box2d_sys 0.2.1

Bindings for Box2D v3.0
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// SPDX-FileCopyrightText: 2023 Erin Catto
// SPDX-License-Identifier: MIT

#include "contact.h"

#include "array.h"
#include "body.h"
#include "core.h"
#include "island.h"
#include "shape.h"
#include "solver_set.h"
#include "table.h"
#include "world.h"

#include "box2d/collision.h"

#include <float.h>
#include <math.h>
#include <stddef.h>

B2_ARRAY_SOURCE( b2Contact, b2Contact );
B2_ARRAY_SOURCE( b2ContactSim, b2ContactSim );

// Contacts and determinism
// A deterministic simulation requires contacts to exist in the same order in b2Island no matter the thread count.
// The order must reproduce from run to run. This is necessary because the Gauss-Seidel constraint solver is order dependent.
//
// Creation:
// - Contacts are created using results from b2UpdateBroadPhasePairs
// - These results are ordered according to the order of the broad-phase move array
// - The move array is ordered according to the shape creation order using a bitset.
// - The island/shape/body order is determined by creation order
// - Logically contacts are only created for awake bodies, so they are immediately added to the awake contact array (serially)
//
// Island linking:
// - The awake contact array is built from the body-contact graph for all awake bodies in awake islands.
// - Awake contacts are solved in parallel and they generate contact state changes.
// - These state changes may link islands together using union find.
// - The state changes are ordered using a bit array that encompasses all contacts
// - As long as contacts are created in deterministic order, island link order is deterministic.
// - This keeps the order of contacts in islands deterministic

// Friction mixing law. The idea is to allow either shape to drive the friction to zero.
// For example, anything slides on ice.
static inline float b2MixFriction( float friction1, float friction2 )
{
	return sqrtf( friction1 * friction2 );
}

// Restitution mixing law. The idea is allow for anything to bounce off an inelastic surface.
// For example, a superball bounces on anything.
static inline float b2MixRestitution( float restitution1, float restitution2 )
{
	return restitution1 > restitution2 ? restitution1 : restitution2;
}

// todo make relative for all
// typedef b2Manifold b2ManifoldFcn(const b2Shape* shapeA, const b2Shape* shapeB, b2Transform xfB, b2DistanceCache* cache);
typedef b2Manifold b2ManifoldFcn( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
								  b2DistanceCache* cache );

struct b2ContactRegister
{
	b2ManifoldFcn* fcn;
	bool primary;
};

static struct b2ContactRegister s_registers[b2_shapeTypeCount][b2_shapeTypeCount];
static bool s_initialized = false;

static b2Manifold b2CircleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
									b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideCircles( &shapeA->circle, xfA, &shapeB->circle, xfB );
}

static b2Manifold b2CapsuleAndCircleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
											  b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideCapsuleAndCircle( &shapeA->capsule, xfA, &shapeB->circle, xfB );
}

static b2Manifold b2CapsuleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
									 b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideCapsules( &shapeA->capsule, xfA, &shapeB->capsule, xfB );
}

static b2Manifold b2PolygonAndCircleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
											  b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollidePolygonAndCircle( &shapeA->polygon, xfA, &shapeB->circle, xfB );
}

static b2Manifold b2PolygonAndCapsuleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
											   b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollidePolygonAndCapsule( &shapeA->polygon, xfA, &shapeB->capsule, xfB );
}

static b2Manifold b2PolygonManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
									 b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollidePolygons( &shapeA->polygon, xfA, &shapeB->polygon, xfB );
}

static b2Manifold b2SegmentAndCircleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
											  b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideSegmentAndCircle( &shapeA->segment, xfA, &shapeB->circle, xfB );
}

static b2Manifold b2SegmentAndCapsuleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
											   b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideSegmentAndCapsule( &shapeA->segment, xfA, &shapeB->capsule, xfB );
}

static b2Manifold b2SegmentAndPolygonManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
											   b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideSegmentAndPolygon( &shapeA->segment, xfA, &shapeB->polygon, xfB );
}

static b2Manifold b2ChainSegmentAndCircleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
												   b2DistanceCache* cache )
{
	B2_MAYBE_UNUSED( cache );
	return b2CollideChainSegmentAndCircle( &shapeA->chainSegment, xfA, &shapeB->circle, xfB );
}

static b2Manifold b2ChainSegmentAndCapsuleManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB,
													b2Transform xfB, b2DistanceCache* cache )
{
	return b2CollideChainSegmentAndCapsule( &shapeA->chainSegment, xfA, &shapeB->capsule, xfB, cache );
}

