pub struct World { /* private fields */ }
Expand description
Stores and exposes operations on entities, components, resources, and their associated metadata.
Each Entity
has a set of unique components, based on their type.
Entity components can be created, updated, removed, and queried using a given
For complex access patterns involving SystemParam
,
consider using SystemState
.
To mutate different parts of the world simultaneously,
use World::resource_scope
or SystemState
.
§Resources
Worlds can also store Resource
s,
which are unique instances of a given type that don’t belong to a specific Entity.
There are also non send resources, which can only be accessed on the main thread.
See Resource
for usage.
Implementations§
Source§impl World
impl World
Sourcepub fn register_event_key<E>(&mut self) -> EventKeywhere
E: Event,
pub fn register_event_key<E>(&mut self) -> EventKeywhere
E: Event,
Generates the EventKey
for this event type.
If this type has already been registered,
this will return the existing EventKey
.
This is used by various dynamically typed observer APIs,
such as DeferredWorld::trigger_raw
.
Source§impl World
impl World
Sourcepub fn add_observer<E, B, M>(
&mut self,
system: impl IntoObserverSystem<E, B, M>,
) -> EntityWorldMut<'_>
pub fn add_observer<E, B, M>( &mut self, system: impl IntoObserverSystem<E, B, M>, ) -> EntityWorldMut<'_>
Spawns a “global” Observer
which will watch for the given event.
Returns its Entity
as a EntityWorldMut
.
system
can be any system whose first parameter is On
.
§Example
#[derive(Component)]
struct A;
world.add_observer(|_: On<Add, A>| {
// ...
});
world.add_observer(|_: On<Remove, A>| {
// ...
});
Calling observe
on the returned
EntityWorldMut
will observe the observer itself, which you very
likely do not want.
§Panics
Panics if the given system is an exclusive system.
Sourcepub fn trigger<'a, E>(&mut self, event: E)
pub fn trigger<'a, E>(&mut self, event: E)
Triggers the given Event
, which will run any Observer
s watching for it.
For a variant that borrows the event
rather than consuming it, use World::trigger_ref
instead.
Sourcepub fn trigger_targets<'a>(&mut self, event: impl Event : Default>)
👎Deprecated since 0.17.0: Use World::trigger
instead.
pub fn trigger_targets<'a>(&mut self, event: impl Event : Default>)
World::trigger
instead.A deprecated alias for trigger
to ease migration.
Instead of specifying the trigger target separately, information about the target of the event is embedded in the data held by the event type itself.
Sourcepub fn trigger_with<'a, E>(
&mut self,
event: E,
trigger: <E as Event>::Trigger<'a>,
)where
E: Event,
pub fn trigger_with<'a, E>(
&mut self,
event: E,
trigger: <E as Event>::Trigger<'a>,
)where
E: Event,
Triggers the given Event
using the given Trigger
, which will run any Observer
s watching for it.
For a variant that borrows the event
rather than consuming it, use World::trigger_ref
instead.
Sourcepub fn trigger_ref<'a, E>(&mut self, event: &mut E)
pub fn trigger_ref<'a, E>(&mut self, event: &mut E)
Triggers the given mutable Event
reference, which will run any Observer
s watching for it.
Compared to World::trigger
, this method is most useful when it’s necessary to check
or use the event after it has been modified by observers.
Sourcepub fn trigger_ref_with<'a, E>(
&mut self,
event: &mut E,
trigger: &mut <E as Event>::Trigger<'a>,
)where
E: Event,
pub fn trigger_ref_with<'a, E>(
&mut self,
event: &mut E,
trigger: &mut <E as Event>::Trigger<'a>,
)where
E: Event,
Triggers the given mutable Event
reference using the given mutable Trigger
reference, which
will run any Observer
s watching for it.
Compared to World::trigger
, this method is most useful when it’s necessary to check
or use the event after it has been modified by observers.
Source§impl World
impl World
Sourcepub fn register_system<I, O, M>(
&mut self,
system: impl IntoSystem<I, O, M> + 'static,
) -> SystemId<I, O>where
I: SystemInput + 'static,
O: 'static,
pub fn register_system<I, O, M>(
&mut self,
system: impl IntoSystem<I, O, M> + 'static,
) -> SystemId<I, O>where
I: SystemInput + 'static,
O: 'static,
Registers a system and returns a SystemId
so it can later be called by World::run_system
.
It’s possible to register multiple copies of the same system by calling this function
multiple times. If that’s not what you want, consider using World::register_system_cached
instead.
This is different from adding systems to a Schedule
,
because the SystemId
that is returned can be used anywhere in the World
to run the associated system.
This allows for running systems in a pushed-based fashion.
Using a Schedule
is still preferred for most cases
due to its better performance and ability to run non-conflicting systems simultaneously.
Sourcepub fn register_boxed_system<I, O>(
&mut self,
system: Box<dyn System<Out = O, In = I>>,
) -> SystemId<I, O>where
I: SystemInput + 'static,
O: 'static,
pub fn register_boxed_system<I, O>(
&mut self,
system: Box<dyn System<Out = O, In = I>>,
) -> SystemId<I, O>where
I: SystemInput + 'static,
O: 'static,
Similar to Self::register_system
, but allows passing in a BoxedSystem
.
This is useful if the IntoSystem
implementor has already been turned into a
System
trait object and put in a Box
.
Sourcepub fn unregister_system<I, O>(
&mut self,
id: SystemId<I, O>,
) -> Result<RemovedSystem<I, O>, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
pub fn unregister_system<I, O>(
&mut self,
id: SystemId<I, O>,
) -> Result<RemovedSystem<I, O>, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
Removes a registered system and returns the system, if it exists.
After removing a system, the SystemId
becomes invalid and attempting to use it afterwards will result in errors.
Re-adding the removed system will register it on a new SystemId
.
If no system corresponds to the given SystemId
, this method returns an error.
Systems are also not allowed to remove themselves, this returns an error too.
Sourcepub fn run_system<O>(
&mut self,
id: SystemId<(), O>,
) -> Result<O, RegisteredSystemError<(), O>>where
O: 'static,
pub fn run_system<O>(
&mut self,
id: SystemId<(), O>,
) -> Result<O, RegisteredSystemError<(), O>>where
O: 'static,
Run stored systems by their SystemId
.
Before running a system, it must first be registered.
The method World::register_system
stores a given system and returns a SystemId
.
This is different from RunSystemOnce::run_system_once
,
because it keeps local state between calls and change detection works correctly.
Also runs any queued-up commands.
In order to run a chained system with an input, use World::run_system_with
instead.
§Examples
§Running a system
fn increment(mut counter: Local<u8>) {
*counter += 1;
println!("{}", *counter);
}
let mut world = World::default();
let counter_one = world.register_system(increment);
let counter_two = world.register_system(increment);
world.run_system(counter_one); // -> 1
world.run_system(counter_one); // -> 2
world.run_system(counter_two); // -> 1
§Change detection
#[derive(Resource, Default)]
struct ChangeDetector;
let mut world = World::default();
world.init_resource::<ChangeDetector>();
let detector = world.register_system(|change_detector: ResMut<ChangeDetector>| {
if change_detector.is_changed() {
println!("Something happened!");
} else {
println!("Nothing happened.");
}
});
// Resources are changed when they are first added
let _ = world.run_system(detector); // -> Something happened!
let _ = world.run_system(detector); // -> Nothing happened.
world.resource_mut::<ChangeDetector>().set_changed();
let _ = world.run_system(detector); // -> Something happened!
§Getting system output
#[derive(Resource)]
struct PlayerScore(i32);
#[derive(Resource)]
struct OpponentScore(i32);
fn get_player_score(player_score: Res<PlayerScore>) -> i32 {
player_score.0
}
fn get_opponent_score(opponent_score: Res<OpponentScore>) -> i32 {
opponent_score.0
}
let mut world = World::default();
world.insert_resource(PlayerScore(3));
world.insert_resource(OpponentScore(2));
let scoring_systems = [
("player", world.register_system(get_player_score)),
("opponent", world.register_system(get_opponent_score)),
];
for (label, scoring_system) in scoring_systems {
println!("{label} has score {}", world.run_system(scoring_system).expect("system succeeded"));
}
Sourcepub fn run_system_with<I, O>(
&mut self,
id: SystemId<I, O>,
input: <I as SystemInput>::Inner<'_>,
) -> Result<O, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
pub fn run_system_with<I, O>(
&mut self,
id: SystemId<I, O>,
input: <I as SystemInput>::Inner<'_>,
) -> Result<O, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
Run a stored chained system by its SystemId
, providing an input value.
Before running a system, it must first be registered.
The method World::register_system
stores a given system and returns a SystemId
.
Also runs any queued-up commands.
§Examples
fn increment(In(increment_by): In<u8>, mut counter: Local<u8>) -> u8 {
*counter += increment_by;
*counter
}
let mut world = World::default();
let counter_one = world.register_system(increment);
let counter_two = world.register_system(increment);
assert_eq!(world.run_system_with(counter_one, 1).unwrap(), 1);
assert_eq!(world.run_system_with(counter_one, 20).unwrap(), 21);
assert_eq!(world.run_system_with(counter_two, 30).unwrap(), 30);
See World::run_system
for more examples.
Sourcepub fn register_system_cached<I, O, M, S>(
&mut self,
system: S,
) -> SystemId<I, O>where
I: SystemInput + 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
pub fn register_system_cached<I, O, M, S>(
&mut self,
system: S,
) -> SystemId<I, O>where
I: SystemInput + 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
Registers a system or returns its cached SystemId
.
If you want to run the system immediately and you don’t need its SystemId
, see
World::run_system_cached
.
The first time this function is called for a particular system, it will register it and
store its SystemId
in a CachedSystemId
resource for later. If you would rather
manage the SystemId
yourself, or register multiple copies of the same system, use
World::register_system
instead.
§Limitations
This function only accepts ZST (zero-sized) systems to guarantee that any two systems of the same type must be equal. This means that closures that capture the environment, and function pointers, are not accepted.
If you want to access values from the environment within a system, consider passing them in
as inputs via World::run_system_cached_with
. If that’s not an option, consider
World::register_system
instead.
Sourcepub fn unregister_system_cached<I, O, M, S>(
&mut self,
_system: S,
) -> Result<RemovedSystem<I, O>, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
pub fn unregister_system_cached<I, O, M, S>(
&mut self,
_system: S,
) -> Result<RemovedSystem<I, O>, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
Removes a cached system and its CachedSystemId
resource.
See World::register_system_cached
for more information.
Sourcepub fn run_system_cached<O, M, S>(
&mut self,
system: S,
) -> Result<O, RegisteredSystemError<(), O>>where
O: 'static,
S: IntoSystem<(), O, M> + 'static,
pub fn run_system_cached<O, M, S>(
&mut self,
system: S,
) -> Result<O, RegisteredSystemError<(), O>>where
O: 'static,
S: IntoSystem<(), O, M> + 'static,
Runs a cached system, registering it if necessary.
See World::register_system_cached
for more information.
Sourcepub fn run_system_cached_with<I, O, M, S>(
&mut self,
system: S,
input: <I as SystemInput>::Inner<'_>,
) -> Result<O, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
pub fn run_system_cached_with<I, O, M, S>(
&mut self,
system: S,
input: <I as SystemInput>::Inner<'_>,
) -> Result<O, RegisteredSystemError<I, O>>where
I: SystemInput + 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
Runs a cached system with an input, registering it if necessary.
See World::register_system_cached
for more information.
Source§impl World
impl World
Sourcepub fn get_reflect(
&self,
entity: Entity,
type_id: TypeId,
) -> Result<&(dyn Reflect + 'static), GetComponentReflectError>
pub fn get_reflect( &self, entity: Entity, type_id: TypeId, ) -> Result<&(dyn Reflect + 'static), GetComponentReflectError>
Retrieves a reference to the given entity
’s Component
of the given type_id
using
reflection.
Requires implementing Reflect
for the Component
(e.g., using #[derive(Reflect)
)
and app.register_type::<TheComponent>()
to have been called1.
If you want to call this with a ComponentId
, see World::components
and Components::get_id
to get
the corresponding TypeId
.
Also see the crate documentation for bevy_reflect
for more information on
Reflect
and bevy’s reflection capabilities.
§Errors
See GetComponentReflectError
for the possible errors and their descriptions.
§Example
use bevy_ecs::prelude::*;
use bevy_reflect::Reflect;
use std::any::TypeId;
// define a `Component` and derive `Reflect` for it
#[derive(Component, Reflect)]
struct MyComponent;
// create a `World` for this example
let mut world = World::new();
// Note: This is usually handled by `App::register_type()`, but this example cannot use `App`.
world.init_resource::<AppTypeRegistry>();
world.get_resource_mut::<AppTypeRegistry>().unwrap().write().register::<MyComponent>();
// spawn an entity with a `MyComponent`
let entity = world.spawn(MyComponent).id();
// retrieve a reflected reference to the entity's `MyComponent`
let comp_reflected: &dyn Reflect = world.get_reflect(entity, TypeId::of::<MyComponent>()).unwrap();
// make sure we got the expected type
assert!(comp_reflected.is::<MyComponent>());
§Note
Requires the bevy_reflect
feature (included in the default features).
More specifically: Requires
TypeData
forReflectFromPtr
to be registered for the giventype_id
, which is automatically handled when derivingReflect
and callingApp::register_type
. ↩
Sourcepub fn get_reflect_mut(
&mut self,
entity: Entity,
type_id: TypeId,
) -> Result<Mut<'_, dyn Reflect>, GetComponentReflectError>
pub fn get_reflect_mut( &mut self, entity: Entity, type_id: TypeId, ) -> Result<Mut<'_, dyn Reflect>, GetComponentReflectError>
Retrieves a mutable reference to the given entity
’s Component
of the given type_id
using
reflection.
Requires implementing Reflect
for the Component
(e.g., using #[derive(Reflect)
)
and app.register_type::<TheComponent>()
to have been called.
This is the mutable version of World::get_reflect
, see its docs for more information
and an example.
Just calling this method does not trigger change detection.
§Errors
See GetComponentReflectError
for the possible errors and their descriptions.
§Example
See the documentation for World::get_reflect
.
§Note
Requires the feature bevy_reflect
(included in the default features).
Source§impl World
impl World
Sourcepub fn new() -> World
pub fn new() -> World
Creates a new empty World
.
§Panics
If usize::MAX
World
s have been created.
This guarantee allows System Parameters to safely uniquely identify a World
,
since its WorldId
is unique
Examples found in repository?
157fn save_scene_system(world: &mut World) {
158 // Scenes can be created from any ECS World.
159 // You can either create a new one for the scene or use the current World.
160 // For demonstration purposes, we'll create a new one.
161 let mut scene_world = World::new();
162
163 // The `TypeRegistry` resource contains information about all registered types (including components).
164 // This is used to construct scenes, so we'll want to ensure that our previous type registrations
165 // exist in this new scene world as well.
166 // To do this, we can simply clone the `AppTypeRegistry` resource.
167 let type_registry = world.resource::<AppTypeRegistry>().clone();
168 scene_world.insert_resource(type_registry);
169
170 let mut component_b = ComponentB::from_world(world);
171 component_b.value = "hello".to_string();
172 scene_world.spawn((
173 component_b,
174 ComponentA { x: 1.0, y: 2.0 },
175 Transform::IDENTITY,
176 Name::new("joe"),
177 ));
178 scene_world.spawn(ComponentA { x: 3.0, y: 4.0 });
179 scene_world.insert_resource(ResourceA { score: 1 });
180
181 // With our sample world ready to go, we can now create our scene using DynamicScene or DynamicSceneBuilder.
182 // For simplicity, we will create our scene using DynamicScene:
183 let scene = DynamicScene::from_world(&scene_world);
184
185 // Scenes can be serialized like this:
186 let type_registry = world.resource::<AppTypeRegistry>();
187 let type_registry = type_registry.read();
188 let serialized_scene = scene.serialize(&type_registry).unwrap();
189
190 // Showing the scene in the console
191 info!("{}", serialized_scene);
192
193 // Writing the scene to a new file. Using a task to avoid calling the filesystem APIs in a system
194 // as they are blocking.
195 //
196 // This can't work in Wasm as there is no filesystem access.
197 #[cfg(not(target_arch = "wasm32"))]
198 IoTaskPool::get()
199 .spawn(async move {
200 // Write the scene RON data to file
201 File::create(format!("assets/{NEW_SCENE_FILE_PATH}"))
202 .and_then(|mut file| file.write(serialized_scene.as_bytes()))
203 .expect("Error while writing scene to file");
204 })
205 .detach();
206}
More examples
51fn main() {
52 let mut world = World::new();
53 let mut lines = std::io::stdin().lines();
54 let mut component_names = HashMap::<String, ComponentId>::new();
55 let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57 println!("{PROMPT}");
58 loop {
59 print!("\n> ");
60 let _ = std::io::stdout().flush();
61 let Some(Ok(line)) = lines.next() else {
62 return;
63 };
64
65 if line.is_empty() {
66 return;
67 };
68
69 let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70 match &line.chars().next() {
71 Some('c') => println!("{COMPONENT_PROMPT}"),
72 Some('s') => println!("{ENTITY_PROMPT}"),
73 Some('q') => println!("{QUERY_PROMPT}"),
74 _ => println!("{PROMPT}"),
75 }
76 continue;
77 };
78
79 match &first[0..1] {
80 "c" => {
81 rest.split(',').for_each(|component| {
82 let mut component = component.split_whitespace();
83 let Some(name) = component.next() else {
84 return;
85 };
86 let size = match component.next().map(str::parse) {
87 Some(Ok(size)) => size,
88 _ => 0,
89 };
90 // Register our new component to the world with a layout specified by it's size
91 // SAFETY: [u64] is Send + Sync
92 let id = world.register_component_with_descriptor(unsafe {
93 ComponentDescriptor::new_with_layout(
94 name.to_string(),
95 StorageType::Table,
96 Layout::array::<u64>(size).unwrap(),
97 None,
98 true,
99 ComponentCloneBehavior::Default,
100 )
101 });
102 let Some(info) = world.components().get_info(id) else {
103 return;
104 };
105 component_names.insert(name.to_string(), id);
106 component_info.insert(id, info.clone());
107 println!("Component {} created with id: {}", name, id.index());
108 });
109 }
110 "s" => {
111 let mut to_insert_ids = Vec::new();
112 let mut to_insert_data = Vec::new();
113 rest.split(',').for_each(|component| {
114 let mut component = component.split_whitespace();
115 let Some(name) = component.next() else {
116 return;
117 };
118
119 // Get the id for the component with the given name
120 let Some(&id) = component_names.get(name) else {
121 println!("Component {name} does not exist");
122 return;
123 };
124
125 // Calculate the length for the array based on the layout created for this component id
126 let info = world.components().get_info(id).unwrap();
127 let len = info.layout().size() / size_of::<u64>();
128 let mut values: Vec<u64> = component
129 .take(len)
130 .filter_map(|value| value.parse::<u64>().ok())
131 .collect();
132 values.resize(len, 0);
133
134 // Collect the id and array to be inserted onto our entity
135 to_insert_ids.push(id);
136 to_insert_data.push(values);
137 });
138
139 let mut entity = world.spawn_empty();
140
141 // Construct an `OwningPtr` for each component in `to_insert_data`
142 let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144 // SAFETY:
145 // - Component ids have been taken from the same world
146 // - Each array is created to the layout specified in the world
147 unsafe {
148 entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149 }
150
151 println!("Entity spawned with id: {}", entity.id());
152 }
153 "q" => {
154 let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155 parse_query(rest, &mut builder, &component_names);
156 let mut query = builder.build();
157 query.iter_mut(&mut world).for_each(|filtered_entity| {
158 let terms = filtered_entity
159 .access()
160 .try_iter_component_access()
161 .unwrap()
162 .map(|component_access| {
163 let id = *component_access.index();
164 let ptr = filtered_entity.get_by_id(id).unwrap();
165 let info = component_info.get(&id).unwrap();
166 let len = info.layout().size() / size_of::<u64>();
167
168 // SAFETY:
169 // - All components are created with layout [u64]
170 // - len is calculated from the component descriptor
171 let data = unsafe {
172 std::slice::from_raw_parts_mut(
173 ptr.assert_unique().as_ptr().cast::<u64>(),
174 len,
175 )
176 };
177
178 // If we have write access, increment each value once
179 if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180 data.iter_mut().for_each(|data| {
181 *data += 1;
182 });
183 }
184
185 format!("{}: {:?}", info.name(), data[0..len].to_vec())
186 })
187 .collect::<Vec<_>>()
188 .join(", ");
189
190 println!("{}: {}", filtered_entity.id(), terms);
191 });
192 }
193 _ => continue,
194 }
195 }
196}
36fn main() {
37 // Operating on a raw `World` and running systems one at a time
38 // is great for writing tests and teaching abstract concepts!
39 let mut world = World::new();
40
41 // We're going to spawn a few entities and relate them to each other in a complex way.
