) );
	}
	else
	{
		vUpper = b1;
	}

	// todo vLower can be very close to vUpper, reduce to one point?

	float separationLower = b2Dot( b2Sub( vLower, a1 ), normal );
	float separationUpper = b2Dot( b2Sub( vUpper, a1 ), normal );

	// Put contact points at midpoint, accounting for radii
	vLower = b2MulAdd( vLower, 0.5f * ( ra - rb - separationLower ), normal );
	vUpper = b2MulAdd( vUpper, 0.5f * ( ra - rb - separationUpper ), normal );

	float radius = ra + rb;

	manifold.normal = normal;
	{
		b2ManifoldPoint* cp = manifold.points + 0;
		cp->anchorA = vLower;
		cp->separation = separationLower - radius;
		cp->id = id1;
	}

	{
		b2ManifoldPoint* cp = manifold.points + 1;
		cp->anchorA = vUpper;
		cp->separation = separationUpper - radius;
		cp->id = id2;
	}

	manifold.pointCount = 2;

	return manifold;
}

enum b2NormalType
{
	// This means the normal points in a direction that is non-smooth relative to a convex vertex and should be skipped
	b2_normalSkip,

	// This means the normal points in a direction that is smooth relative to a convex vertex and should be used for collision
	b2_normalAdmit,

	// This means the normal is in a region of a concave vertex and should be snapped to the segment normal
	b2_normalSnap
};

struct b2ChainSegmentParams
{
	b2Vec2 edge1;
	b2Vec2 normal0;
	b2Vec2 normal2;
	bool convex1;
	bool convex2;
};

// Evaluate Gauss map
// See https://box2d.org/posts/2020/06/ghost-collisions/
static enum b2NormalType b2ClassifyNormal( struct b2ChainSegmentParams params, b2Vec2 normal )
{
	const float sinTol = 0.01f;

	if ( b2Dot( normal, params.edge1 ) <= 0.0f )
	{
		// Normal points towards the segment tail
		if ( params.convex1 )
		{
			if ( b2Cross( normal, params.normal0 ) > sinTol )
			{
				return b2_normalSkip;
			}

			return b2_normalAdmit;
		}
		else
		{
			return b2_normalSnap;
		}
	}
	else
	{
		// Normal points towards segment head
		if ( params.convex2 )
		{
			if ( b2Cross( params.normal2, normal ) > sinTol )
			{
				return b2_normalSkip;
			}

			return b2_normalAdmit;
		}
		else
		{
			return b2_normalSnap;
		}
	}
}

b2Manifold b2CollideChainSegmentAndPolygon( const b2ChainSegment* segmentA, b2Transform xfA, const b2Polygon* polygonB,
											b2Transform xfB, b2DistanceCache* cache )
{
	b2Manifold manifold = { 0 };

	b2Transform xf = b2InvMulTransforms( xfA, xfB );

	b2Vec2 centroidB = b2TransformPoint( xf, polygonB->centroid );
	float radiusB = polygonB->radius;

	b2Vec2 p1 = segmentA->segment.point1;
	b2Vec2 p2 = segmentA->segment.point2;

	b2Vec2 edge1 = b2Normalize( b2Sub( p2, p1 ) );

	struct b2ChainSegmentParams smoothParams = { 0 };
	smoothParams.edge1 = edge1;

	const float convexTol = 0.01f;
	b2Vec2 edge0 = b2Normalize( b2Sub( p1, segmentA->ghost1 ) );
	smoothParams.normal0 = b2RightPerp( edge0 );
	smoothParams.convex1 = b2Cross( edge0, edge1 ) >= convexTol;

	b2Vec2 edge2 = b2Normalize( b2Sub( segmentA->ghost2, p2 ) );
	smoothParams.normal2 = b2RightPerp( edge2 );
	smoothParams.convex2 = b2Cross( edge1, edge2 ) >= convexTol;

	// Normal points to the right
	b2Vec2 normal1 = b2RightPerp( edge1 );
	bool behind1 = b2Dot( normal1, b2Sub( centroidB, p1 ) ) < 0.0f;
	bool behind0 = true;
	bool behind2 = true;
	if ( smoothParams.convex1 )
	{
		behind0 = b2Dot( smoothParams.normal0, b2Sub( centroidB, p1 ) ) < 0.0f;
	}

	if ( smoothParams.convex2 )
	{
		behind2 = b2Dot( smoothParams.normal2, b2Sub( centroidB, p2 ) ) < 0.0f;
	}

	if ( behind1 && behind0 && behind2 )
	{
		// one-sided collision
		return manifold;
	}