static b2Manifold b2ChainSegmentAndPolygonManifold( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB,
													b2Transform xfB, b2DistanceCache* cache )
{
	return b2CollideChainSegmentAndPolygon( &shapeA->chainSegment, xfA, &shapeB->polygon, xfB, cache );
}

static void b2AddType( b2ManifoldFcn* fcn, b2ShapeType type1, b2ShapeType type2 )
{
	B2_ASSERT( 0 <= type1 && type1 < b2_shapeTypeCount );
	B2_ASSERT( 0 <= type2 && type2 < b2_shapeTypeCount );

	s_registers[type1][type2].fcn = fcn;
	s_registers[type1][type2].primary = true;

	if ( type1 != type2 )
	{
		s_registers[type2][type1].fcn = fcn;
		s_registers[type2][type1].primary = false;
	}
}

void b2InitializeContactRegisters( void )
{
	if ( s_initialized == false )
	{
		b2AddType( b2CircleManifold, b2_circleShape, b2_circleShape );
		b2AddType( b2CapsuleAndCircleManifold, b2_capsuleShape, b2_circleShape );
		b2AddType( b2CapsuleManifold, b2_capsuleShape, b2_capsuleShape );
		b2AddType( b2PolygonAndCircleManifold, b2_polygonShape, b2_circleShape );
		b2AddType( b2PolygonAndCapsuleManifold, b2_polygonShape, b2_capsuleShape );
		b2AddType( b2PolygonManifold, b2_polygonShape, b2_polygonShape );
		b2AddType( b2SegmentAndCircleManifold, b2_segmentShape, b2_circleShape );
		b2AddType( b2SegmentAndCapsuleManifold, b2_segmentShape, b2_capsuleShape );
		b2AddType( b2SegmentAndPolygonManifold, b2_segmentShape, b2_polygonShape );
		b2AddType( b2ChainSegmentAndCircleManifold, b2_chainSegmentShape, b2_circleShape );
		b2AddType( b2ChainSegmentAndCapsuleManifold, b2_chainSegmentShape, b2_capsuleShape );
		b2AddType( b2ChainSegmentAndPolygonManifold, b2_chainSegmentShape, b2_polygonShape );
		s_initialized = true;
	}
}

void b2CreateContact( b2World* world, b2Shape* shapeA, b2Shape* shapeB )
{
	b2ShapeType type1 = shapeA->type;
	b2ShapeType type2 = shapeB->type;

	B2_ASSERT( 0 <= type1 && type1 < b2_shapeTypeCount );
	B2_ASSERT( 0 <= type2 && type2 < b2_shapeTypeCount );

	if ( s_registers[type1][type2].fcn == NULL )
	{
		// For example, no segment vs segment collision
		return;
	}

	if ( s_registers[type1][type2].primary == false )
	{
		// flip order
		b2CreateContact( world, shapeB, shapeA );
		return;
	}

	b2Body* bodyA = b2BodyArray_Get( &world->bodies, shapeA->bodyId );
	b2Body* bodyB = b2BodyArray_Get( &world->bodies, shapeB->bodyId );

	B2_ASSERT( bodyA->setIndex != b2_disabledSet && bodyB->setIndex != b2_disabledSet );
	B2_ASSERT( bodyA->setIndex != b2_staticSet || bodyB->setIndex != b2_staticSet );

	int setIndex;
	if ( bodyA->setIndex == b2_awakeSet || bodyB->setIndex == b2_awakeSet )
	{
		setIndex = b2_awakeSet;
	}
	else
	{
		// sleeping and non-touching contacts live in the disabled set
		// later if this set is found to be touching then the sleeping
		// islands will be linked and the contact moved to the merged island
		setIndex = b2_disabledSet;
	}

	b2SolverSet* set = b2SolverSetArray_Get( &world->solverSets, setIndex );