42 // To start, Bob will target Alice, Charlie will target Bob,
43 // and Alice will target Charlie. This creates a loop in the relationship graph.
44 //
45 // Then, we'll spawn Devon, who will target Charlie,
46 // creating a more complex graph with a branching structure.
47 fn spawning_entities_with_relationships(mut commands: Commands) {
48 // Calling .id() after spawning an entity will return the `Entity` identifier of the spawned entity,
49 // even though the entity itself is not yet instantiated in the world.
50 // This works because Commands will reserve the entity ID before actually spawning the entity,
51 // through the use of atomic counters.
52 let alice = commands.spawn(Name::new("Alice")).id();
53 // Relations are just components, so we can add them into the bundle that we're spawning.
54 let bob = commands.spawn((Name::new("Bob"), Targeting(alice))).id();
55
56 // The `with_related` and `with_related_entities` helper methods on `EntityCommands` can be used to add relations in a more ergonomic way.
57 let charlie = commands
58 .spawn((Name::new("Charlie"), Targeting(bob)))
59 // The `with_related` method will spawn a bundle with `Targeting` relationship
60 .with_related::<Targeting>(Name::new("James"))
61 // The `with_related_entities` method will automatically add the `Targeting` component to any entities spawned within the closure,
62 // targeting the entity that we're calling `with_related` on.
63 .with_related_entities::<Targeting>(|related_spawner_commands| {
64 // We could spawn multiple entities here, and they would all target `charlie`.
65 related_spawner_commands.spawn(Name::new("Devon"));
66 })
67 .id();
68
69 // Simply inserting the `Targeting` component will automatically create and update the `TargetedBy` component on the target entity.
70 // We can do this at any point; not just when the entity is spawned.
71 commands.entity(alice).insert(Targeting(charlie));
72 }
73
74 world
75 .run_system_once(spawning_entities_with_relationships)
76 .unwrap();
77
78 fn debug_relationships(
79 // Not all of our entities are targeted by something, so we use `Option` in our query to handle this case.
80 relations_query: Query<(&Name, &Targeting, Option<&TargetedBy>)>,
81 name_query: Query<&Name>,
82 ) {
83 let mut relationships = String::new();
84
85 for (name, targeting, maybe_targeted_by) in relations_query.iter() {
86 let targeting_name = name_query.get(targeting.0).unwrap();
87 let targeted_by_string = if let Some(targeted_by) = maybe_targeted_by {
88 let mut vec_of_names = Vec::<&Name>::new();
89
90 for entity in targeted_by.iter() {
91 let name = name_query.get(entity).unwrap();
92 vec_of_names.push(name);
93 }
94
95 // Convert this to a nice string for printing.
96 let vec_of_str: Vec<&str> = vec_of_names.iter().map(|name| name.as_str()).collect();
97 vec_of_str.join(", ")
98 } else {
99 "nobody".to_string()
100 };
101
102 relationships.push_str(&format!(
103 "{name} is targeting {targeting_name}, and is targeted by {targeted_by_string}\n",
104 ));
105 }
106
107 println!("{relationships}");
108 }
109
110 world.run_system_once(debug_relationships).unwrap();
111
112 // Demonstrates how to correctly mutate relationships.
113 // Relationship components are immutable! We can't query for the `Targeting` component mutably and modify it directly,
114 // but we can insert a new `Targeting` component to replace the old one.
115 // This allows the hooks on the `Targeting` component to update the `TargetedBy` component correctly.
116 // The `TargetedBy` component will be updated automatically!
117 fn mutate_relationships(name_query: Query<(Entity, &Name)>, mut commands: Commands) {
118 // Let's find Devon by doing a linear scan of the entity names.
119 let devon = name_query
120 .iter()
121 .find(|(_entity, name)| name.as_str() == "Devon")
122 .unwrap()
123 .0;
124
125 let alice = name_query
126 .iter()
127 .find(|(_entity, name)| name.as_str() == "Alice")
128 .unwrap()
129 .0;
130
131 println!("Making Devon target Alice.\n");
132 commands.entity(devon).insert(Targeting(alice));
133 }
134
135 world.run_system_once(mutate_relationships).unwrap();
136 world.run_system_once(debug_relationships).unwrap();
137
138 // Systems can return errors,
139 // which can be used to signal that something went wrong during the system's execution.
140 #[derive(Debug)]
141 #[expect(
142 dead_code,
143 reason = "Rust considers types that are only used by their debug trait as dead code."
144 )]
145 struct TargetingCycle {
146 initial_entity: Entity,
147 visited: EntityHashSet,
148 }
149
150 /// Bevy's relationships come with all sorts of useful methods for traversal.
151 /// Here, we're going to look for cycles using a depth-first search.
152 fn check_for_cycles(
153 // We want to check every entity for cycles
154 query_to_check: Query<Entity, With<Targeting>>,
155 // Fetch the names for easier debugging.
156 name_query: Query<&Name>,
157 // The targeting_query allows us to traverse the relationship graph.
158 targeting_query: Query<&Targeting>,
159 ) -> Result<(), TargetingCycle> {
160 for initial_entity in query_to_check.iter() {
161 let mut visited = EntityHashSet::new();
162 let mut targeting_name = name_query.get(initial_entity).unwrap().clone();
163 println!("Checking for cycles starting at {targeting_name}",);
164
165 // There's all sorts of methods like this; check the `Query` docs for more!
166 // This would also be easy to do by just manually checking the `Targeting` component,
167 // and calling `query.get(targeted_entity)` on the entity that it targets in a loop.
168 for targeting in targeting_query.iter_ancestors(initial_entity) {
169 let target_name = name_query.get(targeting).unwrap();
170 println!("{targeting_name} is targeting {target_name}",);
171 targeting_name = target_name.clone();
172
173 if !visited.insert(targeting) {
174 return Err(TargetingCycle {
175 initial_entity,
176 visited,
177 });
178 }
179 }
180 }
181
182 // If we've checked all the entities and haven't found a cycle, we're good!
183 Ok(())
184 }
185
186 // Calling `world.run_system_once` on systems which return Results gives us two layers of errors:
187 // the first checks if running the system failed, and the second checks if the system itself returned an error.
188 // We're unwrapping the first, but checking the output of the system itself.
189 let cycle_result = world.run_system_once(check_for_cycles).unwrap();
190 println!("{cycle_result:?} \n");
191 // We deliberately introduced a cycle during spawning!
192 assert!(cycle_result.is_err());
193
194 // Now, let's demonstrate removing relationships and break the cycle.
195 fn untarget(mut commands: Commands, name_query: Query<(Entity, &Name)>) {
196 // Let's find Charlie by doing a linear scan of the entity names.
197 let charlie = name_query
198 .iter()
199 .find(|(_entity, name)| name.as_str() == "Charlie")
200 .unwrap()
201 .0;
202
203 // We can remove the `Targeting` component to remove the relationship
204 // and break the cycle we saw earlier.
205 println!("Removing Charlie's targeting relationship.\n");
206 commands.entity(charlie).remove::<Targeting>();
207 }
208
209 world.run_system_once(untarget).unwrap();
210 world.run_system_once(debug_relationships).unwrap();
211 // Cycle free!
212 let cycle_result = world.run_system_once(check_for_cycles).unwrap();
213 println!("{cycle_result:?} \n");
214 assert!(cycle_result.is_ok());
215}
Sourcepub fn as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>
pub fn as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>
Creates a new UnsafeWorldCell
view with complete read+write access.
Sourcepub fn as_unsafe_world_cell_readonly(&self) -> UnsafeWorldCell<'_>
pub fn as_unsafe_world_cell_readonly(&self) -> UnsafeWorldCell<'_>
Creates a new UnsafeWorldCell
view with only read access to everything.
Sourcepub unsafe fn entities_mut(&mut self) -> &mut Entities
pub unsafe fn entities_mut(&mut self) -> &mut Entities
Sourcepub fn archetypes(&self) -> &Archetypes
pub fn archetypes(&self) -> &Archetypes
Retrieves this world’s Archetypes
collection.
Sourcepub fn components(&self) -> &Components
pub fn components(&self) -> &Components
Retrieves this world’s Components
collection.
Examples found in repository?
51fn main() {
52 let mut world = World::new();
53 let mut lines = std::io::stdin().lines();
54 let mut component_names = HashMap::<String, ComponentId>::new();
55 let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57 println!("{PROMPT}");
58 loop {
59 print!("\n> ");
60 let _ = std::io::stdout().flush();
61 let Some(Ok(line)) = lines.next() else {
62 return;
63 };
64
65 if line.is_empty() {
66 return;
67 };
68
69 let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70 match &line.chars().next() {
71 Some('c') => println!("{COMPONENT_PROMPT}"),
72 Some('s') => println!("{ENTITY_PROMPT}"),
73 Some('q') => println!("{QUERY_PROMPT}"),
74 _ => println!("{PROMPT}"),
75 }
76 continue;
77 };
78
79 match &first[0..1] {
80 "c" => {
81 rest.split(',').for_each(|component| {
82 let mut component = component.split_whitespace();
83 let Some(name) = component.next() else {
84 return;
85 };
86 let size = match component.next().map(str::parse) {
87 Some(Ok(size)) => size,
88 _ => 0,
89 };
90 // Register our new component to the world with a layout specified by it's size
91 // SAFETY: [u64] is Send + Sync
92 let id = world.register_component_with_descriptor(unsafe {
93 ComponentDescriptor::new_with_layout(
94 name.to_string(),
95 StorageType::Table,
96 Layout::array::<u64>(size).unwrap(),
97 None,
98 true,
99 ComponentCloneBehavior::Default,
100 )
101 });
102 let Some(info) = world.components().get_info(id) else {
103 return;
104 };
105 component_names.insert(name.to_string(), id);
106 component_info.insert(id, info.clone());
107 println!("Component {} created with id: {}", name, id.index());
108 });
109 }
110 "s" => {
111 let mut to_insert_ids = Vec::new();
112 let mut to_insert_data = Vec::new();
113 rest.split(',').for_each(|component| {
114 let mut component = component.split_whitespace();
115 let Some(name) = component.next() else {
116 return;
117 };
118
119 // Get the id for the component with the given name
120 let Some(&id) = component_names.get(name) else {
121 println!("Component {name} does not exist");
122 return;
123 };
124
125 // Calculate the length for the array based on the layout created for this component id
126 let info = world.components().get_info(id).unwrap();
127 let len = info.layout().size() / size_of::<u64>();
128 let mut values: Vec<u64> = component
129 .take(len)
130 .filter_map(|value| value.parse::<u64>().ok())
131 .collect();
132 values.resize(len, 0);
133
134 // Collect the id and array to be inserted onto our entity
135 to_insert_ids.push(id);
136 to_insert_data.push(values);
137 });
138
139 let mut entity = world.spawn_empty();
140
141 // Construct an `OwningPtr` for each component in `to_insert_data`
142 let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144 // SAFETY:
145 // - Component ids have been taken from the same world
146 // - Each array is created to the layout specified in the world
147 unsafe {
148 entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149 }
150
151 println!("Entity spawned with id: {}", entity.id());
152 }
153 "q" => {
154 let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155 parse_query(rest, &mut builder, &component_names);
156 let mut query = builder.build();
157 query.iter_mut(&mut world).for_each(|filtered_entity| {
158 let terms = filtered_entity
159 .access()
160 .try_iter_component_access()
161 .unwrap()
162 .map(|component_access| {
163 let id = *component_access.index();
164 let ptr = filtered_entity.get_by_id(id).unwrap();
165 let info = component_info.get(&id).unwrap();
166 let len = info.layout().size() / size_of::<u64>();
167
168 // SAFETY:
169 // - All components are created with layout [u64]
170 // - len is calculated from the component descriptor
171 let data = unsafe {
172 std::slice::from_raw_parts_mut(
173 ptr.assert_unique().as_ptr().cast::<u64>(),
174 len,
175 )
176 };
177
178 // If we have write access, increment each value once
179 if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180 data.iter_mut().for_each(|data| {
181 *data += 1;
182 });
183 }
184
185 format!("{}: {:?}", info.name(), data[0..len].to_vec())
186 })
187 .collect::<Vec<_>>()
188 .join(", ");
189
190 println!("{}: {}", filtered_entity.id(), terms);
191 });
192 }
193 _ => continue,
194 }
195 }
196}
Sourcepub fn components_queue(&self) -> ComponentsQueuedRegistrator<'_>
pub fn components_queue(&self) -> ComponentsQueuedRegistrator<'_>
Prepares a ComponentsQueuedRegistrator
for the world.
NOTE: ComponentsQueuedRegistrator
is easily misused.
See its docs for important notes on when and how it should be used.
Sourcepub fn components_registrator(&mut self) -> ComponentsRegistrator<'_>
pub fn components_registrator(&mut self) -> ComponentsRegistrator<'_>
Prepares a ComponentsRegistrator
for the world.
Sourcepub fn removed_components(&self) -> &RemovedComponentMessages
pub fn removed_components(&self) -> &RemovedComponentMessages
Retrieves this world’s RemovedComponentMessages
collection
Sourcepub fn commands(&mut self) -> Commands<'_, '_>
pub fn commands(&mut self) -> Commands<'_, '_>
Creates a new Commands
instance that writes to the world’s command queue
Use World::flush
to apply all queued commands
Sourcepub fn register_component<T>(&mut self) -> ComponentIdwhere
T: Component,
pub fn register_component<T>(&mut self) -> ComponentIdwhere
T: Component,
Registers a new Component
type and returns the ComponentId
created for it.
§Usage Notes
In most cases, you don’t need to call this method directly since component registration happens automatically during system initialization.
Sourcepub fn register_disabling_component<C>(&mut self)where
C: Component,
pub fn register_disabling_component<C>(&mut self)where
C: Component,
Registers a component type as “disabling”, using default query filters to exclude entities with the component from queries.
Sourcepub fn register_component_hooks<T>(&mut self) -> &mut ComponentHookswhere
T: Component,
pub fn register_component_hooks<T>(&mut self) -> &mut ComponentHookswhere
T: Component,
Returns a mutable reference to the ComponentHooks
for a Component
type.
Will panic if T
exists in any archetypes.
Examples found in repository?
61fn setup(world: &mut World) {
62 // In order to register component hooks the component must:
63 // - not be currently in use by any entities in the world
64 // - not already have a hook of that kind registered
65 // This is to prevent overriding hooks defined in plugins and other crates as well as keeping things fast
66 world
67 .register_component_hooks::<MyComponent>()
68 // There are 4 component lifecycle hooks: `on_add`, `on_insert`, `on_replace` and `on_remove`
69 // A hook has 2 arguments:
70 // - a `DeferredWorld`, this allows access to resource and component data as well as `Commands`
71 // - a `HookContext`, this provides access to the following contextual information:
72 // - the entity that triggered the hook
73 // - the component id of the triggering component, this is mostly used for dynamic components
74 // - the location of the code that caused the hook to trigger
75 //
76 // `on_add` will trigger when a component is inserted onto an entity without it
77 .on_add(
78 |mut world,
79 HookContext {
80 entity,
81 component_id,
82 caller,
83 ..
84 }| {
85 // You can access component data from within the hook
86 let value = world.get::<MyComponent>(entity).unwrap().0;
87 println!(
88 "{component_id:?} added to {entity} with value {value:?}{}",
89 caller
90 .map(|location| format!("due to {location}"))
91 .unwrap_or_default()
92 );
93 // Or access resources
94 world
95 .resource_mut::<MyComponentIndex>()
96 .insert(value, entity);
97 // Or send messages
98 world.write_message(MyMessage);
99 },
100 )
101 // `on_insert` will trigger when a component is inserted onto an entity,
102 // regardless of whether or not it already had it and after `on_add` if it ran
103 .on_insert(|world, _| {
104 println!("Current Index: {:?}", world.resource::<MyComponentIndex>());
105 })
106 // `on_replace` will trigger when a component is inserted onto an entity that already had it,
107 // and runs before the value is replaced.
108 // Also triggers when a component is removed from an entity, and runs before `on_remove`
109 .on_replace(|mut world, context| {
110 let value = world.get::<MyComponent>(context.entity).unwrap().0;
111 world.resource_mut::<MyComponentIndex>().remove(&value);
112 })
113 // `on_remove` will trigger when a component is removed from an entity,
114 // since it runs before the component is removed you can still access the component data
115 .on_remove(
116 |mut world,
117 HookContext {
118 entity,
119 component_id,
120 caller,
121 ..
122 }| {
123 let value = world.get::<MyComponent>(entity).unwrap().0;
124 println!(
125 "{component_id:?} removed from {entity} with value {value:?}{}",
126 caller
127 .map(|location| format!("due to {location}"))
128 .unwrap_or_default()
129 );
130 // You can also issue commands through `.commands()`
131 world.commands().entity(entity).despawn();
132 },
133 );
134}
Sourcepub fn register_component_hooks_by_id(
&mut self,
id: ComponentId,
) -> Option<&mut ComponentHooks>
pub fn register_component_hooks_by_id( &mut self, id: ComponentId, ) -> Option<&mut ComponentHooks>
Returns a mutable reference to the ComponentHooks
for a Component
with the given id if it exists.
Will panic if id
exists in any archetypes.
Sourcepub fn register_required_components<T, R>(&mut self)
pub fn register_required_components<T, R>(&mut self)
Registers the given component R
as a required component for T
.
When T
is added to an entity, R
and its own required components will also be added
if R
was not already provided. The Default
constructor
will be used for the creation of R
.
If a custom constructor is desired, use World::register_required_components_with
instead.
For the non-panicking version, see World::try_register_required_components
.
Note that requirements must currently be registered before T
is inserted into the world
for the first time. This limitation may be fixed in the future.
§Panics
Panics if R
is already a directly required component for T
, or if T
has ever been added
on an entity before the registration.
Indirect requirements through other components are allowed. In those cases, any existing requirements will only be overwritten if the new requirement is more specific.
§Example
#[derive(Component)]
struct A;
#[derive(Component, Default, PartialEq, Eq, Debug)]
struct B(usize);
#[derive(Component, Default, PartialEq, Eq, Debug)]
struct C(u32);
// Register B as required by A and C as required by B.
world.register_required_components::<A, B>();
world.register_required_components::<B, C>();
// This will implicitly also insert B and C with their Default constructors.
let id = world.spawn(A).id();
assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
Sourcepub fn register_required_components_with<T, R>(
&mut self,
constructor: fn() -> R,
)
pub fn register_required_components_with<T, R>( &mut self, constructor: fn() -> R, )
Registers the given component R
as a required component for T
.
When T
is added to an entity, R
and its own required components will also be added
if R
was not already provided. The given constructor
will be used for the creation of R
.
If a Default
constructor is desired, use World::register_required_components
instead.
For the non-panicking version, see World::try_register_required_components_with
.
Note that requirements must currently be registered before T
is inserted into the world
for the first time. This limitation may be fixed in the future.
§Panics
Panics if R
is already a directly required component for T
, or if T
has ever been added
on an entity before the registration.
Indirect requirements through other components are allowed. In those cases, any existing requirements will only be overwritten if the new requirement is more specific.
§Example
#[derive(Component)]
struct A;
#[derive(Component, Default, PartialEq, Eq, Debug)]
struct B(usize);
#[derive(Component, PartialEq, Eq, Debug)]
struct C(u32);
// Register B and C as required by A and C as required by B.
// A requiring C directly will overwrite the indirect requirement through B.
world.register_required_components::<A, B>();
world.register_required_components_with::<B, C>(|| C(1));
world.register_required_components_with::<A, C>(|| C(2));
// This will implicitly also insert B with its Default constructor and C
// with the custom constructor defined by A.
let id = world.spawn(A).id();
assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
assert_eq!(&C(2), world.entity(id).get::<C>().unwrap());
Sourcepub fn try_register_required_components<T, R>(
&mut self,
) -> Result<(), RequiredComponentsError>
pub fn try_register_required_components<T, R>( &mut self, ) -> Result<(), RequiredComponentsError>
Tries to register the given component R
as a required component for T
.
When T
is added to an entity, R
and its own required components will also be added
if R
was not already provided. The Default
constructor
will be used for the creation of R
.
If a custom constructor is desired, use World::register_required_components_with
instead.
For the panicking version, see World::register_required_components
.
Note that requirements must currently be registered before T
is inserted into the world
for the first time. This limitation may be fixed in the future.
§Errors
Returns a RequiredComponentsError
if R
is already a directly required component for T
, or if T
has ever been added
on an entity before the registration.
Indirect requirements through other components are allowed. In those cases, any existing requirements will only be overwritten if the new requirement is more specific.