	// Get polygonB in frameA
	int32_t count = polygonB->count;
	b2Vec2 vertices[b2_maxPolygonVertices];
	b2Vec2 normals[b2_maxPolygonVertices];
	for ( int32_t i = 0; i < count; ++i )
	{
		vertices[i] = b2TransformPoint( xf, polygonB->vertices[i] );
		normals[i] = b2RotateVector( xf.q, polygonB->normals[i] );
	}

	// Distance doesn't work correctly with partial polygons
	b2DistanceInput input;
	input.proxyA = b2MakeProxy( &segmentA->segment.point1, 2, 0.0f );
	input.proxyB = b2MakeProxy( vertices, count, 0.0f );
	input.transformA = b2Transform_identity;
	input.transformB = b2Transform_identity;
	input.useRadii = false;

	b2DistanceOutput output = b2ShapeDistance( cache, &input, NULL, 0 );

	if ( output.distance > radiusB + b2_speculativeDistance )
	{
		return manifold;
	}

	// Snap concave normals for partial polygon
	b2Vec2 n0 = smoothParams.convex1 ? smoothParams.normal0 : normal1;
	b2Vec2 n2 = smoothParams.convex2 ? smoothParams.normal2 : normal1;

	// Index of incident vertex on polygon
	int32_t incidentIndex = -1;
	int32_t incidentNormal = -1;

	if ( behind1 == false && output.distance > 0.1f * b2_linearSlop )
	{
		// The closest features may be two vertices or an edge and a vertex even when there should
		// be face contact

		if ( cache->count == 1 )
		{
			// vertex-vertex collision
			b2Vec2 pA = output.pointA;
			b2Vec2 pB = output.pointB;

			b2Vec2 normal = b2Normalize( b2Sub( pB, pA ) );

			enum b2NormalType type = b2ClassifyNormal( smoothParams, normal );
			if ( type == b2_normalSkip )
			{
				return manifold;
			}

			if ( type == b2_normalAdmit )
			{
				manifold.normal = b2RotateVector( xfA.q, normal );
				b2ManifoldPoint* cp = manifold.points + 0;
				cp->anchorA = b2RotateVector( xfA.q, pA );
				cp->anchorB = b2Add( cp->anchorA, b2Sub( xfA.p, xfB.p ) );
				cp->point = b2Add( xfA.p, cp->anchorA );
				cp->separation = output.distance - radiusB;
				cp->id = B2_MAKE_ID( cache->indexA[0], cache->indexB[0] );
				manifold.pointCount = 1;
				return manifold;
			}

			// fall through b2_normalSnap
			incidentIndex = cache->indexB[0];
		}
		else
		{
			// vertex-edge collision
			B2_ASSERT( cache->count == 2 );

			int32_t ia1 = cache->indexA[0];
			int32_t ia2 = cache->indexA[1];
			int32_t ib1 = cache->indexB[0];
			int32_t ib2 = cache->indexB[1];

			if ( ia1 == ia2 )
			{
				// 1 point on A, expect 2 points on B
				B2_ASSERT( ib1 != ib2 );

				// Find polygon normal most aligned with vector between closest points.
				// This effectively sorts ib1 and ib2
				b2Vec2 normalB = b2Sub( output.pointA, output.pointB );
				float dot1 = b2Dot( normalB, normals[ib1] );
				float dot2 = b2Dot( normalB, normals[ib2] );
				int32_t ib = dot1 > dot2 ? ib1 : ib2;

				// Use accurate normal
				normalB = normals[ib];

				enum b2NormalType type = b2ClassifyNormal( smoothParams, b2Neg( normalB ) );
				if ( type == b2_normalSkip )
				{
					return manifold;
				}

				if ( type == b2_normalAdmit )
				{
					// Get polygon edge associated with normal
					ib1 = ib;
					ib2 = ib < count - 1 ? ib + 1 : 0;

					b2Vec2 b1 = vertices[ib1];
					b2Vec2 b2 = vertices[ib2];

