custom_post_processing/custom_post_processing.rs
1//! This example shows how to create a custom render pass that runs after the main pass
2//! and reads the texture generated by the main pass.
3//!
4//! The example shader is a very simple implementation of chromatic aberration.
5//! To adapt this example for 2D, replace all instances of 3D structures (such as `Core3D`, etc.) with their corresponding 2D counterparts.
6//!
7//! This is a fairly low level example and assumes some familiarity with rendering concepts and wgpu.
8
9use bevy::{
10 core_pipeline::{
11 core_3d::graph::{Core3d, Node3d},
12 FullscreenShader,
13 },
14 ecs::query::QueryItem,
15 prelude::*,
16 render::{
17 extract_component::{
18 ComponentUniforms, DynamicUniformIndex, ExtractComponent, ExtractComponentPlugin,
19 UniformComponentPlugin,
20 },
21 render_graph::{
22 NodeRunError, RenderGraphContext, RenderGraphExt, RenderLabel, ViewNode, ViewNodeRunner,
23 },
24 render_resource::{
25 binding_types::{sampler, texture_2d, uniform_buffer},
26 *,
27 },
28 renderer::{RenderContext, RenderDevice},
29 view::ViewTarget,
30 RenderApp, RenderStartup,
31 },
32};
33
34/// This example uses a shader source file from the assets subdirectory
35const SHADER_ASSET_PATH: &str = "shaders/post_processing.wgsl";
36
37fn main() {
38 App::new()
39 .add_plugins((DefaultPlugins, PostProcessPlugin))
40 .add_systems(Startup, setup)
41 .add_systems(Update, (rotate, update_settings))
42 .run();
43}
44
45/// It is generally encouraged to set up post processing effects as a plugin
46struct PostProcessPlugin;
47
48impl Plugin for PostProcessPlugin {
49 fn build(&self, app: &mut App) {
50 app.add_plugins((
51 // The settings will be a component that lives in the main world but will
52 // be extracted to the render world every frame.
53 // This makes it possible to control the effect from the main world.
54 // This plugin will take care of extracting it automatically.
55 // It's important to derive [`ExtractComponent`] on [`PostProcessingSettings`]
56 // for this plugin to work correctly.
57 ExtractComponentPlugin::<PostProcessSettings>::default(),
58 // The settings will also be the data used in the shader.
59 // This plugin will prepare the component for the GPU by creating a uniform buffer
60 // and writing the data to that buffer every frame.
61 UniformComponentPlugin::<PostProcessSettings>::default(),
62 ));
63
64 // We need to get the render app from the main app
65 let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
66 return;
67 };
68
69 // RenderStartup runs once on startup after all plugins are built
70 // It is useful to initialize data that will only live in the RenderApp
71 render_app.add_systems(RenderStartup, init_post_process_pipeline);
72
73 render_app
74 // Bevy's renderer uses a render graph which is a collection of nodes in a directed acyclic graph.
75 // It currently runs on each view/camera and executes each node in the specified order.
76 // It will make sure that any node that needs a dependency from another node
77 // only runs when that dependency is done.
78 //
79 // Each node can execute arbitrary work, but it generally runs at least one render pass.
80 // A node only has access to the render world, so if you need data from the main world
81 // you need to extract it manually or with the plugin like above.
82 // Add a [`Node`] to the [`RenderGraph`]
83 // The Node needs to impl FromWorld
84 //
85 // The [`ViewNodeRunner`] is a special [`Node`] that will automatically run the node for each view
86 // matching the [`ViewQuery`]
87 .add_render_graph_node::<ViewNodeRunner<PostProcessNode>>(
88 // Specify the label of the graph, in this case we want the graph for 3d
89 Core3d,
90 // It also needs the label of the node
91 PostProcessLabel,
92 )
93 .add_render_graph_edges(
94 Core3d,
95 // Specify the node ordering.
96 // This will automatically create all required node edges to enforce the given ordering.
97 (
98 Node3d::Tonemapping,
99 PostProcessLabel,
100 Node3d::EndMainPassPostProcessing,
101 ),
102 );
103 }
104}
105
106#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
107struct PostProcessLabel;
108
109// The post process node used for the render graph
110#[derive(Default)]
111struct PostProcessNode;
112
113// The ViewNode trait is required by the ViewNodeRunner
114impl ViewNode for PostProcessNode {
115 // The node needs a query to gather data from the ECS in order to do its rendering,
116 // but it's not a normal system so we need to define it manually.