§Example
#[derive(Component)]
struct A;
#[derive(Component, Default, PartialEq, Eq, Debug)]
struct B(usize);
#[derive(Component, Default, PartialEq, Eq, Debug)]
struct C(u32);
// Register B as required by A and C as required by B.
world.register_required_components::<A, B>();
world.register_required_components::<B, C>();
// Duplicate registration! This will fail.
assert!(world.try_register_required_components::<A, B>().is_err());
// This will implicitly also insert B and C with their Default constructors.
let id = world.spawn(A).id();
assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
Sourcepub fn try_register_required_components_with<T, R>(
&mut self,
constructor: fn() -> R,
) -> Result<(), RequiredComponentsError>
pub fn try_register_required_components_with<T, R>( &mut self, constructor: fn() -> R, ) -> Result<(), RequiredComponentsError>
Tries to register the given component R
as a required component for T
.
When T
is added to an entity, R
and its own required components will also be added
if R
was not already provided. The given constructor
will be used for the creation of R
.
If a Default
constructor is desired, use World::register_required_components
instead.
For the panicking version, see World::register_required_components_with
.
Note that requirements must currently be registered before T
is inserted into the world
for the first time. This limitation may be fixed in the future.
§Errors
Returns a RequiredComponentsError
if R
is already a directly required component for T
, or if T
has ever been added
on an entity before the registration.
Indirect requirements through other components are allowed. In those cases, any existing requirements will only be overwritten if the new requirement is more specific.
§Example
#[derive(Component)]
struct A;
#[derive(Component, Default, PartialEq, Eq, Debug)]
struct B(usize);
#[derive(Component, PartialEq, Eq, Debug)]
struct C(u32);
// Register B and C as required by A and C as required by B.
// A requiring C directly will overwrite the indirect requirement through B.
world.register_required_components::<A, B>();
world.register_required_components_with::<B, C>(|| C(1));
world.register_required_components_with::<A, C>(|| C(2));
// Duplicate registration! Even if the constructors were different, this would fail.
assert!(world.try_register_required_components_with::<B, C>(|| C(1)).is_err());
// This will implicitly also insert B with its Default constructor and C
// with the custom constructor defined by A.
let id = world.spawn(A).id();
assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
assert_eq!(&C(2), world.entity(id).get::<C>().unwrap());
Sourcepub fn get_required_components<C>(&self) -> Option<&RequiredComponents>where
C: Component,
pub fn get_required_components<C>(&self) -> Option<&RequiredComponents>where
C: Component,
Retrieves the required components for the given component type, if it exists.
Sourcepub fn get_required_components_by_id(
&self,
id: ComponentId,
) -> Option<&RequiredComponents>
pub fn get_required_components_by_id( &self, id: ComponentId, ) -> Option<&RequiredComponents>
Retrieves the required components for the component of the given ComponentId
, if it exists.
Sourcepub fn register_component_with_descriptor(
&mut self,
descriptor: ComponentDescriptor,
) -> ComponentId
pub fn register_component_with_descriptor( &mut self, descriptor: ComponentDescriptor, ) -> ComponentId
Registers a new Component
type and returns the ComponentId
created for it.
This method differs from World::register_component
in that it uses a ComponentDescriptor
to register the new component type instead of statically available type information. This
enables the dynamic registration of new component definitions at runtime for advanced use cases.
While the option to register a component from a descriptor is useful in type-erased
contexts, the standard World::register_component
function should always be used instead
when type information is available at compile time.
Examples found in repository?
135fn demo_3(world: &mut World) {
136 // This is a list of dynamic components we will create.
137 // The first item is the name of the component, and the second is the size
138 // in bytes.
139 let my_dynamic_components = [("Foo", 1), ("Bar", 2), ("Baz", 4)];
140
141 // This pipeline takes our component descriptions, registers them, and gets
142 // their ComponentId's.
143 let my_registered_components = my_dynamic_components
144 .into_iter()
145 .map(|(name, size)| {
146 // SAFETY:
147 // - No drop command is required
148 // - The component will store [u8; size], which is Send + Sync
149 let descriptor = unsafe {
150 ComponentDescriptor::new_with_layout(
151 name.to_string(),
152 StorageType::Table,
153 Layout::array::<u8>(size).unwrap(),
154 None,
155 false,
156 ComponentCloneBehavior::Default,
157 )
158 };
159
160 (name, size, descriptor)
161 })
162 .map(|(name, size, descriptor)| {
163 let component_id = world.register_component_with_descriptor(descriptor);
164
165 (name, size, component_id)
166 })
167 .collect::<Vec<(&str, usize, ComponentId)>>();
168
169 // Now that our components are registered, let's add them to an entity
170 let mut entity = world.spawn_empty();
171
172 for (_name, size, component_id) in &my_registered_components {
173 // We're just storing some zeroes for the sake of demonstration.
174 let data = core::iter::repeat_n(0, *size).collect::<Vec<u8>>();
175
176 OwningPtr::make(data, |ptr| {
177 // SAFETY:
178 // - ComponentId has been taken from the same world
179 // - Array is created to the layout specified in the world
180 unsafe {
181 entity.insert_by_id(*component_id, ptr);
182 }
183 });
184 }
185
186 for (_name, _size, component_id) in &my_registered_components {
187 // With immutable components, we can read the values...
188 assert!(entity.get_by_id(*component_id).is_ok());
189
190 // ...but we cannot gain a mutable reference.
191 assert!(entity.get_mut_by_id(*component_id).is_err());
192
193 // Instead, you must either remove or replace the value.
194 }
195}
More examples
80fn stress_test(num_entities: u32, num_components: u32, num_systems: u32) {
81 let mut rng = ChaCha8Rng::seed_from_u64(42);
82 let mut app = App::default();
83 let world = app.world_mut();
84
85 // register a bunch of components
86 let component_ids: Vec<ComponentId> = (1..=num_components)
87 .map(|i| {
88 world.register_component_with_descriptor(
89 // SAFETY:
90 // * We don't implement a drop function
91 // * u8 is Sync and Send
92 unsafe {
93 ComponentDescriptor::new_with_layout(
94 format!("Component{i}").to_string(),
95 StorageType::Table,
96 Layout::new::<u8>(),
97 None,
98 true, // is mutable
99 ComponentCloneBehavior::Default,
100 )
101 },
102 )
103 })
104 .collect();
105
106 // fill the schedule with systems
107 let mut schedule = Schedule::new(Update);
108 for _ in 1..=num_systems {
109 let num_access_components = rng.random_range(1..10);
110 let access_components: Vec<ComponentId> = component_ids
111 .choose_multiple(&mut rng, num_access_components)
112 .copied()
113 .collect();
114 let system = (QueryParamBuilder::new(|builder| {
115 for &access_component in &access_components {
116 if rand::random::<bool>() {
117 builder.mut_id(access_component);
118 } else {
119 builder.ref_id(access_component);
120 }
121 }
122 }),)
123 .build_state(world)
124 .build_any_system(base_system);
125 schedule.add_systems((move || access_components.clone()).pipe(system));
126 }
127
128 // spawn a bunch of entities
129 for _ in 1..=num_entities {
130 let num_components = rng.random_range(1..10);
131 let components: Vec<ComponentId> = component_ids
132 .choose_multiple(&mut rng, num_components)
133 .copied()
134 .collect();
135
136 let mut entity = world.spawn_empty();
137 // We use `ManuallyDrop` here as we need to avoid dropping the u8's when `values` is dropped
138 // since ownership of the values is passed to the world in `insert_by_ids`.
139 // But we do want to deallocate the memory when values is dropped.
140 let mut values: Vec<ManuallyDrop<u8>> = components
141 .iter()
142 .map(|_id| ManuallyDrop::new(rng.random_range(0..255)))
143 .collect();
144 let ptrs: Vec<OwningPtr> = values
145 .iter_mut()
146 .map(|value| {
147 // SAFETY:
148 // * We don't read/write `values` binding after this and values are `ManuallyDrop`,
149 // so we have the right to drop/move the values
150 unsafe { PtrMut::from(value).promote() }
151 })
152 .collect();
153 // SAFETY:
154 // * component_id's are from the same world
155 // * `values` was initialized above, so references are valid
156 unsafe {
157 entity.insert_by_ids(&components, ptrs.into_iter());
158 }
159 }
160
161 // overwrite Update schedule in the app
162 app.add_schedule(schedule);
163 app.add_plugins(MinimalPlugins)
164 .add_plugins(DiagnosticsPlugin)
165 .add_plugins(LogPlugin::default())
166 .add_plugins(FrameTimeDiagnosticsPlugin::default())
167 .add_plugins(LogDiagnosticsPlugin::filtered(HashSet::from_iter([
168 DiagnosticPath::new("fps"),
169 ])));
170 app.run();
171}
51fn main() {
52 let mut world = World::new();
53 let mut lines = std::io::stdin().lines();
54 let mut component_names = HashMap::<String, ComponentId>::new();
55 let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57 println!("{PROMPT}");
58 loop {
59 print!("\n> ");
60 let _ = std::io::stdout().flush();
61 let Some(Ok(line)) = lines.next() else {
62 return;
63 };
64
65 if line.is_empty() {
66 return;
67 };
68
69 let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70 match &line.chars().next() {
71 Some('c') => println!("{COMPONENT_PROMPT}"),
72 Some('s') => println!("{ENTITY_PROMPT}"),
73 Some('q') => println!("{QUERY_PROMPT}"),
74 _ => println!("{PROMPT}"),
75 }
76 continue;
77 };
78
79 match &first[0..1] {
80 "c" => {
81 rest.split(',').for_each(|component| {
82 let mut component = component.split_whitespace();
83 let Some(name) = component.next() else {
84 return;
85 };
86 let size = match component.next().map(str::parse) {
87 Some(Ok(size)) => size,
88 _ => 0,
89 };
90 // Register our new component to the world with a layout specified by it's size
91 // SAFETY: [u64] is Send + Sync
92 let id = world.register_component_with_descriptor(unsafe {
93 ComponentDescriptor::new_with_layout(
94 name.to_string(),
95 StorageType::Table,
96 Layout::array::<u64>(size).unwrap(),
97 None,
98 true,
99 ComponentCloneBehavior::Default,
100 )
101 });
102 let Some(info) = world.components().get_info(id) else {
103 return;
104 };
105 component_names.insert(name.to_string(), id);
106 component_info.insert(id, info.clone());
107 println!("Component {} created with id: {}", name, id.index());
108 });
109 }
110 "s" => {
111 let mut to_insert_ids = Vec::new();
112 let mut to_insert_data = Vec::new();
113 rest.split(',').for_each(|component| {
114 let mut component = component.split_whitespace();
115 let Some(name) = component.next() else {
116 return;
117 };
118
119 // Get the id for the component with the given name
120 let Some(&id) = component_names.get(name) else {
121 println!("Component {name} does not exist");
122 return;
123 };
124
125 // Calculate the length for the array based on the layout created for this component id
126 let info = world.components().get_info(id).unwrap();
127 let len = info.layout().size() / size_of::<u64>();
128 let mut values: Vec<u64> = component
129 .take(len)
130 .filter_map(|value| value.parse::<u64>().ok())
131 .collect();
132 values.resize(len, 0);
133
134 // Collect the id and array to be inserted onto our entity
135 to_insert_ids.push(id);
136 to_insert_data.push(values);
137 });
138
139 let mut entity = world.spawn_empty();
140
141 // Construct an `OwningPtr` for each component in `to_insert_data`
142 let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144 // SAFETY:
145 // - Component ids have been taken from the same world
146 // - Each array is created to the layout specified in the world
147 unsafe {
148 entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149 }
150
151 println!("Entity spawned with id: {}", entity.id());
152 }
153 "q" => {
154 let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155 parse_query(rest, &mut builder, &component_names);
156 let mut query = builder.build();
157 query.iter_mut(&mut world).for_each(|filtered_entity| {
158 let terms = filtered_entity
159 .access()
160 .try_iter_component_access()
161 .unwrap()
162 .map(|component_access| {
163 let id = *component_access.index();
164 let ptr = filtered_entity.get_by_id(id).unwrap();
165 let info = component_info.get(&id).unwrap();
166 let len = info.layout().size() / size_of::<u64>();
167
168 // SAFETY:
169 // - All components are created with layout [u64]
170 // - len is calculated from the component descriptor
171 let data = unsafe {
172 std::slice::from_raw_parts_mut(
173 ptr.assert_unique().as_ptr().cast::<u64>(),
174 len,
175 )
176 };
177
178 // If we have write access, increment each value once
179 if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180 data.iter_mut().for_each(|data| {
181 *data += 1;
182 });
183 }
184
185 format!("{}: {:?}", info.name(), data[0..len].to_vec())
186 })
187 .collect::<Vec<_>>()
188 .join(", ");
189
190 println!("{}: {}", filtered_entity.id(), terms);
191 });
192 }
193 _ => continue,
194 }
195 }
196}
Sourcepub fn component_id<T>(&self) -> Option<ComponentId>where
T: Component,
pub fn component_id<T>(&self) -> Option<ComponentId>where
T: Component,
Returns the ComponentId
of the given Component
type T
.
The returned ComponentId
is specific to the World
instance
it was retrieved from and should not be used with another World
instance.
Returns None
if the Component
type has not yet been initialized within
the World
using World::register_component
.
use bevy_ecs::prelude::*;
let mut world = World::new();
#[derive(Component)]
struct ComponentA;
let component_a_id = world.register_component::<ComponentA>();
assert_eq!(component_a_id, world.component_id::<ComponentA>().unwrap())
§See also
Sourcepub fn register_resource<R>(&mut self) -> ComponentIdwhere
R: Resource,
pub fn register_resource<R>(&mut self) -> ComponentIdwhere
R: Resource,
Registers a new Resource
type and returns the ComponentId
created for it.
The Resource
doesn’t have a value in the World
, it’s only registered. If you want
to insert the Resource
in the World
, use World::init_resource
or
World::insert_resource
instead.
Sourcepub fn resource_id<T>(&self) -> Option<ComponentId>where
T: Resource,
pub fn resource_id<T>(&self) -> Option<ComponentId>where
T: Resource,
Returns the ComponentId
of the given Resource
type T
.
The returned ComponentId
is specific to the World
instance it was retrieved from
and should not be used with another World
instance.
Returns None
if the Resource
type has not yet been initialized within the
World
using World::register_resource
, World::init_resource
or World::insert_resource
.
Sourcepub fn entity<F>(&self, entities: F) -> <F as WorldEntityFetch>::Ref<'_>where
F: WorldEntityFetch,
pub fn entity<F>(&self, entities: F) -> <F as WorldEntityFetch>::Ref<'_>where
F: WorldEntityFetch,
Returns EntityRef
s that expose read-only operations for the given
entities
. This will panic if any of the given entities do not exist. Use
World::get_entity
if you want to check for entity existence instead
of implicitly panicking.
This function supports fetching a single entity or multiple entities:
- Pass an
Entity
to receive a singleEntityRef
. - Pass a slice of
Entity
s to receive aVec<EntityRef>
. - Pass an array of
Entity
s to receive an equally-sized array ofEntityRef
s.
§Panics
If any of the given entities
do not exist in the world.
§Examples
§Single Entity
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let position = world.entity(entity).get::<Position>().unwrap();
assert_eq!(position.x, 0.0);
§Array of Entity
s
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let e1 = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let e2 = world.spawn(Position { x: 1.0, y: 1.0 }).id();
let [e1_ref, e2_ref] = world.entity([e1, e2]);
let e1_position = e1_ref.get::<Position>().unwrap();
assert_eq!(e1_position.x, 0.0);
let e2_position = e2_ref.get::<Position>().unwrap();
assert_eq!(e2_position.x, 1.0);
§Slice of Entity
s
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let e1 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e2 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e3 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let ids = vec![e1, e2, e3];
for eref in world.entity(&ids[..]) {
assert_eq!(eref.get::<Position>().unwrap().y, 1.0);
}
§EntityHashSet
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let e1 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e2 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e3 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let ids = EntityHashSet::from_iter([e1, e2, e3]);
for (_id, eref) in world.entity(&ids) {
assert_eq!(eref.get::<Position>().unwrap().y, 1.0);
}
Examples found in repository?
77fn on_insert_name(mut world: DeferredWorld<'_>, HookContext { entity, .. }: HookContext) {
78 let Some(&name) = world.entity(entity).get::<Name>() else {
79 unreachable!("Insert hook guarantees `Name` is available on entity")
80 };
81 let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
82 return;
83 };
84
85 index.name_to_entity.insert(name, entity);
86}
87
88/// When a [`Name`] is removed or replaced, remove it from our [`NameIndex`].
89///
90/// Since all mutations to [`Name`] are captured by hooks, we know it is currently
91/// inserted in the index.
92fn on_replace_name(mut world: DeferredWorld<'_>, HookContext { entity, .. }: HookContext) {
93 let Some(&name) = world.entity(entity).get::<Name>() else {
94 unreachable!("Replace hook guarantees `Name` is available on entity")
95 };
96 let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
97 return;
98 };
99
100 index.name_to_entity.remove(&name);
101}
Sourcepub fn entity_mut<F>(&mut self, entities: F) -> <F as WorldEntityFetch>::Mut<'_>where
F: WorldEntityFetch,
pub fn entity_mut<F>(&mut self, entities: F) -> <F as WorldEntityFetch>::Mut<'_>where
F: WorldEntityFetch,
Returns EntityMut
s that expose read and write operations for the
given entities
. This will panic if any of the given entities do not
exist. Use World::get_entity_mut
if you want to check for entity
existence instead of implicitly panicking.
This function supports fetching a single entity or multiple entities:
- Pass an
Entity
to receive a singleEntityWorldMut
.- This reference type allows for structural changes to the entity, such as adding or removing components, or despawning the entity.
- Pass a slice of
Entity
s to receive aVec<EntityMut>
. - Pass an array of
Entity
s to receive an equally-sized array ofEntityMut
s. - Pass a reference to a
EntityHashSet
to receive anEntityHashMap<EntityMut>
.
In order to perform structural changes on the returned entity reference,
such as adding or removing components, or despawning the entity, only a
single Entity
can be passed to this function. Allowing multiple
entities at the same time with structural access would lead to undefined
behavior, so EntityMut
is returned when requesting multiple entities.
§Panics
If any of the given entities
do not exist in the world.
§Examples
§Single Entity
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let mut entity_mut = world.entity_mut(entity);
let mut position = entity_mut.get_mut::<Position>().unwrap();
position.y = 1.0;
assert_eq!(position.x, 0.0);
entity_mut.despawn();
§Array of Entity
s
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let e1 = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let e2 = world.spawn(Position { x: 1.0, y: 1.0 }).id();
let [mut e1_ref, mut e2_ref] = world.entity_mut([e1, e2]);
let mut e1_position = e1_ref.get_mut::<Position>().unwrap();
e1_position.x = 1.0;
assert_eq!(e1_position.x, 1.0);
let mut e2_position = e2_ref.get_mut::<Position>().unwrap();
e2_position.x = 2.0;
assert_eq!(e2_position.x, 2.0);
§Slice of Entity
s
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let e1 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e2 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e3 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let ids = vec![e1, e2, e3];
for mut eref in world.entity_mut(&ids[..]) {
let mut pos = eref.get_mut::<Position>().unwrap();
pos.y = 2.0;
assert_eq!(pos.y, 2.0);
}
§EntityHashSet
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let e1 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e2 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let e3 = world.spawn(Position { x: 0.0, y: 1.0 }).id();
let ids = EntityHashSet::from_iter([e1, e2, e3]);
for (_id, mut eref) in world.entity_mut(&ids) {
let mut pos = eref.get_mut::<Position>().unwrap();
pos.y = 2.0;
assert_eq!(pos.y, 2.0);
}
Examples found in repository?
103fn demo_2(world: &mut World) {
104 // Setup our name index
105 world.init_resource::<NameIndex>();
106
107 // Spawn some entities!
108 let alyssa = world.spawn(Name("Alyssa")).id();
109 let javier = world.spawn(Name("Javier")).id();
110
111 // Check our index
112 let index = world.resource::<NameIndex>();
113
114 assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
115 assert_eq!(index.get_entity("Javier"), Some(javier));
116
117 // Changing the name of an entity is also fully capture by our index
118 world.entity_mut(javier).insert(Name("Steven"));
119
120 // Javier changed their name to Steven
121 let steven = javier;
122
123 // Check our index
124 let index = world.resource::<NameIndex>();
125
126 assert_eq!(index.get_entity("Javier"), None);
127 assert_eq!(index.get_entity("Steven"), Some(steven));
128}
More examples
53fn spawn_tasks(mut commands: Commands) {
54 let thread_pool = AsyncComputeTaskPool::get();
55 for x in 0..NUM_CUBES {
56 for y in 0..NUM_CUBES {
57 for z in 0..NUM_CUBES {
58 // Spawn new task on the AsyncComputeTaskPool; the task will be
59 // executed in the background, and the Task future returned by
60 // spawn() can be used to poll for the result
61 let entity = commands.spawn_empty().id();
62 let task = thread_pool.spawn(async move {
63 let duration = Duration::from_secs_f32(rand::rng().random_range(0.05..5.0));
64
65 // Pretend this is a time-intensive function. :)
66 Delay::new(duration).await;
67
68 // Such hard work, all done!