					// Find incident segment vertex
					dot1 = b2Dot( normalB, b2Sub( p1, b1 ) );
					dot2 = b2Dot( normalB, b2Sub( p2, b1 ) );

					if ( dot1 < dot2 )
					{
						if ( b2Dot( n0, normalB ) < b2Dot( normal1, normalB ) )
						{
							// Neighbor is incident
							return manifold;
						}
					}
					else
					{
						if ( b2Dot( n2, normalB ) < b2Dot( normal1, normalB ) )
						{
							// Neighbor is incident
							return manifold;
						}
					}

					manifold =
						b2ClipSegments( b1, b2, p1, p2, normalB, radiusB, 0.0f, B2_MAKE_ID( ib1, 1 ), B2_MAKE_ID( ib2, 0 ) );
					manifold.normal = b2RotateVector( xfA.q, b2Neg( normalB ) );
					manifold.points[0].anchorA = b2RotateVector( xfA.q, manifold.points[0].anchorA );
					manifold.points[1].anchorA = b2RotateVector( xfA.q, manifold.points[1].anchorA );
					b2Vec2 pAB = b2Sub( xfA.p, xfB.p );
					manifold.points[0].anchorB = b2Add( manifold.points[0].anchorA, pAB );
					manifold.points[1].anchorB = b2Add( manifold.points[1].anchorA, pAB );
					manifold.points[0].point = b2Add( xfA.p, manifold.points[0].anchorA );
					manifold.points[1].point = b2Add( xfA.p, manifold.points[1].anchorA );
					return manifold;
				}

				// fall through b2_normalSnap
				incidentNormal = ib;
			}
			else
			{
				// Get index of incident polygonB vertex
				float dot1 = b2Dot( normal1, b2Sub( vertices[ib1], p1 ) );
				float dot2 = b2Dot( normal1, b2Sub( vertices[ib2], p2 ) );
				incidentIndex = dot1 < dot2 ? ib1 : ib2;
			}
		}
	}
	else
	{
		// SAT edge normal
		float edgeSeparation = FLT_MAX;

		for ( int32_t i = 0; i < count; ++i )
		{
			float s = b2Dot( normal1, b2Sub( vertices[i], p1 ) );
			if ( s < edgeSeparation )
			{
				edgeSeparation = s;
				incidentIndex = i;
			}
		}

		// Check convex neighbor for edge separation
		if ( smoothParams.convex1 )
		{
			float s0 = FLT_MAX;

			for ( int32_t i = 0; i < count; ++i )
			{
				float s = b2Dot( smoothParams.normal0, b2Sub( vertices[i], p1 ) );
				if ( s < s0 )
				{
					s0 = s;
				}
			}

			if ( s0 > edgeSeparation )
			{
				edgeSeparation = s0;

				// Indicate neighbor owns edge separation
				incidentIndex = -1;
			}
		}

		// Check convex neighbor for edge separation
		if ( smoothParams.convex2 )
		{
			float s2 = FLT_MAX;

			for ( int32_t i = 0; i < count; ++i )
			{
				float s = b2Dot( smoothParams.normal2, b2Sub( vertices[i], p2 ) );
				if ( s < s2 )
				{
					s2 = s;
				}
			}

			if ( s2 > edgeSeparation )
			{
				edgeSeparation = s2;

				// Indicate neighbor owns edge separation
				incidentIndex = -1;
			}
		}

		// SAT polygon normals
		float polygonSeparation = -FLT_MAX;
		int32_t referenceIndex = -1;

		for ( int32_t i = 0; i < count; ++i )
		{
			b2Vec2 n = normals[i];

			enum b2NormalType type = b2ClassifyNormal( smoothParams, b2Neg( n ) );
			if ( type != b2_normalAdmit )
			{
				continue;
			}