	// Create contact key and contact
	int contactId = b2AllocId( &world->contactIdPool );
	if ( contactId == world->contacts.count )
	{
		b2ContactArray_Push( &world->contacts, ( b2Contact ){ 0 } );
	}

	int shapeIdA = shapeA->id;
	int shapeIdB = shapeB->id;

	b2Contact* contact =  b2ContactArray_Get( &world->contacts, contactId );
	contact->contactId = contactId;
	contact->setIndex = setIndex;
	contact->colorIndex = B2_NULL_INDEX;
	contact->localIndex = set->contactSims.count;
	contact->islandId = B2_NULL_INDEX;
	contact->islandPrev = B2_NULL_INDEX;
	contact->islandNext = B2_NULL_INDEX;
	contact->shapeIdA = shapeIdA;
	contact->shapeIdB = shapeIdB;
	contact->isMarked = false;
	contact->flags = 0;

	if ( shapeA->isSensor || shapeB->isSensor )
	{
		contact->flags |= b2_contactSensorFlag;
	}

	if ( shapeA->enableSensorEvents || shapeB->enableSensorEvents )
	{
		contact->flags |= b2_contactEnableSensorEvents;
	}

	if ( shapeA->enableContactEvents || shapeB->enableContactEvents )
	{
		contact->flags |= b2_contactEnableContactEvents;
	}

	// Connect to body A
	{
		contact->edges[0].bodyId = shapeA->bodyId;
		contact->edges[0].prevKey = B2_NULL_INDEX;
		contact->edges[0].nextKey = bodyA->headContactKey;

		int keyA = ( contactId << 1 ) | 0;
		int headContactKey = bodyA->headContactKey;
		if ( headContactKey != B2_NULL_INDEX )
		{
			b2Contact* headContact = b2ContactArray_Get( &world->contacts, headContactKey >> 1 );
			headContact->edges[headContactKey & 1].prevKey = keyA;
		}
		bodyA->headContactKey = keyA;
		bodyA->contactCount += 1;
	}

	// Connect to body B
	{
		contact->edges[1].bodyId = shapeB->bodyId;
		contact->edges[1].prevKey = B2_NULL_INDEX;
		contact->edges[1].nextKey = bodyB->headContactKey;

		int keyB = ( contactId << 1 ) | 1;
		int headContactKey = bodyB->headContactKey;
		if ( bodyB->headContactKey != B2_NULL_INDEX )
		{
			b2Contact* headContact = b2ContactArray_Get( &world->contacts, headContactKey >> 1 );
			headContact->edges[headContactKey & 1].prevKey = keyB;
		}
		bodyB->headContactKey = keyB;
		bodyB->contactCount += 1;
	}

	// Add to pair set for fast lookup
	uint64_t pairKey = B2_SHAPE_PAIR_KEY( shapeIdA, shapeIdB );
	b2AddKey( &world->broadPhase.pairSet, pairKey );

	// Contacts are created as non-touching. Later if they are found to be touching
	// they will link islands and be moved into the constraint graph.
	b2ContactSim* contactSim = b2ContactSimArray_Add( &set->contactSims );
	contactSim->contactId = contactId;

#if B2_VALIDATE
	contactSim->bodyIdA = shapeA->bodyId;
	contactSim->bodyIdB = shapeB->bodyId;
#endif

	contactSim->bodySimIndexA = B2_NULL_INDEX;
	contactSim->bodySimIndexB = B2_NULL_INDEX;
	contactSim->invMassA = 0.0f;
	contactSim->invIA = 0.0f;
	contactSim->invMassB = 0.0f;
	contactSim->invIB = 0.0f;
	contactSim->shapeIdA = shapeIdA;
	contactSim->shapeIdB = shapeIdB;
	contactSim->cache = b2_emptyDistanceCache;
	contactSim->manifold = ( b2Manifold ){ 0 };
	contactSim->friction = b2MixFriction( shapeA->friction, shapeB->friction );
	contactSim->restitution = b2MixRestitution( shapeA->restitution, shapeB->restitution );
	contactSim->tangentSpeed = 0.0f;
	contactSim->simFlags = 0;

	if ( shapeA->enablePreSolveEvents || shapeB->enablePreSolveEvents )
	{
		contactSim->simFlags |= b2_simEnablePreSolveEvents;
	}
}

// A contact is destroyed when:
// - broad-phase proxies stop overlapping
// - a body is destroyed
// - a body is disabled
// - a body changes type from dynamic to kinematic or static
// - a shape is destroyed
// - contact filtering is modified
// - a shape becomes a sensor (check this!!!)
void b2DestroyContact( b2World* world, b2Contact* contact, bool wakeBodies )
{
	// Remove pair from set
	uint64_t pairKey = B2_SHAPE_PAIR_KEY( contact->shapeIdA, contact->shapeIdB );
	b2RemoveKey( &world->broadPhase.pairSet, pairKey );

	b2ContactEdge* edgeA = contact->edges + 0;
	b2ContactEdge* edgeB = contact->edges + 1;

	int bodyIdA = edgeA->bodyId;
	int bodyIdB = edgeB->bodyId;
	b2Body* bodyA = b2BodyArray_Get( &world->bodies, bodyIdA );
	b2Body* bodyB = b2BodyArray_Get( &world->bodies, bodyIdB );