69 let transform = Transform::from_xyz(x as f32, y as f32, z as f32);
70 let mut command_queue = CommandQueue::default();
71
72 // we use a raw command queue to pass a FnOnce(&mut World) back to be
73 // applied in a deferred manner.
74 command_queue.push(move |world: &mut World| {
75 let (box_mesh_handle, box_material_handle) = {
76 let mut system_state = SystemState::<(
77 Res<BoxMeshHandle>,
78 Res<BoxMaterialHandle>,
79 )>::new(world);
80 let (box_mesh_handle, box_material_handle) =
81 system_state.get_mut(world);
82
83 (box_mesh_handle.clone(), box_material_handle.clone())
84 };
85
86 world
87 .entity_mut(entity)
88 // Add our new `Mesh3d` and `MeshMaterial3d` to our tagged entity
89 .insert((
90 Mesh3d(box_mesh_handle),
91 MeshMaterial3d(box_material_handle),
92 transform,
93 ));
94 });
95
96 command_queue
97 });
98
99 // Add our new task as a component
100 commands.entity(entity).insert(ComputeTransform(task));
101 }
102 }
103 }
104}
Sourcepub fn inspect_entity(
&self,
entity: Entity,
) -> Result<impl Iterator<Item = &ComponentInfo>, EntityDoesNotExistError>
pub fn inspect_entity( &self, entity: Entity, ) -> Result<impl Iterator<Item = &ComponentInfo>, EntityDoesNotExistError>
Returns the components of an Entity
through ComponentInfo
.
Sourcepub fn get_entity<F>(
&self,
entities: F,
) -> Result<<F as WorldEntityFetch>::Ref<'_>, EntityDoesNotExistError>where
F: WorldEntityFetch,
pub fn get_entity<F>(
&self,
entities: F,
) -> Result<<F as WorldEntityFetch>::Ref<'_>, EntityDoesNotExistError>where
F: WorldEntityFetch,
Returns EntityRef
s that expose read-only operations for the given
entities
, returning Err
if any of the given entities do not exist.
Instead of immediately unwrapping the value returned from this function,
prefer World::entity
.
This function supports fetching a single entity or multiple entities:
- Pass an
Entity
to receive a singleEntityRef
. - Pass a slice of
Entity
s to receive aVec<EntityRef>
. - Pass an array of
Entity
s to receive an equally-sized array ofEntityRef
s. - Pass a reference to a
EntityHashSet
to receive anEntityHashMap<EntityRef>
.
§Errors
If any of the given entities
do not exist in the world, the first
Entity
found to be missing will return an EntityDoesNotExistError
.
§Examples
For examples, see World::entity
.
Sourcepub fn get_entity_mut<F>(
&mut self,
entities: F,
) -> Result<<F as WorldEntityFetch>::Mut<'_>, EntityMutableFetchError>where
F: WorldEntityFetch,
pub fn get_entity_mut<F>(
&mut self,
entities: F,
) -> Result<<F as WorldEntityFetch>::Mut<'_>, EntityMutableFetchError>where
F: WorldEntityFetch,
Returns EntityMut
s that expose read and write operations for the
given entities
, returning Err
if any of the given entities do not
exist. Instead of immediately unwrapping the value returned from this
function, prefer World::entity_mut
.
This function supports fetching a single entity or multiple entities:
- Pass an
Entity
to receive a singleEntityWorldMut
.- This reference type allows for structural changes to the entity, such as adding or removing components, or despawning the entity.
- Pass a slice of
Entity
s to receive aVec<EntityMut>
. - Pass an array of
Entity
s to receive an equally-sized array ofEntityMut
s. - Pass a reference to a
EntityHashSet
to receive anEntityHashMap<EntityMut>
.
In order to perform structural changes on the returned entity reference,
such as adding or removing components, or despawning the entity, only a
single Entity
can be passed to this function. Allowing multiple
entities at the same time with structural access would lead to undefined
behavior, so EntityMut
is returned when requesting multiple entities.
§Errors
- Returns
EntityMutableFetchError::EntityDoesNotExist
if any of the givenentities
do not exist in the world.- Only the first entity found to be missing will be returned.
- Returns
EntityMutableFetchError::AliasedMutability
if the same entity is requested multiple times.
§Examples
For examples, see World::entity_mut
.
Sourcepub fn iter_entities(&self) -> impl Iterator<Item = EntityRef<'_>>
👎Deprecated since 0.17.0: use world.query::<EntityRef>()` instead
pub fn iter_entities(&self) -> impl Iterator<Item = EntityRef<'_>>
Sourcepub fn iter_entities_mut(&mut self) -> impl Iterator<Item = EntityMut<'_>>
👎Deprecated since 0.17.0: use world.query::<EntityMut>()` instead
pub fn iter_entities_mut(&mut self) -> impl Iterator<Item = EntityMut<'_>>
Returns a mutable iterator over all entities in the World
.
Sourcepub fn entities_and_commands(&mut self) -> (EntityFetcher<'_>, Commands<'_, '_>)
pub fn entities_and_commands(&mut self) -> (EntityFetcher<'_>, Commands<'_, '_>)
Simultaneously provides access to entity data and a command queue, which will be applied when the world is next flushed.
This allows using borrowed entity data to construct commands where the borrow checker would otherwise prevent it.
See DeferredWorld::entities_and_commands
for the deferred version.
§Example
#[derive(Component)]
struct Targets(Vec<Entity>);
#[derive(Component)]
struct TargetedBy(Entity);
let mut world: World = // ...
let (entities, mut commands) = world.entities_and_commands();
let entity = entities.get(eid).unwrap();
for &target in entity.get::<Targets>().unwrap().0.iter() {
commands.entity(target).insert(TargetedBy(eid));
}
Sourcepub fn spawn_empty(&mut self) -> EntityWorldMut<'_>
pub fn spawn_empty(&mut self) -> EntityWorldMut<'_>
Spawns a new Entity
and returns a corresponding EntityWorldMut
, which can be used
to add components to the entity or retrieve its id.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Label(&'static str);
#[derive(Component)]
struct Num(u32);
let mut world = World::new();
let entity = world.spawn_empty()
.insert(Position { x: 0.0, y: 0.0 }) // add a single component
.insert((Num(1), Label("hello"))) // add a bundle of components
.id();
let position = world.entity(entity).get::<Position>().unwrap();
assert_eq!(position.x, 0.0);
Examples found in repository?
135fn demo_3(world: &mut World) {
136 // This is a list of dynamic components we will create.
137 // The first item is the name of the component, and the second is the size
138 // in bytes.
139 let my_dynamic_components = [("Foo", 1), ("Bar", 2), ("Baz", 4)];
140
141 // This pipeline takes our component descriptions, registers them, and gets
142 // their ComponentId's.
143 let my_registered_components = my_dynamic_components
144 .into_iter()
145 .map(|(name, size)| {
146 // SAFETY:
147 // - No drop command is required
148 // - The component will store [u8; size], which is Send + Sync
149 let descriptor = unsafe {
150 ComponentDescriptor::new_with_layout(
151 name.to_string(),
152 StorageType::Table,
153 Layout::array::<u8>(size).unwrap(),
154 None,
155 false,
156 ComponentCloneBehavior::Default,
157 )
158 };
159
160 (name, size, descriptor)
161 })
162 .map(|(name, size, descriptor)| {
163 let component_id = world.register_component_with_descriptor(descriptor);
164
165 (name, size, component_id)
166 })
167 .collect::<Vec<(&str, usize, ComponentId)>>();
168
169 // Now that our components are registered, let's add them to an entity
170 let mut entity = world.spawn_empty();
171
172 for (_name, size, component_id) in &my_registered_components {
173 // We're just storing some zeroes for the sake of demonstration.
174 let data = core::iter::repeat_n(0, *size).collect::<Vec<u8>>();
175
176 OwningPtr::make(data, |ptr| {
177 // SAFETY:
178 // - ComponentId has been taken from the same world
179 // - Array is created to the layout specified in the world
180 unsafe {
181 entity.insert_by_id(*component_id, ptr);
182 }
183 });
184 }
185
186 for (_name, _size, component_id) in &my_registered_components {
187 // With immutable components, we can read the values...
188 assert!(entity.get_by_id(*component_id).is_ok());
189
190 // ...but we cannot gain a mutable reference.
191 assert!(entity.get_mut_by_id(*component_id).is_err());
192
193 // Instead, you must either remove or replace the value.
194 }
195}
More examples
80fn stress_test(num_entities: u32, num_components: u32, num_systems: u32) {
81 let mut rng = ChaCha8Rng::seed_from_u64(42);
82 let mut app = App::default();
83 let world = app.world_mut();
84
85 // register a bunch of components
86 let component_ids: Vec<ComponentId> = (1..=num_components)
87 .map(|i| {
88 world.register_component_with_descriptor(
89 // SAFETY:
90 // * We don't implement a drop function
91 // * u8 is Sync and Send
92 unsafe {
93 ComponentDescriptor::new_with_layout(
94 format!("Component{i}").to_string(),
95 StorageType::Table,
96 Layout::new::<u8>(),
97 None,
98 true, // is mutable
99 ComponentCloneBehavior::Default,
100 )
101 },
102 )
103 })
104 .collect();
105
106 // fill the schedule with systems
107 let mut schedule = Schedule::new(Update);
108 for _ in 1..=num_systems {
109 let num_access_components = rng.random_range(1..10);
110 let access_components: Vec<ComponentId> = component_ids
111 .choose_multiple(&mut rng, num_access_components)
112 .copied()
113 .collect();
114 let system = (QueryParamBuilder::new(|builder| {
115 for &access_component in &access_components {
116 if rand::random::<bool>() {
117 builder.mut_id(access_component);
118 } else {
119 builder.ref_id(access_component);
120 }
121 }
122 }),)
123 .build_state(world)
124 .build_any_system(base_system);
125 schedule.add_systems((move || access_components.clone()).pipe(system));
126 }
127
128 // spawn a bunch of entities
129 for _ in 1..=num_entities {
130 let num_components = rng.random_range(1..10);
131 let components: Vec<ComponentId> = component_ids
132 .choose_multiple(&mut rng, num_components)
133 .copied()
134 .collect();
135
136 let mut entity = world.spawn_empty();
137 // We use `ManuallyDrop` here as we need to avoid dropping the u8's when `values` is dropped
138 // since ownership of the values is passed to the world in `insert_by_ids`.
139 // But we do want to deallocate the memory when values is dropped.
140 let mut values: Vec<ManuallyDrop<u8>> = components
141 .iter()
142 .map(|_id| ManuallyDrop::new(rng.random_range(0..255)))
143 .collect();
144 let ptrs: Vec<OwningPtr> = values
145 .iter_mut()
146 .map(|value| {
147 // SAFETY:
148 // * We don't read/write `values` binding after this and values are `ManuallyDrop`,
149 // so we have the right to drop/move the values
150 unsafe { PtrMut::from(value).promote() }
151 })
152 .collect();
153 // SAFETY:
154 // * component_id's are from the same world
155 // * `values` was initialized above, so references are valid
156 unsafe {
157 entity.insert_by_ids(&components, ptrs.into_iter());
158 }
159 }
160
161 // overwrite Update schedule in the app
162 app.add_schedule(schedule);
163 app.add_plugins(MinimalPlugins)
164 .add_plugins(DiagnosticsPlugin)
165 .add_plugins(LogPlugin::default())
166 .add_plugins(FrameTimeDiagnosticsPlugin::default())
167 .add_plugins(LogDiagnosticsPlugin::filtered(HashSet::from_iter([
168 DiagnosticPath::new("fps"),
169 ])));
170 app.run();
171}
51fn main() {
52 let mut world = World::new();
53 let mut lines = std::io::stdin().lines();
54 let mut component_names = HashMap::<String, ComponentId>::new();
55 let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57 println!("{PROMPT}");
58 loop {
59 print!("\n> ");
60 let _ = std::io::stdout().flush();
61 let Some(Ok(line)) = lines.next() else {
62 return;
63 };
64
65 if line.is_empty() {
66 return;
67 };
68
69 let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70 match &line.chars().next() {
71 Some('c') => println!("{COMPONENT_PROMPT}"),
72 Some('s') => println!("{ENTITY_PROMPT}"),
73 Some('q') => println!("{QUERY_PROMPT}"),
74 _ => println!("{PROMPT}"),
75 }
76 continue;
77 };
78
79 match &first[0..1] {
80 "c" => {
81 rest.split(',').for_each(|component| {
82 let mut component = component.split_whitespace();
83 let Some(name) = component.next() else {
84 return;
85 };
86 let size = match component.next().map(str::parse) {
87 Some(Ok(size)) => size,
88 _ => 0,
89 };
90 // Register our new component to the world with a layout specified by it's size
91 // SAFETY: [u64] is Send + Sync
92 let id = world.register_component_with_descriptor(unsafe {
93 ComponentDescriptor::new_with_layout(
94 name.to_string(),
95 StorageType::Table,
96 Layout::array::<u64>(size).unwrap(),
97 None,
98 true,
99 ComponentCloneBehavior::Default,
100 )
101 });
102 let Some(info) = world.components().get_info(id) else {
103 return;
104 };
105 component_names.insert(name.to_string(), id);
106 component_info.insert(id, info.clone());
107 println!("Component {} created with id: {}", name, id.index());
108 });
109 }
110 "s" => {
111 let mut to_insert_ids = Vec::new();
112 let mut to_insert_data = Vec::new();
113 rest.split(',').for_each(|component| {
114 let mut component = component.split_whitespace();
115 let Some(name) = component.next() else {
116 return;
117 };
118
119 // Get the id for the component with the given name
120 let Some(&id) = component_names.get(name) else {
121 println!("Component {name} does not exist");
122 return;
123 };
124
125 // Calculate the length for the array based on the layout created for this component id
126 let info = world.components().get_info(id).unwrap();
127 let len = info.layout().size() / size_of::<u64>();
128 let mut values: Vec<u64> = component
129 .take(len)
130 .filter_map(|value| value.parse::<u64>().ok())
131 .collect();
132 values.resize(len, 0);
133
134 // Collect the id and array to be inserted onto our entity
135 to_insert_ids.push(id);
136 to_insert_data.push(values);
137 });
138
139 let mut entity = world.spawn_empty();
140
141 // Construct an `OwningPtr` for each component in `to_insert_data`
142 let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144 // SAFETY:
145 // - Component ids have been taken from the same world
146 // - Each array is created to the layout specified in the world
147 unsafe {
148 entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149 }
150
151 println!("Entity spawned with id: {}", entity.id());
152 }
153 "q" => {
154 let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155 parse_query(rest, &mut builder, &component_names);
156 let mut query = builder.build();
157 query.iter_mut(&mut world).for_each(|filtered_entity| {
158 let terms = filtered_entity
159 .access()
160 .try_iter_component_access()
161 .unwrap()
162 .map(|component_access| {
163 let id = *component_access.index();
164 let ptr = filtered_entity.get_by_id(id).unwrap();
165 let info = component_info.get(&id).unwrap();
166 let len = info.layout().size() / size_of::<u64>();
167
168 // SAFETY:
169 // - All components are created with layout [u64]
170 // - len is calculated from the component descriptor
171 let data = unsafe {
172 std::slice::from_raw_parts_mut(
173 ptr.assert_unique().as_ptr().cast::<u64>(),
174 len,
175 )
176 };
177
178 // If we have write access, increment each value once
179 if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180 data.iter_mut().for_each(|data| {
181 *data += 1;
182 });
183 }
184
185 format!("{}: {:?}", info.name(), data[0..len].to_vec())
186 })
187 .collect::<Vec<_>>()
188 .join(", ");
189
190 println!("{}: {}", filtered_entity.id(), terms);
191 });
192 }
193 _ => continue,
194 }
195 }
196}
Sourcepub fn spawn<B>(&mut self, bundle: B) -> EntityWorldMut<'_>where
B: Bundle,
pub fn spawn<B>(&mut self, bundle: B) -> EntityWorldMut<'_>where
B: Bundle,
Spawns a new Entity
with a given Bundle
of components and returns
a corresponding EntityWorldMut
, which can be used to add components to the entity or
retrieve its id. In case large batches of entities need to be spawned, consider using
World::spawn_batch
instead.
use bevy_ecs::{bundle::Bundle, component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Velocity {
x: f32,
y: f32,
};
#[derive(Component)]
struct Name(&'static str);
#[derive(Bundle)]
struct PhysicsBundle {
position: Position,
velocity: Velocity,
}
let mut world = World::new();
// `spawn` can accept a single component:
world.spawn(Position { x: 0.0, y: 0.0 });
// It can also accept a tuple of components:
world.spawn((
Position { x: 0.0, y: 0.0 },
Velocity { x: 1.0, y: 1.0 },
));
// Or it can accept a pre-defined Bundle of components:
world.spawn(PhysicsBundle {
position: Position { x: 2.0, y: 2.0 },
velocity: Velocity { x: 0.0, y: 4.0 },
});
let entity = world
// Tuples can also mix Bundles and Components
.spawn((
PhysicsBundle {
position: Position { x: 2.0, y: 2.0 },
velocity: Velocity { x: 0.0, y: 4.0 },
},
Name("Elaina Proctor"),
))
// Calling id() will return the unique identifier for the spawned entity
.id();
let position = world.entity(entity).get::<Position>().unwrap();
assert_eq!(position.x, 2.0);
Examples found in repository?
More examples
244fn exclusive_player_system(world: &mut World) {
245 // this does the same thing as "new_player_system"
246 let total_players = world.resource_mut::<GameState>().total_players;
247 let should_add_player = {
248 let game_rules = world.resource::<GameRules>();
249 let add_new_player = random::<bool>();
250 add_new_player && total_players < game_rules.max_players
251 };
252 // Randomly add a new player
253 if should_add_player {
254 println!("Player {} has joined the game!", total_players + 1);
255 world.spawn((
256 Player {
257 name: format!("Player {}", total_players + 1),
258 },
259 Score { value: 0 },
260 PlayerStreak::None,
261 ));
262
263 let mut game_state = world.resource_mut::<GameState>();
264 game_state.total_players += 1;
265 }
266}
30fn demo_1(world: &mut World) {
31 // Immutable components can be inserted just like mutable components.
32 let mut entity = world.spawn((MyMutableComponent(false), MyImmutableComponent(false)));
33
34 // But where mutable components can be mutated...
35 let mut my_mutable_component = entity.get_mut::<MyMutableComponent>().unwrap();
36 my_mutable_component.0 = true;
37
38 // ...immutable ones cannot. The below fails to compile as `MyImmutableComponent`
39 // is declared as immutable.
40 // let mut my_immutable_component = entity.get_mut::<MyImmutableComponent>().unwrap();
41
42 // Instead, you could take or replace the immutable component to update its value.
43 let mut my_immutable_component = entity.take::<MyImmutableComponent>().unwrap();
44 my_immutable_component.0 = true;
45 entity.insert(my_immutable_component);
46}
47
48/// This is an example of a component like [`Name`](bevy::prelude::Name), but immutable.
49#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Component, Reflect)]
50#[reflect(Hash, Component)]
51#[component(
52 immutable,
53 // Since this component is immutable, we can fully capture all mutations through
54 // these component hooks. This allows for keeping other parts of the ECS synced
55 // to a component's value at all times.
56 on_insert = on_insert_name,
57 on_replace = on_replace_name,
58)]
59pub struct Name(pub &'static str);
60
61/// This index allows for O(1) lookups of an [`Entity`] by its [`Name`].
62#[derive(Resource, Default)]
63struct NameIndex {
64 name_to_entity: HashMap<Name, Entity>,
65}
66
67impl NameIndex {
68 fn get_entity(&self, name: &'static str) -> Option<Entity> {
69 self.name_to_entity.get(&Name(name)).copied()
70 }
71}
72
73/// When a [`Name`] is inserted, we will add it to our [`NameIndex`].
74///
75/// Since all mutations to [`Name`] are captured by hooks, we know it is not currently
76/// inserted in the index, and its value will not change without triggering a hook.
77fn on_insert_name(mut world: DeferredWorld<'_>, HookContext { entity, .. }: HookContext) {
78 let Some(&name) = world.entity(entity).get::<Name>() else {
79 unreachable!("Insert hook guarantees `Name` is available on entity")
80 };
81 let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
82 return;
83 };
84
85 index.name_to_entity.insert(name, entity);
86}
87
88/// When a [`Name`] is removed or replaced, remove it from our [`NameIndex`].
89///
90/// Since all mutations to [`Name`] are captured by hooks, we know it is currently
91/// inserted in the index.
92fn on_replace_name(mut world: DeferredWorld<'_>, HookContext { entity, .. }: HookContext) {
93 let Some(&name) = world.entity(entity).get::<Name>() else {
94 unreachable!("Replace hook guarantees `Name` is available on entity")
95 };
96 let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
97 return;
98 };
99
100 index.name_to_entity.remove(&name);
101}
102
103fn demo_2(world: &mut World) {
104 // Setup our name index
105 world.init_resource::<NameIndex>();
106
107 // Spawn some entities!