117 //
118 // This query will only run on the view entity
119 type ViewQuery = (
120 &'static ViewTarget,
121 // This makes sure the node only runs on cameras with the PostProcessSettings component
122 &'static PostProcessSettings,
123 // As there could be multiple post processing components sent to the GPU (one per camera),
124 // we need to get the index of the one that is associated with the current view.
125 &'static DynamicUniformIndex<PostProcessSettings>,
126 );
127
128 // Runs the node logic
129 // This is where you encode draw commands.
130 //
131 // This will run on every view on which the graph is running.
132 // If you don't want your effect to run on every camera,
133 // you'll need to make sure you have a marker component as part of [`ViewQuery`]
134 // to identify which camera(s) should run the effect.
135 fn run(
136 &self,
137 _graph: &mut RenderGraphContext,
138 render_context: &mut RenderContext,
139 (view_target, _post_process_settings, settings_index): QueryItem<Self::ViewQuery>,
140 world: &World,
141 ) -> Result<(), NodeRunError> {
142 // Get the pipeline resource that contains the global data we need
143 // to create the render pipeline
144 let post_process_pipeline = world.resource::<PostProcessPipeline>();
145
146 // The pipeline cache is a cache of all previously created pipelines.
147 // It is required to avoid creating a new pipeline each frame,
148 // which is expensive due to shader compilation.
149 let pipeline_cache = world.resource::<PipelineCache>();
150
151 // Get the pipeline from the cache
152 let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
153 else {
154 return Ok(());
155 };
156
157 // Get the settings uniform binding
158 let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
159 let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
160 return Ok(());
161 };
162
163 // This will start a new "post process write", obtaining two texture
164 // views from the view target - a `source` and a `destination`.
165 // `source` is the "current" main texture and you _must_ write into
166 // `destination` because calling `post_process_write()` on the
167 // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
168 // texture to the `destination` texture. Failing to do so will cause
169 // the current main texture information to be lost.
170 let post_process = view_target.post_process_write();
171
172 // The bind_group gets created each frame.
173 //
174 // Normally, you would create a bind_group in the Queue set,
175 // but this doesn't work with the post_process_write().
176 // The reason it doesn't work is because each post_process_write will alternate the source/destination.
177 // The only way to have the correct source/destination for the bind_group
178 // is to make sure you get it during the node execution.
179 let bind_group = render_context.render_device().create_bind_group(
180 "post_process_bind_group",
181 &post_process_pipeline.layout,
182 // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
183 &BindGroupEntries::sequential((
184 // Make sure to use the source view
185 post_process.source,
186 // Use the sampler created for the pipeline
187 &post_process_pipeline.sampler,
188 // Set the settings binding
189 settings_binding.clone(),
190 )),
191 );
192
193 // Begin the render pass
194 let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
195 label: Some("post_process_pass"),
196 color_attachments: &[Some(RenderPassColorAttachment {
197 // We need to specify the post process destination view here
198 // to make sure we write to the appropriate texture.
199 view: post_process.destination,
200 depth_slice: None,
201 resolve_target: None,
202 ops: Operations::default(),
203 })],
204 depth_stencil_attachment: None,
205 timestamp_writes: None,
206 occlusion_query_set: None,
207 });
208
209 // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
210 // using the pipeline/bind_group created above
211 render_pass.set_render_pipeline(pipeline);
212 // By passing in the index of the post process settings on this view, we ensure
213 // that in the event that multiple settings were sent to the GPU (as would be the
214 // case with multiple cameras), we use the correct one.
215 render_pass.set_bind_group(0, &bind_group, &[settings_index.index()]);
216 render_pass.draw(0..3, 0..1);
217
218 Ok(())
219 }
220}
221
222// This contains global data used by the render pipeline. This will be created once on startup.