	// if (contactListener && contact->IsTouching())
	//{
	//	contactListener->EndContact(contact);
	// }

	// Remove from body A
	if ( edgeA->prevKey != B2_NULL_INDEX )
	{
		b2Contact* prevContact = b2ContactArray_Get( &world->contacts, edgeA->prevKey >> 1 );
		b2ContactEdge* prevEdge = prevContact->edges + ( edgeA->prevKey & 1 );
		prevEdge->nextKey = edgeA->nextKey;
	}

	if ( edgeA->nextKey != B2_NULL_INDEX )
	{
		b2Contact* nextContact = b2ContactArray_Get( &world->contacts, edgeA->nextKey >> 1 );
		b2ContactEdge* nextEdge = nextContact->edges + ( edgeA->nextKey & 1 );
		nextEdge->prevKey = edgeA->prevKey;
	}

	int contactId = contact->contactId;

	int edgeKeyA = ( contactId << 1 ) | 0;
	if ( bodyA->headContactKey == edgeKeyA )
	{
		bodyA->headContactKey = edgeA->nextKey;
	}

	bodyA->contactCount -= 1;

	// Remove from body B
	if ( edgeB->prevKey != B2_NULL_INDEX )
	{
		b2Contact* prevContact = b2ContactArray_Get( &world->contacts, edgeB->prevKey >> 1 );
		b2ContactEdge* prevEdge = prevContact->edges + ( edgeB->prevKey & 1 );
		prevEdge->nextKey = edgeB->nextKey;
	}

	if ( edgeB->nextKey != B2_NULL_INDEX )
	{
		b2Contact* nextContact = b2ContactArray_Get( &world->contacts, edgeB->nextKey >> 1 );
		b2ContactEdge* nextEdge = nextContact->edges + ( edgeB->nextKey & 1 );
		nextEdge->prevKey = edgeB->prevKey;
	}

	int edgeKeyB = ( contactId << 1 ) | 1;
	if ( bodyB->headContactKey == edgeKeyB )
	{
		bodyB->headContactKey = edgeB->nextKey;
	}

	bodyB->contactCount -= 1;

	// Remove contact from the array that owns it
	if ( contact->islandId != B2_NULL_INDEX )
	{
		b2UnlinkContact( world, contact );
	}

	if ( contact->colorIndex != B2_NULL_INDEX )
	{
		// contact is an active constraint
		B2_ASSERT( contact->setIndex == b2_awakeSet );
		b2RemoveContactFromGraph( world, bodyIdA, bodyIdB, contact->colorIndex, contact->localIndex );
	}
	else
	{
		// contact is non-touching or is sleeping or is a sensor
		B2_ASSERT( contact->setIndex != b2_awakeSet || ( contact->flags & b2_contactTouchingFlag ) == 0 ||
				   ( contact->flags & b2_contactSensorFlag ) != 0 );
		b2SolverSet* set = b2SolverSetArray_Get( &world->solverSets, contact->setIndex );
		int movedIndex = b2ContactSimArray_RemoveSwap( &set->contactSims, contact->localIndex );
		if ( movedIndex != B2_NULL_INDEX )
		{
			b2ContactSim* movedContactSim = set->contactSims.data + contact->localIndex;
			b2Contact* movedContact = b2ContactArray_Get( &world->contacts, movedContactSim->contactId );
			movedContact->localIndex = contact->localIndex;
		}
	}

	contact->contactId = B2_NULL_INDEX;
	contact->setIndex = B2_NULL_INDEX;
	contact->colorIndex = B2_NULL_INDEX;
	contact->localIndex = B2_NULL_INDEX;

	b2FreeId( &world->contactIdPool, contactId );

	if ( wakeBodies )
	{
		b2WakeBody( world, bodyA );
		b2WakeBody( world, bodyB );
	}
}

b2ContactSim* b2GetContactSim( b2World* world, b2Contact* contact )
{
	if ( contact->setIndex == b2_awakeSet && contact->colorIndex != B2_NULL_INDEX )
	{
		// contact lives in constraint graph
		B2_ASSERT( 0 <= contact->colorIndex && contact->colorIndex < b2_graphColorCount );
		b2GraphColor* color = world->constraintGraph.colors + contact->colorIndex;
		return b2ContactSimArray_Get( &color->contactSims, contact->localIndex );
	}