108 let alyssa = world.spawn(Name("Alyssa")).id();
109 let javier = world.spawn(Name("Javier")).id();
110
111 // Check our index
112 let index = world.resource::<NameIndex>();
113
114 assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
115 assert_eq!(index.get_entity("Javier"), Some(javier));
116
117 // Changing the name of an entity is also fully capture by our index
118 world.entity_mut(javier).insert(Name("Steven"));
119
120 // Javier changed their name to Steven
121 let steven = javier;
122
123 // Check our index
124 let index = world.resource::<NameIndex>();
125
126 assert_eq!(index.get_entity("Javier"), None);
127 assert_eq!(index.get_entity("Steven"), Some(steven));
128}
157fn save_scene_system(world: &mut World) {
158 // Scenes can be created from any ECS World.
159 // You can either create a new one for the scene or use the current World.
160 // For demonstration purposes, we'll create a new one.
161 let mut scene_world = World::new();
162
163 // The `TypeRegistry` resource contains information about all registered types (including components).
164 // This is used to construct scenes, so we'll want to ensure that our previous type registrations
165 // exist in this new scene world as well.
166 // To do this, we can simply clone the `AppTypeRegistry` resource.
167 let type_registry = world.resource::<AppTypeRegistry>().clone();
168 scene_world.insert_resource(type_registry);
169
170 let mut component_b = ComponentB::from_world(world);
171 component_b.value = "hello".to_string();
172 scene_world.spawn((
173 component_b,
174 ComponentA { x: 1.0, y: 2.0 },
175 Transform::IDENTITY,
176 Name::new("joe"),
177 ));
178 scene_world.spawn(ComponentA { x: 3.0, y: 4.0 });
179 scene_world.insert_resource(ResourceA { score: 1 });
180
181 // With our sample world ready to go, we can now create our scene using DynamicScene or DynamicSceneBuilder.
182 // For simplicity, we will create our scene using DynamicScene:
183 let scene = DynamicScene::from_world(&scene_world);
184
185 // Scenes can be serialized like this:
186 let type_registry = world.resource::<AppTypeRegistry>();
187 let type_registry = type_registry.read();
188 let serialized_scene = scene.serialize(&type_registry).unwrap();
189
190 // Showing the scene in the console
191 info!("{}", serialized_scene);
192
193 // Writing the scene to a new file. Using a task to avoid calling the filesystem APIs in a system
194 // as they are blocking.
195 //
196 // This can't work in Wasm as there is no filesystem access.
197 #[cfg(not(target_arch = "wasm32"))]
198 IoTaskPool::get()
199 .spawn(async move {
200 // Write the scene RON data to file
201 File::create(format!("assets/{NEW_SCENE_FILE_PATH}"))
202 .and_then(|mut file| file.write(serialized_scene.as_bytes()))
203 .expect("Error while writing scene to file");
204 })
205 .detach();
206}
Sourcepub fn spawn_batch<I>(
&mut self,
iter: I,
) -> SpawnBatchIter<'_, <I as IntoIterator>::IntoIter> ⓘwhere
I: IntoIterator,
<I as IntoIterator>::Item: Bundle,
<<I as IntoIterator>::Item as DynamicBundle>::Effect: NoBundleEffect,
pub fn spawn_batch<I>(
&mut self,
iter: I,
) -> SpawnBatchIter<'_, <I as IntoIterator>::IntoIter> ⓘwhere
I: IntoIterator,
<I as IntoIterator>::Item: Bundle,
<<I as IntoIterator>::Item as DynamicBundle>::Effect: NoBundleEffect,
Spawns a batch of entities with the same component Bundle
type. Takes a given
Bundle
iterator and returns a corresponding Entity
iterator.
This is more efficient than spawning entities and adding components to them individually
using World::spawn
, but it is limited to spawning entities with the same Bundle
type, whereas spawning individually is more flexible.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component)]
struct Str(&'static str);
#[derive(Component)]
struct Num(u32);
let mut world = World::new();
let entities = world.spawn_batch(vec![
(Str("a"), Num(0)), // the first entity
(Str("b"), Num(1)), // the second entity
]).collect::<Vec<Entity>>();
assert_eq!(entities.len(), 2);
Sourcepub fn get<T>(&self, entity: Entity) -> Option<&T>where
T: Component,
pub fn get<T>(&self, entity: Entity) -> Option<&T>where
T: Component,
Retrieves a reference to the given entity
’s Component
of the given type.
Returns None
if the entity
does not have a Component
of the given type.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let position = world.get::<Position>(entity).unwrap();
assert_eq!(position.x, 0.0);
Examples found in repository?
61fn setup(world: &mut World) {
62 // In order to register component hooks the component must:
63 // - not be currently in use by any entities in the world
64 // - not already have a hook of that kind registered
65 // This is to prevent overriding hooks defined in plugins and other crates as well as keeping things fast
66 world
67 .register_component_hooks::<MyComponent>()
68 // There are 4 component lifecycle hooks: `on_add`, `on_insert`, `on_replace` and `on_remove`
69 // A hook has 2 arguments:
70 // - a `DeferredWorld`, this allows access to resource and component data as well as `Commands`
71 // - a `HookContext`, this provides access to the following contextual information:
72 // - the entity that triggered the hook
73 // - the component id of the triggering component, this is mostly used for dynamic components
74 // - the location of the code that caused the hook to trigger
75 //
76 // `on_add` will trigger when a component is inserted onto an entity without it
77 .on_add(
78 |mut world,
79 HookContext {
80 entity,
81 component_id,
82 caller,
83 ..
84 }| {
85 // You can access component data from within the hook
86 let value = world.get::<MyComponent>(entity).unwrap().0;
87 println!(
88 "{component_id:?} added to {entity} with value {value:?}{}",
89 caller
90 .map(|location| format!("due to {location}"))
91 .unwrap_or_default()
92 );
93 // Or access resources
94 world
95 .resource_mut::<MyComponentIndex>()
96 .insert(value, entity);
97 // Or send messages
98 world.write_message(MyMessage);
99 },
100 )
101 // `on_insert` will trigger when a component is inserted onto an entity,
102 // regardless of whether or not it already had it and after `on_add` if it ran
103 .on_insert(|world, _| {
104 println!("Current Index: {:?}", world.resource::<MyComponentIndex>());
105 })
106 // `on_replace` will trigger when a component is inserted onto an entity that already had it,
107 // and runs before the value is replaced.
108 // Also triggers when a component is removed from an entity, and runs before `on_remove`
109 .on_replace(|mut world, context| {
110 let value = world.get::<MyComponent>(context.entity).unwrap().0;
111 world.resource_mut::<MyComponentIndex>().remove(&value);
112 })
113 // `on_remove` will trigger when a component is removed from an entity,
114 // since it runs before the component is removed you can still access the component data
115 .on_remove(
116 |mut world,
117 HookContext {
118 entity,
119 component_id,
120 caller,
121 ..
122 }| {
123 let value = world.get::<MyComponent>(entity).unwrap().0;
124 println!(
125 "{component_id:?} removed from {entity} with value {value:?}{}",
126 caller
127 .map(|location| format!("due to {location}"))
128 .unwrap_or_default()
129 );
130 // You can also issue commands through `.commands()`
131 world.commands().entity(entity).despawn();
132 },
133 );
134}
Sourcepub fn get_mut<T>(&mut self, entity: Entity) -> Option<Mut<'_, T>>
pub fn get_mut<T>(&mut self, entity: Entity) -> Option<Mut<'_, T>>
Retrieves a mutable reference to the given entity
’s Component
of the given type.
Returns None
if the entity
does not have a Component
of the given type.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let mut position = world.get_mut::<Position>(entity).unwrap();
position.x = 1.0;
Sourcepub fn modify_component<T, R>(
&mut self,
entity: Entity,
f: impl FnOnce(&mut T) -> R,
) -> Result<Option<R>, EntityMutableFetchError>where
T: Component,
pub fn modify_component<T, R>(
&mut self,
entity: Entity,
f: impl FnOnce(&mut T) -> R,
) -> Result<Option<R>, EntityMutableFetchError>where
T: Component,
Temporarily removes a Component
T
from the provided Entity
and
runs the provided closure on it, returning the result if T
was available.
This will trigger the Remove
and Replace
component hooks without
causing an archetype move.
This is most useful with immutable components, where removal and reinsertion is the only way to modify a value.
If you do not need to ensure the above hooks are triggered, and your component
is mutable, prefer using get_mut
.
§Examples
#[derive(Component, PartialEq, Eq, Debug)]
#[component(immutable)]
struct Foo(bool);
world.modify_component(entity, |foo: &mut Foo| {
foo.0 = true;
});
Sourcepub fn modify_component_by_id<R>(
&mut self,
entity: Entity,
component_id: ComponentId,
f: impl for<'a> FnOnce(MutUntyped<'a>) -> R,
) -> Result<Option<R>, EntityMutableFetchError>
pub fn modify_component_by_id<R>( &mut self, entity: Entity, component_id: ComponentId, f: impl for<'a> FnOnce(MutUntyped<'a>) -> R, ) -> Result<Option<R>, EntityMutableFetchError>
Temporarily removes a Component
identified by the provided
ComponentId
from the provided Entity
and runs the provided
closure on it, returning the result if the component was available.
This will trigger the Remove
and Replace
component hooks without
causing an archetype move.
This is most useful with immutable components, where removal and reinsertion is the only way to modify a value.
If you do not need to ensure the above hooks are triggered, and your component
is mutable, prefer using get_mut_by_id
.
You should prefer the typed modify_component
whenever possible.
Sourcepub fn despawn(&mut self, entity: Entity) -> bool
pub fn despawn(&mut self, entity: Entity) -> bool
Despawns the given Entity
, if it exists. This will also remove all of the entity’s
Components
.
Returns true
if the entity is successfully despawned and false
if
the entity does not exist.
§Note
This will also despawn the entities in any RelationshipTarget
that is configured
to despawn descendants. For example, this will recursively despawn Children
.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
assert!(world.despawn(entity));
assert!(world.get_entity(entity).is_err());
assert!(world.get::<Position>(entity).is_none());
Sourcepub fn try_despawn(&mut self, entity: Entity) -> Result<(), EntityDespawnError>
pub fn try_despawn(&mut self, entity: Entity) -> Result<(), EntityDespawnError>
Despawns the given entity
, if it exists. This will also remove all of the entity’s
Components
.
Returns an EntityDespawnError
if the entity does not exist.
§Note
This will also despawn the entities in any RelationshipTarget
that is configured
to despawn descendants. For example, this will recursively despawn Children
.
Sourcepub fn clear_trackers(&mut self)
pub fn clear_trackers(&mut self)
Clears the internal component tracker state.
The world maintains some internal state about changed and removed components. This state
is used by RemovedComponents
to provide access to the entities that had a specific type
of component removed since last tick.
The state is also used for change detection when accessing components and resources outside
of a system, for example via World::get_mut()
or World::get_resource_mut()
.
By clearing this internal state, the world “forgets” about those changes, allowing a new round of detection to be recorded.
When using bevy_ecs
as part of the full Bevy engine, this method is called automatically
by bevy_app::App::update
and bevy_app::SubApp::update
, so you don’t need to call it manually.
When using bevy_ecs
as a separate standalone crate however, you do need to call this manually.
// a whole new world
let mut world = World::new();
// you changed it
let entity = world.spawn(Transform::default()).id();
// change is detected
let transform = world.get_mut::<Transform>(entity).unwrap();
assert!(transform.is_changed());
// update the last change tick
world.clear_trackers();
// change is no longer detected
let transform = world.get_mut::<Transform>(entity).unwrap();
assert!(!transform.is_changed());
Sourcepub fn query<D>(&mut self) -> QueryState<D>where
D: QueryData,
pub fn query<D>(&mut self) -> QueryState<D>where
D: QueryData,
Returns QueryState
for the given QueryData
, which is used to efficiently
run queries on the World
by storing and reusing the QueryState
.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component, Debug, PartialEq)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Velocity {
x: f32,
y: f32,
}
let mut world = World::new();
let entities = world.spawn_batch(vec![
(Position { x: 0.0, y: 0.0}, Velocity { x: 1.0, y: 0.0 }),
(Position { x: 0.0, y: 0.0}, Velocity { x: 0.0, y: 1.0 }),
]).collect::<Vec<Entity>>();
let mut query = world.query::<(&mut Position, &Velocity)>();
for (mut position, velocity) in query.iter_mut(&mut world) {
position.x += velocity.x;
position.y += velocity.y;
}
assert_eq!(world.get::<Position>(entities[0]).unwrap(), &Position { x: 1.0, y: 0.0 });
assert_eq!(world.get::<Position>(entities[1]).unwrap(), &Position { x: 0.0, y: 1.0 });
To iterate over entities in a deterministic order,
sort the results of the query using the desired component as a key.
Note that this requires fetching the whole result set from the query
and allocation of a Vec
to store it.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component, PartialEq, Eq, PartialOrd, Ord, Debug)]
struct Order(i32);
#[derive(Component, PartialEq, Debug)]
struct Label(&'static str);
let mut world = World::new();
let a = world.spawn((Order(2), Label("second"))).id();
let b = world.spawn((Order(3), Label("third"))).id();
let c = world.spawn((Order(1), Label("first"))).id();
let mut entities = world.query::<(Entity, &Order, &Label)>()
.iter(&world)
.collect::<Vec<_>>();
// Sort the query results by their `Order` component before comparing
// to expected results. Query iteration order should not be relied on.
entities.sort_by_key(|e| e.1);
assert_eq!(entities, vec![
(c, &Order(1), &Label("first")),
(a, &Order(2), &Label("second")),
(b, &Order(3), &Label("third")),
]);
Sourcepub fn query_filtered<D, F>(&mut self) -> QueryState<D, F>where
D: QueryData,
F: QueryFilter,
pub fn query_filtered<D, F>(&mut self) -> QueryState<D, F>where
D: QueryData,
F: QueryFilter,
Returns QueryState
for the given filtered QueryData
, which is used to efficiently
run queries on the World
by storing and reusing the QueryState
.
use bevy_ecs::{component::Component, entity::Entity, world::World, query::With};
#[derive(Component)]
struct A;
#[derive(Component)]
struct B;
let mut world = World::new();
let e1 = world.spawn(A).id();
let e2 = world.spawn((A, B)).id();
let mut query = world.query_filtered::<Entity, With<B>>();
let matching_entities = query.iter(&world).collect::<Vec<Entity>>();
assert_eq!(matching_entities, vec![e2]);
Sourcepub fn try_query<D>(&self) -> Option<QueryState<D>>where
D: QueryData,
pub fn try_query<D>(&self) -> Option<QueryState<D>>where
D: QueryData,
Returns QueryState
for the given QueryData
, which is used to efficiently
run queries on the World
by storing and reusing the QueryState
.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component, Debug, PartialEq)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
world.spawn_batch(vec![
Position { x: 0.0, y: 0.0 },
Position { x: 1.0, y: 1.0 },
]);
fn get_positions(world: &World) -> Vec<(Entity, &Position)> {
let mut query = world.try_query::<(Entity, &Position)>().unwrap();
query.iter(world).collect()
}
let positions = get_positions(&world);
assert_eq!(world.get::<Position>(positions[0].0).unwrap(), positions[0].1);
assert_eq!(world.get::<Position>(positions[1].0).unwrap(), positions[1].1);
Requires only an immutable world reference, but may fail if, for example, the components that make up this query have not been registered into the world.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component)]
struct A;
let mut world = World::new();
let none_query = world.try_query::<&A>();
assert!(none_query.is_none());
world.register_component::<A>();
let some_query = world.try_query::<&A>();
assert!(some_query.is_some());
Sourcepub fn try_query_filtered<D, F>(&self) -> Option<QueryState<D, F>>where
D: QueryData,
F: QueryFilter,
pub fn try_query_filtered<D, F>(&self) -> Option<QueryState<D, F>>where
D: QueryData,
F: QueryFilter,
Returns QueryState
for the given filtered QueryData
, which is used to efficiently
run queries on the World
by storing and reusing the QueryState
.
use bevy_ecs::{component::Component, entity::Entity, world::World, query::With};
#[derive(Component)]
struct A;
#[derive(Component)]
struct B;
let mut world = World::new();
let e1 = world.spawn(A).id();
let e2 = world.spawn((A, B)).id();
let mut query = world.try_query_filtered::<Entity, With<B>>().unwrap();
let matching_entities = query.iter(&world).collect::<Vec<Entity>>();
assert_eq!(matching_entities, vec![e2]);
Requires only an immutable world reference, but may fail if, for example, the components that make up this query have not been registered into the world.
Sourcepub fn removed<T>(&self) -> impl Iterator<Item = Entity>where
T: Component,
pub fn removed<T>(&self) -> impl Iterator<Item = Entity>where
T: Component,
Returns an iterator of entities that had components of type T
removed
since the last call to World::clear_trackers
.
Sourcepub fn removed_with_id(
&self,
component_id: ComponentId,
) -> impl Iterator<Item = Entity>
pub fn removed_with_id( &self, component_id: ComponentId, ) -> impl Iterator<Item = Entity>
Returns an iterator of entities that had components with the given component_id
removed
since the last call to World::clear_trackers
.
Sourcepub fn register_resource_with_descriptor(
&mut self,
descriptor: ComponentDescriptor,
) -> ComponentId
pub fn register_resource_with_descriptor( &mut self, descriptor: ComponentDescriptor, ) -> ComponentId
Registers a new Resource
type and returns the ComponentId
created for it.
This enables the dynamic registration of new Resource
definitions at runtime for
advanced use cases.
§Note
Registering a Resource
does not insert it into World
. For insertion, you could use
World::insert_resource_by_id
.
Sourcepub fn init_resource<R>(&mut self) -> ComponentId
pub fn init_resource<R>(&mut self) -> ComponentId
Initializes a new resource and returns the ComponentId
created for it.
If the resource already exists, nothing happens.
The value given by the FromWorld::from_world
method will be used.
Note that any resource with the Default
trait automatically implements FromWorld
,
and those default values will be here instead.
Examples found in repository?
103fn demo_2(world: &mut World) {
104 // Setup our name index
105 world.init_resource::<NameIndex>();
106
107 // Spawn some entities!
108 let alyssa = world.spawn(Name("Alyssa")).id();
109 let javier = world.spawn(Name("Javier")).id();
110
111 // Check our index
112 let index = world.resource::<NameIndex>();
113
114 assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
115 assert_eq!(index.get_entity("Javier"), Some(javier));
116
117 // Changing the name of an entity is also fully capture by our index
118 world.entity_mut(javier).insert(Name("Steven"));
119
120 // Javier changed their name to Steven
121 let steven = javier;
122
123 // Check our index
124 let index = world.resource::<NameIndex>();
125
126 assert_eq!(index.get_entity("Javier"), None);
127 assert_eq!(index.get_entity("Steven"), Some(steven));
128}
Sourcepub fn insert_resource<R>(&mut self, value: R)where
R: Resource,
pub fn insert_resource<R>(&mut self, value: R)where
R: Resource,
Inserts a new resource with the given value
.
Resources are “unique” data of a given type. If you insert a resource of a type that already exists, you will overwrite any existing data.
Examples found in repository?
157fn save_scene_system(world: &mut World) {
158 // Scenes can be created from any ECS World.
159 // You can either create a new one for the scene or use the current World.
160 // For demonstration purposes, we'll create a new one.
161 let mut scene_world = World::new();
162
163 // The `TypeRegistry` resource contains information about all registered types (including components).
164 // This is used to construct scenes, so we'll want to ensure that our previous type registrations
165 // exist in this new scene world as well.
166 // To do this, we can simply clone the `AppTypeRegistry` resource.
167 let type_registry = world.resource::<AppTypeRegistry>().clone();
168 scene_world.insert_resource(type_registry);
169
170 let mut component_b = ComponentB::from_world(world);
171 component_b.value = "hello".to_string();
172 scene_world.spawn((
173 component_b,
174 ComponentA { x: 1.0, y: 2.0 },
175 Transform::IDENTITY,
176 Name::new("joe"),
177 ));
178 scene_world.spawn(ComponentA { x: 3.0, y: 4.0 });
179 scene_world.insert_resource(ResourceA { score: 1 });
180
181 // With our sample world ready to go, we can now create our scene using DynamicScene or DynamicSceneBuilder.
182 // For simplicity, we will create our scene using DynamicScene:
183 let scene = DynamicScene::from_world(&scene_world);
184
185 // Scenes can be serialized like this:
186 let type_registry = world.resource::<AppTypeRegistry>();
187 let type_registry = type_registry.read();
188 let serialized_scene = scene.serialize(&type_registry).unwrap();
189
190 // Showing the scene in the console
191 info!("{}", serialized_scene);
192
193 // Writing the scene to a new file. Using a task to avoid calling the filesystem APIs in a system
194 // as they are blocking.
195 //
196 // This can't work in Wasm as there is no filesystem access.
