Expand description
TL <-> QuantrS2 hooks (PGM/message passing as reductions).
Version: 0.1.0-beta.1 | Status: Production Ready
This crate provides integration between TensorLogic and probabilistic graphical models (PGMs). It maps belief propagation and other message passing algorithms onto einsum reduction patterns.
§Core Concepts
- Factor Graphs: Convert TLExpr predicates into factors
- Message Passing: Sum-product and max-product algorithms as tensor operations
- Inference: Marginalization and conditional queries via reductions
§Architecture
TLExpr → FactorGraph → MessagePassing → Marginals
↓ ↓ ↓ ↓
Predicates Factors Einsum Ops ProbabilitiesRe-exports§
pub use dbn::CoupledDBN;pub use dbn::CouplingFactor;pub use dbn::DBNBuilder;pub use dbn::DynamicBayesianNetwork;pub use dbn::TemporalVar;pub use influence::InfluenceDiagram;pub use influence::InfluenceDiagramBuilder;pub use influence::InfluenceNode;pub use influence::MultiAttributeUtility;pub use influence::NodeType;pub use memory::BlockSparseFactor;pub use memory::CompressedFactor;pub use memory::FactorPool;pub use memory::LazyFactor;pub use memory::MemoryEstimate;pub use memory::PoolStats;pub use memory::SparseFactor;pub use memory::StreamingFactorGraph;pub use parameter_learning::BaumWelchLearner;pub use parameter_learning::BayesianEstimator;pub use parameter_learning::MaximumLikelihoodEstimator;pub use parameter_learning::SimpleHMM;pub use quantrs_hooks::AnnealingConfig;pub use quantrs_hooks::DistributionExport;pub use quantrs_hooks::DistributionMetadata;pub use quantrs_hooks::ModelExport;pub use quantrs_hooks::ModelStatistics;pub use quantrs_hooks::QuantRSAssignment;pub use quantrs_hooks::QuantRSDistribution;pub use quantrs_hooks::QuantRSInferenceQuery;pub use quantrs_hooks::QuantRSModelExport;pub use quantrs_hooks::QuantRSParameterLearning;pub use quantrs_hooks::QuantRSSamplingHook;pub use quantrs_hooks::QuantumAnnealing;pub use quantrs_hooks::QuantumInference;pub use quantrs_hooks::QuantumSolution;pub use quantrs_hooks::QuantumSolutionMetadata;pub use quantum_circuit::tlexpr_to_qaoa_circuit;pub use quantum_circuit::IsingModel;pub use quantum_circuit::QAOAConfig;pub use quantum_circuit::QAOAResult;pub use quantum_circuit::QUBOProblem;pub use quantum_circuit::QuantumCircuitBuilder;pub use quantum_simulation::run_qaoa;pub use quantum_simulation::QuantumSimulationBackend;pub use quantum_simulation::SimulatedState;pub use quantum_simulation::SimulationConfig;pub use tensor_network_bridge::factor_graph_to_tensor_network;pub use tensor_network_bridge::linear_chain_to_mps;pub use tensor_network_bridge::MatrixProductState;pub use tensor_network_bridge::Tensor;pub use tensor_network_bridge::TensorNetwork;pub use tensor_network_bridge::TensorNetworkStats;
Modules§
- dbn
- Dynamic Bayesian Networks (DBN) for temporal probabilistic models.
- influence
- Influence diagrams (decision networks) for decision-making under uncertainty.
- memory
- Memory optimization utilities for large factor graphs.
- parameter_
learning - Parameter learning algorithms for probabilistic graphical models.
- quantrs_
hooks - QuantRS2 integration hooks for probabilistic graphical models.
- quantum_
circuit - Quantum circuit integration for probabilistic graphical models.
- quantum_
simulation - Quantum simulation for probabilistic inference.
- tensor_
network_ bridge - Tensor network bridge for quantum-classical hybrid inference.
Structs§
- Bayesian
Network - Bayesian Network builder.
- Bethe
Approximation - Bethe approximation for structured variational inference.
- Cache
Stats - Cache statistics.
- Cached
Factor - A cached factor that memoizes operations.
- Clique
- A clique in the junction tree (a maximal set of connected variables).
- Conditional
Query - Query for conditional probability P(X | Y = y).
- Conditional
Random Field - Conditional Random Field builder (discriminative model for structured prediction).
- Convergence
Stats - Convergence statistics for belief propagation.
- Elimination
Ordering - Compute elimination ordering for variable elimination.
- Emission
Feature - Emission feature: fires when a specific label is paired with a specific observation.
- Expectation
Propagation - Expectation Propagation algorithm for approximate inference.
- Factor
- A factor in a probabilistic graphical model.
- Factor
Cache - A cache for factor operations.
- Factor
Graph - Factor graph representation for PGM.
- Factor
Node - Factor node in a factor graph.
- GaussianEP
- Gaussian EP for continuous variables with moment matching.
- Gaussian
Site - Gaussian site approximation for continuous variables.
- Gibbs
Sampler - Gibbs sampling for approximate inference.
- Hidden
Markov Model - Hidden Markov Model builder.
- Identity
Feature - Simple identity feature: always returns 1.0
- Importance
Sampler - Importance sampling for approximate inference.
- Inference
Engine - Inference engine for PGM queries.
- Junction
Tree - Junction tree structure for exact inference.
- Junction
Tree Edge - Edge in the junction tree connecting two cliques.
- Likelihood
Weighting - Likelihood weighting for Bayesian networks.
- Linear
ChainCRF - Linear-chain CRF for sequence labeling.
- Marginalization
Query - Query for marginal probability P(X).
- Markov
Random Field - Markov Random Field builder (undirected graphical model).
- MaxProduct
Algorithm - Max-product algorithm (MAP inference).
- Mean
Field Inference - Mean-field variational inference.
- Parallel
MaxProduct - Parallel max-product algorithm for MAP inference.
- Parallel
SumProduct - Parallel sum-product belief propagation.
- Particle
- Particle for particle filtering.
- Particle
Filter - Particle filter (Sequential Monte Carlo) for temporal inference.
- Separator
- A separator between two cliques (their shared variables).
- Site
- Site approximation for a single factor.
- SumProduct
Algorithm - Sum-product algorithm (belief propagation).
- Transition
Feature - Transition feature: fires when transitioning from one state to another.
- Tree
ReweightedBP - Tree-reweighted belief propagation (TRW-BP).
- Variable
Elimination - Variable elimination algorithm for exact inference.
- Variable
Node - Variable node in a factor graph.
- Weighted
Sample - Weighted sample for importance sampling.
Enums§
- Elimination
Strategy - Strategy for computing variable elimination ordering.
- Factor
Op - Operations on factors.
- PgmError
- Errors that can occur in PGM operations.
- Proposal
Distribution - Proposal distribution types for importance sampling.
Traits§
- Feature
Function - Feature function for linear-chain CRF.
- Message
Passing Algorithm - Trait for message passing algorithms.
Functions§
- condition
- Compute conditional probability P(X | Y = y).
- expr_
to_ factor_ graph - Convert a TensorLogic expression to a factor graph.
- marginalize
- Compute marginal probability for a variable.
- message_
passing_ reduce - Perform message passing inference on a factor graph.
Type Aliases§
- Assignment
- Assignment of values to variables.
- Result
- Result type for PGM operations.