	b2SolverSet* set = b2SolverSetArray_Get( &world->solverSets, contact->setIndex );
	return b2ContactSimArray_Get( &set->contactSims, contact->localIndex );
}

bool b2ShouldShapesCollide( b2Filter filterA, b2Filter filterB )
{
	if ( filterA.groupIndex == filterB.groupIndex && filterA.groupIndex != 0 )
	{
		return filterA.groupIndex > 0;
	}

	bool collide = ( filterA.maskBits & filterB.categoryBits ) != 0 && ( filterA.categoryBits & filterB.maskBits ) != 0;
	return collide;
}

static bool b2TestShapeOverlap( const b2Shape* shapeA, b2Transform xfA, const b2Shape* shapeB, b2Transform xfB,
								b2DistanceCache* cache )
{
	b2DistanceInput input;
	input.proxyA = b2MakeShapeDistanceProxy( shapeA );
	input.proxyB = b2MakeShapeDistanceProxy( shapeB );
	input.transformA = xfA;
	input.transformB = xfB;
	input.useRadii = true;

	b2DistanceOutput output = b2ShapeDistance( cache, &input, NULL, 0 );

	return output.distance < 10.0f * FLT_EPSILON;
}

// Update the contact manifold and touching status. Also updates sensor overlap.
// Note: do not assume the shape AABBs are overlapping or are valid.
bool b2UpdateContact( b2World* world, b2ContactSim* contactSim, b2Shape* shapeA, b2Transform transformA, b2Vec2 centerOffsetA,
					  b2Shape* shapeB, b2Transform transformB, b2Vec2 centerOffsetB )
{
	bool touching;

	// Is this contact a sensor?
	if ( shapeA->isSensor || shapeB->isSensor )
	{
		// Sensors don't generate manifolds or hit events
		touching = b2TestShapeOverlap( shapeA, transformA, shapeB, transformB, &contactSim->cache );
	}
	else
	{
		b2Manifold oldManifold = contactSim->manifold;

		// Compute TOI
		b2ManifoldFcn* fcn = s_registers[shapeA->type][shapeB->type].fcn;

		contactSim->manifold = fcn( shapeA, transformA, shapeB, transformB, &contactSim->cache );

		int pointCount = contactSim->manifold.pointCount;
		touching = pointCount > 0;

		if ( touching && world->preSolveFcn && ( contactSim->simFlags & b2_simEnablePreSolveEvents ) != 0 )
		{
			b2ShapeId shapeIdA = { shapeA->id + 1, world->worldId, shapeA->revision };
			b2ShapeId shapeIdB = { shapeB->id + 1, world->worldId, shapeB->revision };

			// this call assumes thread safety
			touching = world->preSolveFcn( shapeIdA, shapeIdB, &contactSim->manifold, world->preSolveContext );
			if ( touching == false )
			{
				// disable contact
				contactSim->manifold.pointCount = 0;
			}
		}

		if ( touching && ( shapeA->enableHitEvents || shapeB->enableHitEvents ) )
		{
			contactSim->simFlags |= b2_simEnableHitEvent;
		}
		else
		{
			contactSim->simFlags &= ~b2_simEnableHitEvent;
		}

		// Match old contact ids to new contact ids and copy the
		// stored impulses to warm start the solver.
		for ( int i = 0; i < pointCount; ++i )
		{
			b2ManifoldPoint* mp2 = contactSim->manifold.points + i;

			// shift anchors to be center of mass relative
			mp2->anchorA = b2Sub( mp2->anchorA, centerOffsetA );
			mp2->anchorB = b2Sub( mp2->anchorB, centerOffsetB );

			mp2->normalImpulse = 0.0f;
			mp2->tangentImpulse = 0.0f;
			mp2->maxNormalImpulse = 0.0f;
			mp2->normalVelocity = 0.0f;
			mp2->persisted = false;

			uint16_t id2 = mp2->id;

			for ( int j = 0; j < oldManifold.pointCount; ++j )
			{
				b2ManifoldPoint* mp1 = oldManifold.points + j;

				if ( mp1->id == id2 )
				{
					mp2->normalImpulse = mp1->normalImpulse;
					mp2->tangentImpulse = mp1->tangentImpulse;
					mp2->persisted = true;
					break;
				}
			}
		}
	}

	if ( touching )
	{
		contactSim->simFlags |= b2_simTouchingFlag;
	}
	else
	{
		contactSim->simFlags &= ~b2_simTouchingFlag;
	}

	return touching;
}