197 #[cfg(not(target_arch = "wasm32"))]
198 IoTaskPool::get()
199 .spawn(async move {
200 // Write the scene RON data to file
201 File::create(format!("assets/{NEW_SCENE_FILE_PATH}"))
202 .and_then(|mut file| file.write(serialized_scene.as_bytes()))
203 .expect("Error while writing scene to file");
204 })
205 .detach();
206}
Sourcepub fn init_non_send_resource<R>(&mut self) -> ComponentIdwhere
R: 'static + FromWorld,
pub fn init_non_send_resource<R>(&mut self) -> ComponentIdwhere
R: 'static + FromWorld,
Initializes a new non-send resource and returns the ComponentId
created for it.
If the resource already exists, nothing happens.
The value given by the FromWorld::from_world
method will be used.
Note that any resource with the Default
trait automatically implements FromWorld
,
and those default values will be here instead.
§Panics
Panics if called from a thread other than the main thread.
Sourcepub fn insert_non_send_resource<R>(&mut self, value: R)where
R: 'static,
pub fn insert_non_send_resource<R>(&mut self, value: R)where
R: 'static,
Inserts a new non-send resource with the given value
.
NonSend
resources cannot be sent across threads,
and do not need the Send + Sync
bounds.
Systems with NonSend
resources are always scheduled on the main thread.
§Panics
If a value is already present, this function will panic if called from a different thread than where the original value was inserted from.
Sourcepub fn remove_resource<R>(&mut self) -> Option<R>where
R: Resource,
pub fn remove_resource<R>(&mut self) -> Option<R>where
R: Resource,
Removes the resource of a given type and returns it, if it exists. Otherwise returns None
.
Sourcepub fn remove_non_send_resource<R>(&mut self) -> Option<R>where
R: 'static,
pub fn remove_non_send_resource<R>(&mut self) -> Option<R>where
R: 'static,
Removes a !Send
resource from the world and returns it, if present.
NonSend
resources cannot be sent across threads,
and do not need the Send + Sync
bounds.
Systems with NonSend
resources are always scheduled on the main thread.
Returns None
if a value was not previously present.
§Panics
If a value is present, this function will panic if called from a different thread than where the value was inserted from.
Sourcepub fn contains_resource<R>(&self) -> boolwhere
R: Resource,
pub fn contains_resource<R>(&self) -> boolwhere
R: Resource,
Returns true
if a resource of type R
exists. Otherwise returns false
.
Sourcepub fn contains_resource_by_id(&self, component_id: ComponentId) -> bool
pub fn contains_resource_by_id(&self, component_id: ComponentId) -> bool
Returns true
if a resource with provided component_id
exists. Otherwise returns false
.
Sourcepub fn contains_non_send<R>(&self) -> boolwhere
R: 'static,
pub fn contains_non_send<R>(&self) -> boolwhere
R: 'static,
Returns true
if a resource of type R
exists. Otherwise returns false
.
Sourcepub fn contains_non_send_by_id(&self, component_id: ComponentId) -> bool
pub fn contains_non_send_by_id(&self, component_id: ComponentId) -> bool
Returns true
if a resource with provided component_id
exists. Otherwise returns false
.
Sourcepub fn is_resource_added<R>(&self) -> boolwhere
R: Resource,
pub fn is_resource_added<R>(&self) -> boolwhere
R: Resource,
Returns true
if a resource of type R
exists and was added since the world’s
last_change_tick
. Otherwise, this returns false
.
This means that:
- When called from an exclusive system, this will check for additions since the system last ran.
- When called elsewhere, this will check for additions since the last time that
World::clear_trackers
was called.
Sourcepub fn is_resource_added_by_id(&self, component_id: ComponentId) -> bool
pub fn is_resource_added_by_id(&self, component_id: ComponentId) -> bool
Returns true
if a resource with id component_id
exists and was added since the world’s
last_change_tick
. Otherwise, this returns false
.
This means that:
- When called from an exclusive system, this will check for additions since the system last ran.
- When called elsewhere, this will check for additions since the last time that
World::clear_trackers
was called.
Sourcepub fn is_resource_changed<R>(&self) -> boolwhere
R: Resource,
pub fn is_resource_changed<R>(&self) -> boolwhere
R: Resource,
Returns true
if a resource of type R
exists and was modified since the world’s
last_change_tick
. Otherwise, this returns false
.
This means that:
- When called from an exclusive system, this will check for changes since the system last ran.
- When called elsewhere, this will check for changes since the last time that
World::clear_trackers
was called.
Sourcepub fn is_resource_changed_by_id(&self, component_id: ComponentId) -> bool
pub fn is_resource_changed_by_id(&self, component_id: ComponentId) -> bool
Returns true
if a resource with id component_id
exists and was modified since the world’s
last_change_tick
. Otherwise, this returns false
.
This means that:
- When called from an exclusive system, this will check for changes since the system last ran.
- When called elsewhere, this will check for changes since the last time that
World::clear_trackers
was called.
Sourcepub fn get_resource_change_ticks<R>(&self) -> Option<ComponentTicks>where
R: Resource,
pub fn get_resource_change_ticks<R>(&self) -> Option<ComponentTicks>where
R: Resource,
Retrieves the change ticks for the given resource.
Sourcepub fn get_resource_change_ticks_by_id(
&self,
component_id: ComponentId,
) -> Option<ComponentTicks>
pub fn get_resource_change_ticks_by_id( &self, component_id: ComponentId, ) -> Option<ComponentTicks>
Retrieves the change ticks for the given ComponentId
.
You should prefer to use the typed API World::get_resource_change_ticks
where possible.
Sourcepub fn resource<R>(&self) -> &Rwhere
R: Resource,
pub fn resource<R>(&self) -> &Rwhere
R: Resource,
Gets a reference to the resource of the given type
§Panics
Panics if the resource does not exist.
Use get_resource
instead if you want to handle this case.
If you want to instead insert a value if the resource does not exist,
use get_resource_or_insert_with
.
Examples found in repository?
More examples
87 fn from_world(world: &mut World) -> Self {
88 let time = world.resource::<Time>();
89 ComponentB {
90 _time_since_startup: time.elapsed(),
91 value: "Default Value".to_string(),
92 }
93 }
94}
95
96/// A simple resource that also derives `Reflect`, allowing it to be stored in scenes.
97///
98/// Just like a component, you can skip serializing fields or implement `FromWorld` if needed.
99#[derive(Resource, Reflect, Default)]
100#[reflect(Resource)]
101struct ResourceA {
102 /// This resource tracks a `score` value.
103 pub score: u32,
104}
105
106/// # Scene File Paths
107///
108/// `SCENE_FILE_PATH` points to the original scene file that we'll be loading.
109/// `NEW_SCENE_FILE_PATH` points to the new scene file that we'll be creating
110/// (and demonstrating how to serialize to disk).
111///
112/// The initial scene file will be loaded below and not change when the scene is saved.
113const SCENE_FILE_PATH: &str = "scenes/load_scene_example.scn.ron";
114
115/// The new, updated scene data will be saved here so that you can see the changes.
116const NEW_SCENE_FILE_PATH: &str = "scenes/load_scene_example-new.scn.ron";
117
118/// Loads a scene from an asset file and spawns it in the current world.
119///
120/// Spawning a `DynamicSceneRoot` creates a new parent entity, which then spawns new
121/// instances of the scene's entities as its children. If you modify the
122/// `SCENE_FILE_PATH` scene file, or if you enable file watching, you can see
123/// changes reflected immediately.
124fn load_scene_system(mut commands: Commands, asset_server: Res<AssetServer>) {
125 commands.spawn(DynamicSceneRoot(asset_server.load(SCENE_FILE_PATH)));
126}
127
128/// Logs changes made to `ComponentA` entities, and also checks whether `ResourceA`
129/// has been recently added.
130///
131/// Any time a `ComponentA` is modified, that change will appear here. This system
132/// demonstrates how you might detect and handle scene updates at runtime.
133fn log_system(
134 query: Query<(Entity, &ComponentA), Changed<ComponentA>>,
135 res: Option<Res<ResourceA>>,
136) {
137 for (entity, component_a) in &query {
138 info!(" Entity({})", entity.index());
139 info!(
140 " ComponentA: {{ x: {} y: {} }}\n",
141 component_a.x, component_a.y
142 );
143 }
144 if let Some(res) = res
145 && res.is_added()
146 {
147 info!(" New ResourceA: {{ score: {} }}\n", res.score);
148 }
149}
150
151/// Demonstrates how to create a new scene from scratch, populate it with data,
152/// and then serialize it to a file. The new file is written to `NEW_SCENE_FILE_PATH`.
153///
154/// This system creates a fresh world, duplicates the type registry so that our
155/// custom component types are recognized, spawns some sample entities and resources,
156/// and then serializes the resulting dynamic scene.
157fn save_scene_system(world: &mut World) {
158 // Scenes can be created from any ECS World.
159 // You can either create a new one for the scene or use the current World.
160 // For demonstration purposes, we'll create a new one.
161 let mut scene_world = World::new();
162
163 // The `TypeRegistry` resource contains information about all registered types (including components).
164 // This is used to construct scenes, so we'll want to ensure that our previous type registrations
165 // exist in this new scene world as well.
166 // To do this, we can simply clone the `AppTypeRegistry` resource.
167 let type_registry = world.resource::<AppTypeRegistry>().clone();
168 scene_world.insert_resource(type_registry);
169
170 let mut component_b = ComponentB::from_world(world);
171 component_b.value = "hello".to_string();
172 scene_world.spawn((
173 component_b,
174 ComponentA { x: 1.0, y: 2.0 },
175 Transform::IDENTITY,
176 Name::new("joe"),
177 ));
178 scene_world.spawn(ComponentA { x: 3.0, y: 4.0 });
179 scene_world.insert_resource(ResourceA { score: 1 });
180
181 // With our sample world ready to go, we can now create our scene using DynamicScene or DynamicSceneBuilder.
182 // For simplicity, we will create our scene using DynamicScene:
183 let scene = DynamicScene::from_world(&scene_world);
184
185 // Scenes can be serialized like this:
186 let type_registry = world.resource::<AppTypeRegistry>();
187 let type_registry = type_registry.read();
188 let serialized_scene = scene.serialize(&type_registry).unwrap();
189
190 // Showing the scene in the console
191 info!("{}", serialized_scene);
192
193 // Writing the scene to a new file. Using a task to avoid calling the filesystem APIs in a system
194 // as they are blocking.
195 //
196 // This can't work in Wasm as there is no filesystem access.
197 #[cfg(not(target_arch = "wasm32"))]
198 IoTaskPool::get()
199 .spawn(async move {
200 // Write the scene RON data to file
201 File::create(format!("assets/{NEW_SCENE_FILE_PATH}"))
202 .and_then(|mut file| file.write(serialized_scene.as_bytes()))
203 .expect("Error while writing scene to file");
204 })
205 .detach();
206}
103fn demo_2(world: &mut World) {
104 // Setup our name index
105 world.init_resource::<NameIndex>();
106
107 // Spawn some entities!
108 let alyssa = world.spawn(Name("Alyssa")).id();
109 let javier = world.spawn(Name("Javier")).id();
110
111 // Check our index
112 let index = world.resource::<NameIndex>();
113
114 assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
115 assert_eq!(index.get_entity("Javier"), Some(javier));
116
117 // Changing the name of an entity is also fully capture by our index
118 world.entity_mut(javier).insert(Name("Steven"));
119
120 // Javier changed their name to Steven
121 let steven = javier;
122
123 // Check our index
124 let index = world.resource::<NameIndex>();
125
126 assert_eq!(index.get_entity("Javier"), None);
127 assert_eq!(index.get_entity("Steven"), Some(steven));
128}
244fn exclusive_player_system(world: &mut World) {
245 // this does the same thing as "new_player_system"
246 let total_players = world.resource_mut::<GameState>().total_players;
247 let should_add_player = {
248 let game_rules = world.resource::<GameRules>();
249 let add_new_player = random::<bool>();
250 add_new_player && total_players < game_rules.max_players
251 };
252 // Randomly add a new player
253 if should_add_player {
254 println!("Player {} has joined the game!", total_players + 1);
255 world.spawn((
256 Player {
257 name: format!("Player {}", total_players + 1),
258 },
259 Score { value: 0 },
260 PlayerStreak::None,
261 ));
262
263 let mut game_state = world.resource_mut::<GameState>();
264 game_state.total_players += 1;
265 }
266}
215 fn run(
216 &self,
217 _graph: &mut render_graph::RenderGraphContext,
218 render_context: &mut RenderContext,
219 world: &World,
220 ) -> Result<(), render_graph::NodeRunError> {
221 let pipeline_cache = world.resource::<PipelineCache>();
222 let pipeline = world.resource::<ComputePipeline>();
223 let bind_group = world.resource::<GpuBufferBindGroup>();
224
225 if let Some(init_pipeline) = pipeline_cache.get_compute_pipeline(pipeline.pipeline) {
226 let mut pass =
227 render_context
228 .command_encoder()
229 .begin_compute_pass(&ComputePassDescriptor {
230 label: Some("GPU readback compute pass"),
231 ..default()
232 });
233
234 pass.set_bind_group(0, &bind_group.0, &[]);
235 pass.set_pipeline(init_pipeline);
236 pass.dispatch_workgroups(BUFFER_LEN as u32, 1, 1);
237 }
238 Ok(())
239 }
Sourcepub fn resource_ref<R>(&self) -> Ref<'_, R>where
R: Resource,
pub fn resource_ref<R>(&self) -> Ref<'_, R>where
R: Resource,
Gets a reference to the resource of the given type
§Panics
Panics if the resource does not exist.
Use get_resource_ref
instead if you want to handle this case.
If you want to instead insert a value if the resource does not exist,
use get_resource_or_insert_with
.
Sourcepub fn resource_mut<R>(&mut self) -> Mut<'_, R>where
R: Resource,
pub fn resource_mut<R>(&mut self) -> Mut<'_, R>where
R: Resource,
Gets a mutable reference to the resource of the given type
§Panics
Panics if the resource does not exist.
Use get_resource_mut
instead if you want to handle this case.
If you want to instead insert a value if the resource does not exist,
use get_resource_or_insert_with
.
Examples found in repository?
More examples
10fn my_runner(mut app: App) -> AppExit {
11 // Finalize plugin building, including running any necessary clean-up.
12 // This is normally completed by the default runner.
13 app.finish();
14 app.cleanup();
15
16 println!("Type stuff into the console");
17 for line in io::stdin().lines() {
18 {
19 let mut input = app.world_mut().resource_mut::<Input>();
20 input.0 = line.unwrap();
21 }
22 app.update();
23
24 if let Some(exit) = app.should_exit() {
25 return exit;
26 }
27 }
28
29 AppExit::Success
30}
244fn exclusive_player_system(world: &mut World) {
245 // this does the same thing as "new_player_system"
246 let total_players = world.resource_mut::<GameState>().total_players;
247 let should_add_player = {
248 let game_rules = world.resource::<GameRules>();
249 let add_new_player = random::<bool>();
250 add_new_player && total_players < game_rules.max_players
251 };
252 // Randomly add a new player
253 if should_add_player {
254 println!("Player {} has joined the game!", total_players + 1);
255 world.spawn((
256 Player {
257 name: format!("Player {}", total_players + 1),
258 },
259 Score { value: 0 },
260 PlayerStreak::None,
261 ));
262
263 let mut game_state = world.resource_mut::<GameState>();
264 game_state.total_players += 1;
265 }
266}
210 fn build(&self, app: &mut App) {
211 let (s, r) = crossbeam_channel::unbounded();
212
213 let render_app = app
214 .insert_resource(MainWorldReceiver(r))
215 .sub_app_mut(RenderApp);
216
217 let mut graph = render_app.world_mut().resource_mut::<RenderGraph>();
218 graph.add_node(ImageCopy, ImageCopyDriver);
219 graph.add_node_edge(bevy::render::graph::CameraDriverLabel, ImageCopy);
220
221 render_app
222 .insert_resource(RenderWorldSender(s))
223 // Make ImageCopiers accessible in RenderWorld system and plugin
224 .add_systems(ExtractSchedule, image_copy_extract)
225 // Receives image data from buffer to channel
226 // so we need to run it after the render graph is done
227 .add_systems(
228 Render,
229 receive_image_from_buffer.after(RenderSystems::Render),
230 );
231 }
97 fn build(&self, app: &mut App) {
98 // Extract the game of life image resource from the main world into the render world
99 // for operation on by the compute shader and display on the sprite.
100 app.add_plugins((
101 ExtractResourcePlugin::<GameOfLifeImages>::default(),
102 ExtractResourcePlugin::<GameOfLifeUniforms>::default(),
103 ));
104 let render_app = app.sub_app_mut(RenderApp);
105 render_app
106 .add_systems(RenderStartup, init_game_of_life_pipeline)
107 .add_systems(
108 Render,
109 prepare_bind_group.in_set(RenderSystems::PrepareBindGroups),
110 );
111
112 let mut render_graph = render_app.world_mut().resource_mut::<RenderGraph>();
113 render_graph.add_node(GameOfLifeLabel, GameOfLifeNode::default());
114 render_graph.add_node_edge(GameOfLifeLabel, bevy::render::graph::CameraDriverLabel);
115 }
Sourcepub fn get_resource<R>(&self) -> Option<&R>where
R: Resource,
pub fn get_resource<R>(&self) -> Option<&R>where
R: Resource,
Gets a reference to the resource of the given type if it exists
Examples found in repository?
150fn failing_system(world: &mut World) -> Result {
151 world
152 // `get_resource` returns an `Option<T>`, so we use `ok_or` to convert it to a `Result` on
153 // which we can call `?` to propagate the error.
154 .get_resource::<UninitializedResource>()
155 // We can provide a `str` here because `BevyError` implements `From<&str>`.
156 .ok_or("Resource not initialized")?;
157
158 Ok(())
159}
160
161fn failing_commands(mut commands: Commands) {
162 commands
163 // This entity doesn't exist!
164 .entity(Entity::from_raw_u32(12345678).unwrap())
165 // Normally, this failed command would panic,
166 // but since we've set the global error handler to `warn`
167 // it will log a warning instead.
168 .insert(Transform::default());
169
170 // The error handlers for commands can be set individually as well,
171 // by using the queue_handled method.
172 commands.queue_handled(
173 |world: &mut World| -> Result {
174 world
175 .get_resource::<UninitializedResource>()
176 .ok_or("Resource not initialized when accessed in a command")?;
177
178 Ok(())
179 },
180 |error, context| {
181 error!("{error}, {context}");
182 },
183 );
184}
More examples
584 fn run<'w>(
585 &self,
586 graph: &mut RenderGraphContext,
587 render_context: &mut RenderContext<'w>,
588 (camera, view, target, resolution_override): QueryItem<'w, '_, Self::ViewQuery>,
589 world: &'w World,
590 ) -> Result<(), NodeRunError> {
591 // First, we need to get our phases resource
592 let Some(stencil_phases) = world.get_resource::<ViewSortedRenderPhases<Stencil3d>>() else {
593 return Ok(());
594 };
595
596 // Get the view entity from the graph
597 let view_entity = graph.view_entity();
598
599 // Get the phase for the current view running our node
600 let Some(stencil_phase) = stencil_phases.get(&view.retained_view_entity) else {
601 return Ok(());
602 };
603
604 // Render pass setup
605 let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
606 label: Some("stencil pass"),
607 // For the purpose of the example, we will write directly to the view target. A real
608 // stencil pass would write to a custom texture and that texture would be used in later
609 // passes to render custom effects using it.