			// Check the infinite sides of the partial polygon
			// if ((smoothParams.convex1 && b2Cross(n0, n) > 0.0f) || (smoothParams.convex2 && b2Cross(n, n2) > 0.0f))
			//{
			//	continue;
			//}

			b2Vec2 p = vertices[i];
			float s = b2MinFloat( b2Dot( n, b2Sub( p2, p ) ), b2Dot( n, b2Sub( p1, p ) ) );

			if ( s > polygonSeparation )
			{
				polygonSeparation = s;
				referenceIndex = i;
			}
		}

		if ( polygonSeparation > edgeSeparation )
		{
			int32_t ia1 = referenceIndex;
			int32_t ia2 = ia1 < count - 1 ? ia1 + 1 : 0;
			b2Vec2 a1 = vertices[ia1];
			b2Vec2 a2 = vertices[ia2];

			b2Vec2 n = normals[ia1];

			float dot1 = b2Dot( n, b2Sub( p1, a1 ) );
			float dot2 = b2Dot( n, b2Sub( p2, a1 ) );

			if ( dot1 < dot2 )
			{
				if ( b2Dot( n0, n ) < b2Dot( normal1, n ) )
				{
					// Neighbor is incident
					return manifold;
				}
			}
			else
			{
				if ( b2Dot( n2, n ) < b2Dot( normal1, n ) )
				{
					// Neighbor is incident
					return manifold;
				}
			}

			manifold = b2ClipSegments( a1, a2, p1, p2, normals[ia1], radiusB, 0.0f, B2_MAKE_ID( ia1, 1 ), B2_MAKE_ID( ia2, 0 ) );
			manifold.normal = b2RotateVector( xfA.q, b2Neg( normals[ia1] ) );
			manifold.points[0].anchorA = b2RotateVector( xfA.q, manifold.points[0].anchorA );
			manifold.points[1].anchorA = b2RotateVector( xfA.q, manifold.points[1].anchorA );
			b2Vec2 pAB = b2Sub( xfA.p, xfB.p );
			manifold.points[0].anchorB = b2Add( manifold.points[0].anchorA, pAB );
			manifold.points[1].anchorB = b2Add( manifold.points[1].anchorA, pAB );
			manifold.points[0].point = b2Add( xfA.p, manifold.points[0].anchorA );
			manifold.points[1].point = b2Add( xfA.p, manifold.points[1].anchorA );
			return manifold;
		}

		if ( incidentIndex == -1 )
		{
			// neighboring segment is the separating axis
			return manifold;
		}

		// fall through segment normal axis
	}

	B2_ASSERT( incidentNormal != -1 || incidentIndex != -1 );

	// Segment normal

	// Find incident polygon normal: normal adjacent to deepest vertex that is most anti-parallel to segment normal
	b2Vec2 b1, b2;
	int32_t ib1, ib2;

	if ( incidentNormal != -1 )
	{
		ib1 = incidentNormal;
		ib2 = ib1 < count - 1 ? ib1 + 1 : 0;
		b1 = vertices[ib1];
		b2 = vertices[ib2];
	}
	else
	{
		int32_t i2 = incidentIndex;
		int32_t i1 = i2 > 0 ? i2 - 1 : count - 1;
		float d1 = b2Dot( normal1, normals[i1] );
		float d2 = b2Dot( normal1, normals[i2] );
		if ( d1 < d2 )
		{
			ib1 = i1, ib2 = i2;
			b1 = vertices[ib1];
			b2 = vertices[ib2];
		}
		else
		{
			ib1 = i2, ib2 = i2 < count - 1 ? i2 + 1 : 0;
			b1 = vertices[ib1];
			b2 = vertices[ib2];
		}
	}

	manifold = b2ClipSegments( p1, p2, b1, b2, normal1, 0.0f, radiusB, B2_MAKE_ID( 0, ib2 ), B2_MAKE_ID( 1, ib1 ) );
	manifold.normal = b2RotateVector( xfA.q, manifold.normal );
	manifold.points[0].anchorA = b2RotateVector( xfA.q, manifold.points[0].anchorA );
	manifold.points[1].anchorA = b2RotateVector( xfA.q, manifold.points[1].anchorA );
	b2Vec2 pAB = b2Sub( xfA.p, xfB.p );
	manifold.points[0].anchorB = b2Add( manifold.points[0].anchorA, pAB );
	manifold.points[1].anchorB = b2Add( manifold.points[1].anchorA, pAB );
	manifold.points[0].point = b2Add( xfA.p, manifold.points[0].anchorA );
	manifold.points[1].point = b2Add( xfA.p, manifold.points[1].anchorA );

	return manifold;
}