223#[derive(Resource)]
224struct PostProcessPipeline {
225 layout: BindGroupLayout,
226 sampler: Sampler,
227 pipeline_id: CachedRenderPipelineId,
228}
229
230fn init_post_process_pipeline(
231 mut commands: Commands,
232 render_device: Res<RenderDevice>,
233 asset_server: Res<AssetServer>,
234 fullscreen_shader: Res<FullscreenShader>,
235 pipeline_cache: Res<PipelineCache>,
236) {
237 // We need to define the bind group layout used for our pipeline
238 let layout = render_device.create_bind_group_layout(
239 "post_process_bind_group_layout",
240 &BindGroupLayoutEntries::sequential(
241 // The layout entries will only be visible in the fragment stage
242 ShaderStages::FRAGMENT,
243 (
244 // The screen texture
245 texture_2d(TextureSampleType::Float { filterable: true }),
246 // The sampler that will be used to sample the screen texture
247 sampler(SamplerBindingType::Filtering),
248 // The settings uniform that will control the effect
249 uniform_buffer::<PostProcessSettings>(true),
250 ),
251 ),
252 );
253 // We can create the sampler here since it won't change at runtime and doesn't depend on the view
254 let sampler = render_device.create_sampler(&SamplerDescriptor::default());
255
256 // Get the shader handle
257 let shader = asset_server.load(SHADER_ASSET_PATH);
258 // This will setup a fullscreen triangle for the vertex state.
259 let vertex_state = fullscreen_shader.to_vertex_state();
260 let pipeline_id = pipeline_cache
261 // This will add the pipeline to the cache and queue its creation
262 .queue_render_pipeline(RenderPipelineDescriptor {
263 label: Some("post_process_pipeline".into()),
264 layout: vec![layout.clone()],
265 vertex: vertex_state,
266 fragment: Some(FragmentState {
267 shader,
268 // Make sure this matches the entry point of your shader.
269 // It can be anything as long as it matches here and in the shader.
270 targets: vec![Some(ColorTargetState {
271 format: TextureFormat::bevy_default(),
272 blend: None,
273 write_mask: ColorWrites::ALL,
274 })],
275 ..default()
276 }),
277 ..default()
278 });
279 commands.insert_resource(PostProcessPipeline {
280 layout,
281 sampler,
282 pipeline_id,
283 });
284}
285
286// This is the component that will get passed to the shader
287#[derive(Component, Default, Clone, Copy, ExtractComponent, ShaderType)]
288struct PostProcessSettings {
289 intensity: f32,
290 // WebGL2 structs must be 16 byte aligned.
291 #[cfg(feature = "webgl2")]
292 _webgl2_padding: Vec3,
293}
294
295/// Set up a simple 3D scene
296fn setup(
297 mut commands: Commands,
298 mut meshes: ResMut<Assets<Mesh>>,
299 mut materials: ResMut<Assets<StandardMaterial>>,
300) {
301 // camera
302 commands.spawn((
303 Camera3d::default(),
304 Transform::from_translation(Vec3::new(0.0, 0.0, 5.0)).looking_at(Vec3::default(), Vec3::Y),
305 Camera {
306 clear_color: Color::WHITE.into(),
307 ..default()
308 },
309 // Add the setting to the camera.
310 // This component is also used to determine on which camera to run the post processing effect.
311 PostProcessSettings {
312 intensity: 0.02,
313 ..default()
314 },
315 ));
316
317 // cube
318 commands.spawn((
319 Mesh3d(meshes.add(Cuboid::default())),
320 MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
321 Transform::from_xyz(0.0, 0.5, 0.0),
322 Rotates,
323 ));
324 // light
325 commands.spawn(DirectionalLight {
326 illuminance: 1_000.,
327 ..default()
328 });
329}
330
331#[derive(Component)]
332struct Rotates;
333
334/// Rotates any entity around the x and y axis
335fn rotate(time: Res<Time>, mut query: Query<&mut Transform, With<Rotates>>) {
336 for mut transform in &mut query {
337 transform.rotate_x(0.55 * time.delta_secs());
338 transform.rotate_z(0.15 * time.delta_secs());
339 }
340}
341
342// Change the intensity over time to show that the effect is controlled from the main world
343fn update_settings(mut settings: Query<&mut PostProcessSettings>, time: Res<Time>) {
344 for mut setting in &mut settings {
345 let mut intensity = ops::sin(time.elapsed_secs());
346 // Make it loop periodically
347 intensity = ops::sin(intensity);
348 // Remap it to 0..1 because the intensity can't be negative
349 intensity = intensity * 0.5 + 0.5;
350 // Scale it to a more reasonable level
351 intensity *= 0.015;
352
353 // Set the intensity.
354 // This will then be extracted to the render world and uploaded to the GPU automatically by the [`UniformComponentPlugin`]
355 setting.intensity = intensity;
356 }
357}