610 color_attachments: &[Some(target.get_color_attachment())],
611 // We don't bind any depth buffer for this pass
612 depth_stencil_attachment: None,
613 timestamp_writes: None,
614 occlusion_query_set: None,
615 });
616
617 if let Some(viewport) =
618 Viewport::from_viewport_and_override(camera.viewport.as_ref(), resolution_override)
619 {
620 render_pass.set_camera_viewport(&viewport);
621 }
622
623 // Render the phase
624 // This will execute each draw functions of each phase items queued in this phase
625 if let Err(err) = stencil_phase.render(&mut render_pass, world, view_entity) {
626 error!("Error encountered while rendering the stencil phase {err:?}");
627 }
628
629 Ok(())
630 }
339 fn run(
340 &self,
341 _graph: &mut RenderGraphContext,
342 render_context: &mut RenderContext,
343 world: &World,
344 ) -> Result<(), NodeRunError> {
345 let image_copiers = world.get_resource::<ImageCopiers>().unwrap();
346 let gpu_images = world
347 .get_resource::<RenderAssets<bevy::render::texture::GpuImage>>()
348 .unwrap();
349
350 for image_copier in image_copiers.iter() {
351 if !image_copier.enabled() {
352 continue;
353 }
354
355 let src_image = gpu_images.get(&image_copier.src_image).unwrap();
356
357 let mut encoder = render_context
358 .render_device()
359 .create_command_encoder(&CommandEncoderDescriptor::default());
360
361 let block_dimensions = src_image.texture_format.block_dimensions();
362 let block_size = src_image.texture_format.block_copy_size(None).unwrap();
363
364 // Calculating correct size of image row because
365 // copy_texture_to_buffer can copy image only by rows aligned wgpu::COPY_BYTES_PER_ROW_ALIGNMENT
366 // That's why image in buffer can be little bit wider
367 // This should be taken into account at copy from buffer stage
368 let padded_bytes_per_row = RenderDevice::align_copy_bytes_per_row(
369 (src_image.size.width as usize / block_dimensions.0 as usize) * block_size as usize,
370 );
371
372 encoder.copy_texture_to_buffer(
373 src_image.texture.as_image_copy(),
374 TexelCopyBufferInfo {
375 buffer: &image_copier.buffer,
376 layout: TexelCopyBufferLayout {
377 offset: 0,
378 bytes_per_row: Some(
379 std::num::NonZero::<u32>::new(padded_bytes_per_row as u32)
380 .unwrap()
381 .into(),
382 ),
383 rows_per_image: None,
384 },
385 },
386 src_image.size,
387 );
388
389 let render_queue = world.get_resource::<RenderQueue>().unwrap();
390 render_queue.submit(std::iter::once(encoder.finish()));
391 }
392
393 Ok(())
394 }
416 fn run<'w>(
417 &self,
418 _: &mut RenderGraphContext,
419 render_context: &mut RenderContext<'w>,
420 world: &'w World,
421 ) -> Result<(), NodeRunError> {
422 // Extract the buffers that hold the GPU indirect draw parameters from
423 // the world resources. We're going to read those buffers to determine
424 // how many meshes were actually drawn.
425 let (Some(indirect_parameters_buffers), Some(indirect_parameters_mapping_buffers)) = (
426 world.get_resource::<IndirectParametersBuffers>(),
427 world.get_resource::<IndirectParametersStagingBuffers>(),
428 ) else {
429 return Ok(());
430 };
431
432 // Get the indirect parameters buffers corresponding to the opaque 3D
433 // phase, since all our meshes are in that phase.
434 let Some(phase_indirect_parameters_buffers) =
435 indirect_parameters_buffers.get(&TypeId::of::<Opaque3d>())
436 else {
437 return Ok(());
438 };
439
440 // Grab both the buffers we're copying from and the staging buffers
441 // we're copying to. Remember that we can't map the indirect parameters
442 // buffers directly, so we have to copy their contents to a staging
443 // buffer.
444 let (
445 Some(indexed_data_buffer),
446 Some(indexed_batch_sets_buffer),
447 Some(indirect_parameters_staging_data_buffer),
448 Some(indirect_parameters_staging_batch_sets_buffer),
449 ) = (
450 phase_indirect_parameters_buffers.indexed.data_buffer(),
451 phase_indirect_parameters_buffers
452 .indexed
453 .batch_sets_buffer(),
454 indirect_parameters_mapping_buffers.data.as_ref(),
455 indirect_parameters_mapping_buffers.batch_sets.as_ref(),
456 )
457 else {
458 return Ok(());
459 };
460
461 // Copy from the indirect parameters buffers to the staging buffers.
462 render_context.command_encoder().copy_buffer_to_buffer(
463 indexed_data_buffer,
464 0,
465 indirect_parameters_staging_data_buffer,
466 0,
467 indexed_data_buffer.size(),
468 );
469 render_context.command_encoder().copy_buffer_to_buffer(
470 indexed_batch_sets_buffer,
471 0,
472 indirect_parameters_staging_batch_sets_buffer,
473 0,
474 indexed_batch_sets_buffer.size(),
475 );
476
477 Ok(())
478 }
Sourcepub fn get_resource_ref<R>(&self) -> Option<Ref<'_, R>>where
R: Resource,
pub fn get_resource_ref<R>(&self) -> Option<Ref<'_, R>>where
R: Resource,
Gets a reference including change detection to the resource of the given type if it exists.
Sourcepub fn get_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: Resource,
pub fn get_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: Resource,
Gets a mutable reference to the resource of the given type if it exists
Sourcepub fn get_resource_or_insert_with<R>(
&mut self,
func: impl FnOnce() -> R,
) -> Mut<'_, R>where
R: Resource,
pub fn get_resource_or_insert_with<R>(
&mut self,
func: impl FnOnce() -> R,
) -> Mut<'_, R>where
R: Resource,
Gets a mutable reference to the resource of type T
if it exists,
otherwise inserts the resource using the result of calling func
.
§Example
#[derive(Resource)]
struct MyResource(i32);
let my_res = world.get_resource_or_insert_with(|| MyResource(10));
assert_eq!(my_res.0, 10);
Sourcepub fn get_resource_or_init<R>(&mut self) -> Mut<'_, R>
pub fn get_resource_or_init<R>(&mut self) -> Mut<'_, R>
Gets a mutable reference to the resource of type T
if it exists,
otherwise initializes the resource by calling its FromWorld
implementation.
§Example
#[derive(Resource)]
struct Foo(i32);
impl Default for Foo {
fn default() -> Self {
Self(15)
}
}
#[derive(Resource)]
struct MyResource(i32);
impl FromWorld for MyResource {
fn from_world(world: &mut World) -> Self {
let foo = world.get_resource_or_init::<Foo>();
Self(foo.0 * 2)
}
}
let my_res = world.get_resource_or_init::<MyResource>();
assert_eq!(my_res.0, 30);
Sourcepub fn non_send_resource<R>(&self) -> &Rwhere
R: 'static,
pub fn non_send_resource<R>(&self) -> &Rwhere
R: 'static,
Gets an immutable reference to the non-send resource of the given type, if it exists.
§Panics
Panics if the resource does not exist.
Use get_non_send_resource
instead if you want to handle this case.
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn non_send_resource_mut<R>(&mut self) -> Mut<'_, R>where
R: 'static,
pub fn non_send_resource_mut<R>(&mut self) -> Mut<'_, R>where
R: 'static,
Gets a mutable reference to the non-send resource of the given type, if it exists.
§Panics
Panics if the resource does not exist.
Use get_non_send_resource_mut
instead if you want to handle this case.
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn get_non_send_resource<R>(&self) -> Option<&R>where
R: 'static,
pub fn get_non_send_resource<R>(&self) -> Option<&R>where
R: 'static,
Gets a reference to the non-send resource of the given type, if it exists.
Otherwise returns None
.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn get_non_send_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: 'static,
pub fn get_non_send_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: 'static,
Gets a mutable reference to the non-send resource of the given type, if it exists.
Otherwise returns None
.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn insert_batch<I, B>(&mut self, batch: I)where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
pub fn insert_batch<I, B>(&mut self, batch: I)where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
For a given batch of (Entity
, Bundle
) pairs,
adds the Bundle
of components to each Entity
.
This is faster than doing equivalent operations one-by-one.
A batch can be any type that implements IntoIterator
containing (Entity, Bundle)
tuples,
such as a Vec<(Entity, Bundle)>
or an array [(Entity, Bundle); N]
.
This will overwrite any previous values of components shared by the Bundle
.
See World::insert_batch_if_new
to keep the old values instead.
§Panics
This function will panic if any of the associated entities do not exist.
For the fallible version, see World::try_insert_batch
.
Sourcepub fn insert_batch_if_new<I, B>(&mut self, batch: I)where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
pub fn insert_batch_if_new<I, B>(&mut self, batch: I)where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
For a given batch of (Entity
, Bundle
) pairs,
adds the Bundle
of components to each Entity
without overwriting.
This is faster than doing equivalent operations one-by-one.
A batch can be any type that implements IntoIterator
containing (Entity, Bundle)
tuples,
such as a Vec<(Entity, Bundle)>
or an array [(Entity, Bundle); N]
.
This is the same as World::insert_batch
, but in case of duplicate
components it will leave the old values instead of replacing them with new ones.
§Panics
This function will panic if any of the associated entities do not exist.
For the fallible version, see World::try_insert_batch_if_new
.
Sourcepub fn try_insert_batch<I, B>(
&mut self,
batch: I,
) -> Result<(), TryInsertBatchError>where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
pub fn try_insert_batch<I, B>(
&mut self,
batch: I,
) -> Result<(), TryInsertBatchError>where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
For a given batch of (Entity
, Bundle
) pairs,
adds the Bundle
of components to each Entity
.
This is faster than doing equivalent operations one-by-one.
A batch can be any type that implements IntoIterator
containing (Entity, Bundle)
tuples,
such as a Vec<(Entity, Bundle)>
or an array [(Entity, Bundle); N]
.
This will overwrite any previous values of components shared by the Bundle
.
See World::try_insert_batch_if_new
to keep the old values instead.
Returns a TryInsertBatchError
if any of the provided entities do not exist.
For the panicking version, see World::insert_batch
.
Sourcepub fn try_insert_batch_if_new<I, B>(
&mut self,
batch: I,
) -> Result<(), TryInsertBatchError>where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
pub fn try_insert_batch_if_new<I, B>(
&mut self,
batch: I,
) -> Result<(), TryInsertBatchError>where
I: IntoIterator,
<I as IntoIterator>::IntoIter: Iterator<Item = (Entity, B)>,
B: Bundle,
<B as DynamicBundle>::Effect: NoBundleEffect,
For a given batch of (Entity
, Bundle
) pairs,
adds the Bundle
of components to each Entity
without overwriting.
This is faster than doing equivalent operations one-by-one.
A batch can be any type that implements IntoIterator
containing (Entity, Bundle)
tuples,
such as a Vec<(Entity, Bundle)>
or an array [(Entity, Bundle); N]
.
This is the same as World::try_insert_batch
, but in case of duplicate
components it will leave the old values instead of replacing them with new ones.
Returns a TryInsertBatchError
if any of the provided entities do not exist.
For the panicking version, see World::insert_batch_if_new
.
Sourcepub fn resource_scope<R, U>(
&mut self,
f: impl FnOnce(&mut World, Mut<'_, R>) -> U,
) -> Uwhere
R: Resource,
pub fn resource_scope<R, U>(
&mut self,
f: impl FnOnce(&mut World, Mut<'_, R>) -> U,
) -> Uwhere
R: Resource,
Temporarily removes the requested resource from this World
, runs custom user code,
then re-adds the resource before returning.
This enables safe simultaneous mutable access to both a resource and the rest of the World
.
For more complex access patterns, consider using SystemState
.
§Panics
Panics if the resource does not exist.
Use try_resource_scope
instead if you want to handle this case.
§Example
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct A(u32);
#[derive(Component)]
struct B(u32);
let mut world = World::new();
world.insert_resource(A(1));
let entity = world.spawn(B(1)).id();
world.resource_scope(|world, mut a: Mut<A>| {
let b = world.get_mut::<B>(entity).unwrap();
a.0 += b.0;
});
assert_eq!(world.get_resource::<A>().unwrap().0, 2);
Sourcepub fn try_resource_scope<R, U>(
&mut self,
f: impl FnOnce(&mut World, Mut<'_, R>) -> U,
) -> Option<U>where
R: Resource,
pub fn try_resource_scope<R, U>(
&mut self,
f: impl FnOnce(&mut World, Mut<'_, R>) -> U,
) -> Option<U>where
R: Resource,
Temporarily removes the requested resource from this World
if it exists, runs custom user code,
then re-adds the resource before returning. Returns None
if the resource does not exist in this World
.
This enables safe simultaneous mutable access to both a resource and the rest of the World
.
For more complex access patterns, consider using SystemState
.
See also resource_scope
.
Sourcepub fn write_message<M>(&mut self, message: M) -> Option<MessageId<M>>where
M: Message,
pub fn write_message<M>(&mut self, message: M) -> Option<MessageId<M>>where
M: Message,
Sourcepub fn send_event<E>(&mut self, event: E) -> Option<MessageId<E>>where
E: Message,
👎Deprecated since 0.17.0: Use World::write_message
instead.
pub fn send_event<E>(&mut self, event: E) -> Option<MessageId<E>>where
E: Message,
World::write_message
instead.Sourcepub fn write_message_default<M>(&mut self) -> Option<MessageId<M>>
pub fn write_message_default<M>(&mut self) -> Option<MessageId<M>>
Sourcepub fn send_event_default<E>(&mut self) -> Option<MessageId<E>>
👎Deprecated since 0.17.0: Use World::write_message_default
instead.
pub fn send_event_default<E>(&mut self) -> Option<MessageId<E>>
World::write_message_default
instead.Sourcepub fn write_message_batch<M>(
&mut self,
messages: impl IntoIterator<Item = M>,
) -> Option<WriteBatchIds<M>>where
M: Message,
pub fn write_message_batch<M>(
&mut self,
messages: impl IntoIterator<Item = M>,
) -> Option<WriteBatchIds<M>>where
M: Message,
Sourcepub fn send_event_batch<E>(
&mut self,
events: impl IntoIterator<Item = E>,
) -> Option<WriteBatchIds<E>>where
E: Message,
👎Deprecated since 0.17.0: Use World::write_message_batch
instead.
pub fn send_event_batch<E>(
&mut self,
events: impl IntoIterator<Item = E>,
) -> Option<WriteBatchIds<E>>where
E: Message,
World::write_message_batch
instead.Sourcepub unsafe fn insert_resource_by_id(
&mut self,
component_id: ComponentId,
value: OwningPtr<'_>,
caller: MaybeLocation,
)
pub unsafe fn insert_resource_by_id( &mut self, component_id: ComponentId, value: OwningPtr<'_>, caller: MaybeLocation, )
Inserts a new resource with the given value
. Will replace the value if it already existed.
You should prefer to use the typed API World::insert_resource
where possible and only
use this in cases where the actual types are not known at compile time.
§Safety
The value referenced by value
must be valid for the given ComponentId
of this world.
Sourcepub unsafe fn insert_non_send_by_id(
&mut self,
component_id: ComponentId,
value: OwningPtr<'_>,
caller: MaybeLocation,
)
pub unsafe fn insert_non_send_by_id( &mut self, component_id: ComponentId, value: OwningPtr<'_>, caller: MaybeLocation, )
Inserts a new !Send
resource with the given value
. Will replace the value if it already
existed.
You should prefer to use the typed API World::insert_non_send_resource
where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
If a value is already present, this function will panic if not called from the same thread that the original value was inserted from.
§Safety
The value referenced by value
must be valid for the given ComponentId
of this world.
Sourcepub fn flush(&mut self)
pub fn flush(&mut self)
Flushes queued entities and commands.
Queued entities will be spawned, and then commands will be applied.
Sourcepub fn increment_change_tick(&mut self) -> Tick
pub fn increment_change_tick(&mut self) -> Tick
Increments the world’s current change tick and returns the old value.
If you need to call this method, but do not have &mut
access to the world,
consider using as_unsafe_world_cell_readonly
to obtain an UnsafeWorldCell
and calling increment_change_tick
on that.
Note that this can be done in safe code, despite the name of the type.
Sourcepub fn read_change_tick(&self) -> Tick
pub fn read_change_tick(&self) -> Tick
Reads the current change tick of this world.
If you have exclusive (&mut
) access to the world, consider using change_tick()
,
which is more efficient since it does not require atomic synchronization.
Sourcepub fn change_tick(&mut self) -> Tick
pub fn change_tick(&mut self) -> Tick
Reads the current change tick of this world.
This does the same thing as read_change_tick()
, only this method
is more efficient since it does not require atomic synchronization.
Sourcepub fn last_change_tick(&self) -> Tick
pub fn last_change_tick(&self) -> Tick
When called from within an exclusive system (a System
that takes &mut World
as its first
parameter), this method returns the Tick
indicating the last time the exclusive system was run.
Otherwise, this returns the Tick
indicating the last time that World::clear_trackers
was called.
Sourcepub fn last_change_tick_scope<T>(
&mut self,
last_change_tick: Tick,
f: impl FnOnce(&mut World) -> T,
) -> T
pub fn last_change_tick_scope<T>( &mut self, last_change_tick: Tick, f: impl FnOnce(&mut World) -> T, ) -> T
Sets World::last_change_tick()
to the specified value during a scope.
When the scope terminates, it will return to its old value.
This is useful if you need a region of code to be able to react to earlier changes made in the same system.
§Examples
// This function runs an update loop repeatedly, allowing each iteration of the loop
// to react to changes made in the previous loop iteration.
fn update_loop(
world: &mut World,
mut update_fn: impl FnMut(&mut World) -> std::ops::ControlFlow<()>,
) {
let mut last_change_tick = world.last_change_tick();
// Repeatedly run the update function until it requests a break.
loop {
let control_flow = world.last_change_tick_scope(last_change_tick, |world| {
// Increment the change tick so we can detect changes from the previous update.
last_change_tick = world.change_tick();
world.increment_change_tick();
// Update once.
update_fn(world)
});
// End the loop when the closure returns `ControlFlow::Break`.
if control_flow.is_break() {
break;
}
}
}
Sourcepub fn check_change_ticks(&mut self) -> Option<CheckChangeTicks>
pub fn check_change_ticks(&mut self) -> Option<CheckChangeTicks>
Iterates all component change ticks and clamps any older than MAX_CHANGE_AGE
.
This also triggers CheckChangeTicks
observers and returns the same event here.
Calling this method prevents Tick
s overflowing and thus prevents false positives when comparing them.
Note: Does nothing and returns None
if the World
counter has not been incremented at least CHECK_TICK_THRESHOLD
times since the previous pass.
Sourcepub fn clear_all(&mut self)
pub fn clear_all(&mut self)
Runs both clear_entities
and clear_resources
,
invalidating all Entity
and resource fetches such as Res
, ResMut
Sourcepub fn clear_entities(&mut self)
pub fn clear_entities(&mut self)
Despawns all entities in this World
.
Sourcepub fn clear_resources(&mut self)
pub fn clear_resources(&mut self)
Clears all resources in this World
.
Note: Any resource fetch to this World
will fail unless they are re-initialized,
including engine-internal resources that are only initialized on app/world construction.
This can easily cause systems expecting certain resources to immediately start panicking. Use with caution.
Sourcepub fn register_bundle<B>(&mut self) -> &BundleInfowhere
B: Bundle,
pub fn register_bundle<B>(&mut self) -> &BundleInfowhere
B: Bundle,
Registers all of the components in the given Bundle
and returns both the component
ids and the bundle id.
This is largely equivalent to calling register_component
on each
component in the bundle.
Sourcepub fn register_dynamic_bundle(
&mut self,
component_ids: &[ComponentId],
) -> &BundleInfo
pub fn register_dynamic_bundle( &mut self, component_ids: &[ComponentId], ) -> &BundleInfo
Registers the given ComponentId
s as a dynamic bundle and returns both the required component ids and the bundle id.
Note that the components need to be registered first, this function only creates a bundle combining them. Components
can be registered with World::register_component
/_with_descriptor
.
You should prefer to use the typed API World::register_bundle
where possible and only use this in cases where
not all of the actual types are known at compile time.
§Panics
This function will panic if any of the provided component ids do not belong to a component known to this World
.
Sourcepub fn default_error_handler(&self) -> fn(BevyError, ErrorContext)
pub fn default_error_handler(&self) -> fn(BevyError, ErrorContext)
Convenience method for accessing the world’s default error handler,
which can be overwritten with DefaultErrorHandler
.
Source§impl World
impl World
Sourcepub fn get_resource_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
pub fn get_resource_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
Gets a pointer to the resource with the id ComponentId
if it exists.
The returned pointer must not be used to modify the resource, and must not be
dereferenced after the immutable borrow of the World
ends.
You should prefer to use the typed API World::get_resource
where possible and only
use this in cases where the actual types are not known at compile time.
Sourcepub fn get_resource_mut_by_id(
&mut self,
component_id: ComponentId,
) -> Option<MutUntyped<'_>>
pub fn get_resource_mut_by_id( &mut self, component_id: ComponentId, ) -> Option<MutUntyped<'_>>
Gets a pointer to the resource with the id ComponentId
if it exists.
The returned pointer may be used to modify the resource, as long as the mutable borrow
of the World
is still valid.
You should prefer to use the typed API World::get_resource_mut
where possible and only
use this in cases where the actual types are not known at compile time.
Sourcepub fn iter_resources(&self) -> impl Iterator<Item = (&ComponentInfo, Ptr<'_>)>
pub fn iter_resources(&self) -> impl Iterator<Item = (&ComponentInfo, Ptr<'_>)>
Iterates over all resources in the world.
The returned iterator provides lifetimed, but type-unsafe pointers. Actually reading the contents of each resource will require the use of unsafe code.
§Examples
§Printing the size of all resources
let mut total = 0;
for (info, _) in world.iter_resources() {
println!("Resource: {}", info.name());
println!("Size: {} bytes", info.layout().size());
total += info.layout().size();
}
println!("Total size: {} bytes", total);
§Dynamically running closures for resources matching specific TypeId
s
// In this example, `A` and `B` are resources. We deliberately do not use the
// `bevy_reflect` crate here to showcase the low-level [`Ptr`] usage. You should
// probably use something like `ReflectFromPtr` in a real-world scenario.
// Create the hash map that will store the closures for each resource type
let mut closures: HashMap<TypeId, Box<dyn Fn(&Ptr<'_>)>> = HashMap::default();
// Add closure for `A`
closures.insert(TypeId::of::<A>(), Box::new(|ptr| {
// SAFETY: We assert ptr is the same type of A with TypeId of A
let a = unsafe { &ptr.deref::<A>() };
// ... do something with `a` here
}));
// Add closure for `B`
closures.insert(TypeId::of::<B>(), Box::new(|ptr| {
// SAFETY: We assert ptr is the same type of B with TypeId of B
let b = unsafe { &ptr.deref::<B>() };
// ... do something with `b` here
}));
// Iterate all resources, in order to run the closures for each matching resource type
for (info, ptr) in world.iter_resources() {
let Some(type_id) = info.type_id() else {
// It's possible for resources to not have a `TypeId` (e.g. non-Rust resources
// dynamically inserted via a scripting language) in which case we can't match them.
continue;
};
let Some(closure) = closures.get(&type_id) else {
// No closure for this resource type, skip it.
continue;
};
// Run the closure for the resource
closure(&ptr);
}
Sourcepub fn iter_resources_mut(
&mut self,
) -> impl Iterator<Item = (&ComponentInfo, MutUntyped<'_>)>
pub fn iter_resources_mut( &mut self, ) -> impl Iterator<Item = (&ComponentInfo, MutUntyped<'_>)>
Mutably iterates over all resources in the world.
The returned iterator provides lifetimed, but type-unsafe pointers. Actually reading from or writing to the contents of each resource will require the use of unsafe code.
§Example
// In this example, `A` and `B` are resources. We deliberately do not use the
// `bevy_reflect` crate here to showcase the low-level `MutUntyped` usage. You should
// probably use something like `ReflectFromPtr` in a real-world scenario.
// Create the hash map that will store the mutator closures for each resource type
let mut mutators: HashMap<TypeId, Box<dyn Fn(&mut MutUntyped<'_>)>> = HashMap::default();
// Add mutator closure for `A`
mutators.insert(TypeId::of::<A>(), Box::new(|mut_untyped| {
// Note: `MutUntyped::as_mut()` automatically marks the resource as changed
// for ECS change detection, and gives us a `PtrMut` we can use to mutate the resource.
// SAFETY: We assert ptr is the same type of A with TypeId of A
let a = unsafe { &mut mut_untyped.as_mut().deref_mut::<A>() };
// ... mutate `a` here
}));
// Add mutator closure for `B`
mutators.insert(TypeId::of::<B>(), Box::new(|mut_untyped| {
// SAFETY: We assert ptr is the same type of B with TypeId of B
let b = unsafe { &mut mut_untyped.as_mut().deref_mut::<B>() };
// ... mutate `b` here
}));
// Iterate all resources, in order to run the mutator closures for each matching resource type
for (info, mut mut_untyped) in world.iter_resources_mut() {
let Some(type_id) = info.type_id() else {
// It's possible for resources to not have a `TypeId` (e.g. non-Rust resources
// dynamically inserted via a scripting language) in which case we can't match them.
continue;
};
let Some(mutator) = mutators.get(&type_id) else {
// No mutator closure for this resource type, skip it.
continue;
};
// Run the mutator closure for the resource
mutator(&mut mut_untyped);
}
Sourcepub fn get_non_send_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
pub fn get_non_send_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
Gets a !Send
resource to the resource with the id ComponentId
if it exists.
The returned pointer must not be used to modify the resource, and must not be
dereferenced after the immutable borrow of the World
ends.
You should prefer to use the typed API World::get_resource
where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn get_non_send_mut_by_id(
&mut self,
component_id: ComponentId,
) -> Option<MutUntyped<'_>>
pub fn get_non_send_mut_by_id( &mut self, component_id: ComponentId, ) -> Option<MutUntyped<'_>>
Gets a !Send
resource to the resource with the id ComponentId
if it exists.
The returned pointer may be used to modify the resource, as long as the mutable borrow
of the World
is still valid.
You should prefer to use the typed API World::get_resource_mut
where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn remove_resource_by_id(&mut self, component_id: ComponentId) -> Option<()>
pub fn remove_resource_by_id(&mut self, component_id: ComponentId) -> Option<()>
Removes the resource of a given type, if it exists. Otherwise returns None
.
You should prefer to use the typed API World::remove_resource
where possible and only
use this in cases where the actual types are not known at compile time.
Sourcepub fn remove_non_send_by_id(&mut self, component_id: ComponentId) -> Option<()>
pub fn remove_non_send_by_id(&mut self, component_id: ComponentId) -> Option<()>
Removes the resource of a given type, if it exists. Otherwise returns None
.
You should prefer to use the typed API World::remove_resource
where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn get_by_id(
&self,
entity: Entity,
component_id: ComponentId,
) -> Option<Ptr<'_>>
pub fn get_by_id( &self, entity: Entity, component_id: ComponentId, ) -> Option<Ptr<'_>>
Retrieves an immutable untyped reference to the given entity
’s Component
of the given ComponentId
.
Returns None
if the entity
does not have a Component
of the given type.
You should prefer to use the typed API World::get_mut
where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
Sourcepub fn get_mut_by_id(
&mut self,
entity: Entity,
component_id: ComponentId,
) -> Option<MutUntyped<'_>>
pub fn get_mut_by_id( &mut self, entity: Entity, component_id: ComponentId, ) -> Option<MutUntyped<'_>>
Retrieves a mutable untyped reference to the given entity
’s Component
of the given ComponentId
.
Returns None
if the entity
does not have a Component
of the given type.
You should prefer to use the typed API World::get_mut
where possible and only
use this in cases where the actual types are not known at compile time.
Source§impl World
impl World
Sourcepub fn add_schedule(&mut self, schedule: Schedule)
pub fn add_schedule(&mut self, schedule: Schedule)
Adds the specified Schedule
to the world.
If a schedule already exists with the same label, it will be replaced.
The schedule can later be run
by calling .run_schedule(label)
or by directly
accessing the Schedules
resource.
The Schedules
resource will be initialized if it does not already exist.
An alternative to this is to call Schedules::add_systems()
with some
ScheduleLabel
and let the schedule for that label be created if it
does not already exist.
Sourcepub fn try_schedule_scope<R>(
&mut self,
label: impl ScheduleLabel,
f: impl FnOnce(&mut World, &mut Schedule) -> R,
) -> Result<R, TryRunScheduleError>
pub fn try_schedule_scope<R>( &mut self, label: impl ScheduleLabel, f: impl FnOnce(&mut World, &mut Schedule) -> R, ) -> Result<R, TryRunScheduleError>
Temporarily removes the schedule associated with label
from the world,
runs user code, and finally re-adds the schedule.
This returns a TryRunScheduleError
if there is no schedule
associated with label
.
The Schedule
is fetched from the Schedules
resource of the world by its label,
and system state is cached.
For simple cases where you just need to call the schedule once,
consider using World::try_run_schedule
instead.
For other use cases, see the example on World::schedule_scope
.
Sourcepub fn schedule_scope<R>(
&mut self,
label: impl ScheduleLabel,
f: impl FnOnce(&mut World, &mut Schedule) -> R,
) -> R
pub fn schedule_scope<R>( &mut self, label: impl ScheduleLabel, f: impl FnOnce(&mut World, &mut Schedule) -> R, ) -> R
Temporarily removes the schedule associated with label
from the world,
runs user code, and finally re-adds the schedule.
The Schedule
is fetched from the Schedules
resource of the world by its label,
and system state is cached.
§Examples
// Run the schedule five times.
world.schedule_scope(MySchedule, |world, schedule| {
for _ in 0..5 {
schedule.run(world);
}
});
For simple cases where you just need to call the schedule once,
consider using World::run_schedule
instead.
§Panics
If the requested schedule does not exist.
Sourcepub fn try_run_schedule(
&mut self,
label: impl ScheduleLabel,
) -> Result<(), TryRunScheduleError>
pub fn try_run_schedule( &mut self, label: impl ScheduleLabel, ) -> Result<(), TryRunScheduleError>
Attempts to run the Schedule
associated with the label
a single time,
and returns a TryRunScheduleError
if the schedule does not exist.
The Schedule
is fetched from the Schedules
resource of the world by its label,
and system state is cached.
For simple testing use cases, call Schedule::run(&mut world)
instead.
Examples found in repository?
95 fn run_reenter<S: States>(transition: In<Option<StateTransitionEvent<S>>>, world: &mut World) {
96 // We return early if no transition event happened.
97 let Some(transition) = transition.0 else {
98 return;
99 };
100
101 // If we wanted to ignore identity transitions,
102 // we'd compare `exited` and `entered` here,
103 // and return if they were the same.
104
105 // We check if we actually entered a state.
106 // A [`None`] would indicate that the state was removed from the world.
107 // This only happens in the case of [`SubStates`] and [`ComputedStates`].
108 let Some(entered) = transition.entered else {
109 return;
110 };
111
112 // If all conditions are valid, we run our custom schedule.
113 let _ = world.try_run_schedule(OnReenter(entered));
114
115 // If you want to overwrite the default `OnEnter` behavior to act like re-enter,
116 // you can do so by running the `OnEnter` schedule here. Note that you don't want
117 // to run `OnEnter` when the default behavior does so.
118 // ```
119 // if transition.entered != transition.exited {
120 // return;
121 // }
122 // let _ = world.try_run_schedule(OnReenter(entered));
123 // ```
124 }
125
126 /// Custom schedule that will behave like [`OnExit`], but run on identity transitions.
127 #[derive(ScheduleLabel, Clone, Debug, PartialEq, Eq, Hash)]
128 pub struct OnReexit<S: States>(pub S);
129
130 fn run_reexit<S: States>(transition: In<Option<StateTransitionEvent<S>>>, world: &mut World) {
131 let Some(transition) = transition.0 else {
132 return;
133 };
134 let Some(exited) = transition.exited else {
135 return;
136 };
137
138 let _ = world.try_run_schedule(OnReexit(exited));
139 }
Sourcepub fn run_schedule(&mut self, label: impl ScheduleLabel)
pub fn run_schedule(&mut self, label: impl ScheduleLabel)
Runs the Schedule
associated with the label
a single time.
The Schedule
is fetched from the Schedules
resource of the world by its label,
and system state is cached.
For simple testing use cases, call Schedule::run(&mut world)
instead.
This avoids the need to create a unique ScheduleLabel
.
§Panics
If the requested schedule does not exist.
Sourcepub fn allow_ambiguous_component<T>(&mut self)where
T: Component,
pub fn allow_ambiguous_component<T>(&mut self)where
T: Component,
Ignore system order ambiguities caused by conflicts on Component
s of type T
.
Sourcepub fn allow_ambiguous_resource<T>(&mut self)where
T: Resource,
pub fn allow_ambiguous_resource<T>(&mut self)where
T: Resource,
Ignore system order ambiguities caused by conflicts on Resource
s of type T
.
Trait Implementations§
Source§impl DirectAssetAccessExt for World
impl DirectAssetAccessExt for World
Source§fn add_asset<'a, A>(&mut self, asset: impl Into<A>) -> Handle<A>where
A: Asset,
fn add_asset<'a, A>(&mut self, asset: impl Into<A>) -> Handle<A>where
A: Asset,
Insert an asset similarly to Assets::add
.
§Panics
If self
doesn’t have an AssetServer
resource initialized yet.
Source§fn load_asset<'a, A>(&self, path: impl Into<AssetPath<'a>>) -> Handle<A>where
A: Asset,
fn load_asset<'a, A>(&self, path: impl Into<AssetPath<'a>>) -> Handle<A>where
A: Asset,
Load an asset similarly to AssetServer::load
.
§Panics
If self
doesn’t have an AssetServer
resource initialized yet.
Source§fn load_asset_with_settings<'a, A, S>(
&self,
path: impl Into<AssetPath<'a>>,
settings: impl Fn(&mut S) + Send + Sync + 'static,
) -> Handle<A>
fn load_asset_with_settings<'a, A, S>( &self, path: impl Into<AssetPath<'a>>, settings: impl Fn(&mut S) + Send + Sync + 'static, ) -> Handle<A>
Load an asset with settings, similarly to AssetServer::load_with_settings
.
§Panics
If self
doesn’t have an AssetServer
resource initialized yet.
Source§impl<'w> From<&'w World> for FilteredResources<'w, 'static>
impl<'w> From<&'w World> for FilteredResources<'w, 'static>
Source§fn from(value: &'w World) -> FilteredResources<'w, 'static>
fn from(value: &'w World) -> FilteredResources<'w, 'static>
Source§impl<'w> From<&'w World> for UnsafeWorldCell<'w>
impl<'w> From<&'w World> for UnsafeWorldCell<'w>
Source§fn from(value: &'w World) -> UnsafeWorldCell<'w>
fn from(value: &'w World) -> UnsafeWorldCell<'w>
Source§impl<'w> From<&'w mut World> for DeferredWorld<'w>
impl<'w> From<&'w mut World> for DeferredWorld<'w>
Source§fn from(world: &'w mut World) -> DeferredWorld<'w>
fn from(world: &'w mut World) -> DeferredWorld<'w>
Source§impl<'w> From<&'w mut World> for FilteredResources<'w, 'static>
impl<'w> From<&'w mut World> for FilteredResources<'w, 'static>
Source§fn from(value: &'w mut World) -> FilteredResources<'w, 'static>
fn from(value: &'w mut World) -> FilteredResources<'w, 'static>
Source§impl<'w> From<&'w mut World> for FilteredResourcesMut<'w, 'static>
impl<'w> From<&'w mut World> for FilteredResourcesMut<'w, 'static>
Source§fn from(value: &'w mut World) -> FilteredResourcesMut<'w, 'static>
fn from(value: &'w mut World) -> FilteredResourcesMut<'w, 'static>
Source§impl<'w> From<&'w mut World> for UnsafeWorldCell<'w>
impl<'w> From<&'w mut World> for UnsafeWorldCell<'w>
Source§fn from(value: &'w mut World) -> UnsafeWorldCell<'w>
fn from(value: &'w mut World) -> UnsafeWorldCell<'w>
Source§impl GetAssetServer for World
impl GetAssetServer for World
fn get_asset_server(&self) -> &AssetServer
Source§impl IsFocused for World
impl IsFocused for World
Source§fn is_focused(&self, entity: Entity) -> bool
fn is_focused(&self, entity: Entity) -> bool
Source§fn is_focus_within(&self, entity: Entity) -> bool
fn is_focus_within(&self, entity: Entity) -> bool
Source§fn is_focus_visible(&self, entity: Entity) -> bool
fn is_focus_visible(&self, entity: Entity) -> bool
Source§fn is_focus_within_visible(&self, entity: Entity) -> bool
fn is_focus_within_visible(&self, entity: Entity) -> bool
Source§impl RenderGraphExt for World
impl RenderGraphExt for World
Source§fn add_render_graph_node<T>(
&mut self,
sub_graph: impl RenderSubGraph,
node_label: impl RenderLabel,
) -> &mut World
fn add_render_graph_node<T>( &mut self, sub_graph: impl RenderSubGraph, node_label: impl RenderLabel, ) -> &mut World
Source§fn add_render_graph_edges<const N: usize>(
&mut self,
sub_graph: impl RenderSubGraph,
edges: impl IntoRenderNodeArray<N>,
) -> &mut World
fn add_render_graph_edges<const N: usize>( &mut self, sub_graph: impl RenderSubGraph, edges: impl IntoRenderNodeArray<N>, ) -> &mut World
Source§fn add_render_graph_edge(
&mut self,
sub_graph: impl RenderSubGraph,
output_node: impl RenderLabel,
input_node: impl RenderLabel,
) -> &mut World
fn add_render_graph_edge( &mut self, sub_graph: impl RenderSubGraph, output_node: impl RenderLabel, input_node: impl RenderLabel, ) -> &mut World
fn add_render_sub_graph(&mut self, sub_graph: impl RenderSubGraph) -> &mut World
Source§impl RunSystemOnce for &mut World
impl RunSystemOnce for &mut World
Source§fn run_system_once_with<T, In, Out, Marker>(
self,
system: T,
input: <<<T as IntoSystem<In, Out, Marker>>::System as System>::In as SystemInput>::Inner<'_>,
) -> Result<Out, RunSystemError>where
T: IntoSystem<In, Out, Marker>,
In: SystemInput,
fn run_system_once_with<T, In, Out, Marker>(
self,
system: T,
input: <<<T as IntoSystem<In, Out, Marker>>::System as System>::In as SystemInput>::Inner<'_>,
) -> Result<Out, RunSystemError>where
T: IntoSystem<In, Out, Marker>,
In: SystemInput,
Source§fn run_system_once<T, Out, Marker>(
self,
system: T,
) -> Result<Out, RunSystemError>where
T: IntoSystem<(), Out, Marker>,
fn run_system_once<T, Out, Marker>(
self,
system: T,
) -> Result<Out, RunSystemError>where
T: IntoSystem<(), Out, Marker>,
Source§impl SystemParam for &World
impl SystemParam for &World
Source§type Item<'w, 's> = &'w World
type Item<'w, 's> = &'w World
Self
, instantiated with new lifetimes. Read moreSource§fn init_state(_world: &mut World) -> <&World as SystemParam>::State
fn init_state(_world: &mut World) -> <&World as SystemParam>::State
State
.Source§fn init_access(
_state: &<&World as SystemParam>::State,
_system_meta: &mut SystemMeta,
component_access_set: &mut FilteredAccessSet,
_world: &mut World,
)
fn init_access( _state: &<&World as SystemParam>::State, _system_meta: &mut SystemMeta, component_access_set: &mut FilteredAccessSet, _world: &mut World, )
World
access used by this SystemParam
Source§unsafe fn get_param<'w, 's>(
_state: &'s mut <&World as SystemParam>::State,
_system_meta: &SystemMeta,
world: UnsafeWorldCell<'w>,
_change_tick: Tick,
) -> <&World as SystemParam>::Item<'w, 's>
unsafe fn get_param<'w, 's>( _state: &'s mut <&World as SystemParam>::State, _system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, _change_tick: Tick, ) -> <&World as SystemParam>::Item<'w, 's>
SystemParamFunction
. Read moreSource§fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
SystemParam
’s state.
This is used to apply Commands
during ApplyDeferred
.Source§fn queue(
state: &mut Self::State,
system_meta: &SystemMeta,
world: DeferredWorld<'_>,
)
fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_>, )
ApplyDeferred
.Source§unsafe fn validate_param(
state: &mut Self::State,
system_meta: &SystemMeta,
world: UnsafeWorldCell<'_>,
) -> Result<(), SystemParamValidationError>
unsafe fn validate_param( state: &mut Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'_>, ) -> Result<(), SystemParamValidationError>
impl<'w> ReadOnlySystemParam for &'w World
SAFETY: only reads world
impl Send for World
impl Sync for World
Auto Trait Implementations§
impl !Freeze for World
impl !RefUnwindSafe for World
impl Unpin for World
impl !UnwindSafe for World
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
, which can then be
downcast
into Box<dyn ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
, which can then be further
downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<T> FmtForward for T
impl<T> FmtForward for T
Source§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.Source§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.Source§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.Source§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.Source§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.Source§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.Source§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.Source§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.Source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self
using default()
.
Source§impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
Source§impl<T> Identity for Twhere
T: ?Sized,
impl<T> Identity for Twhere
T: ?Sized,
Source§impl<T> InitializeFromFunction<T> for T
impl<T> InitializeFromFunction<T> for T
Source§fn initialize_from_function(f: fn() -> T) -> T
fn initialize_from_function(f: fn() -> T) -> T
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoResult<T> for T
impl<T> IntoResult<T> for T
Source§fn into_result(self) -> Result<T, RunSystemError>
fn into_result(self) -> Result<T, RunSystemError>
Source§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
Source§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
Source§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
Source§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read moreSource§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read moreSource§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
Source§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
Source§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.Source§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.Source§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
Source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian()
.Source§impl<Ret> SpawnIfAsync<(), Ret> for Ret
impl<Ret> SpawnIfAsync<(), Ret> for Ret
Source§impl<T, O> SuperFrom<T> for Owhere
O: From<T>,
impl<T, O> SuperFrom<T> for Owhere
O: From<T>,
Source§fn super_from(input: T) -> O
fn super_from(input: T) -> O
Source§impl<T, O, M> SuperInto<O, M> for Twhere
O: SuperFrom<T, M>,
impl<T, O, M> SuperInto<O, M> for Twhere
O: SuperFrom<T, M>,
Source§fn super_into(self) -> O
fn super_into(self) -> O
Source§impl<T> Tap for T
impl<T> Tap for T
Source§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read moreSource§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read moreSource§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read moreSource§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read moreSource§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read moreSource§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read moreSource§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.Source§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.Source§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.Source§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.Source§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.Source§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.Source§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.